2024 Vol. 43, No. 2~3
Article Contents

ZHOU Xiaoshen, LIU Wenyuan, SHAN Siqi, CHEN Juan, ZHANG Anshun, XIE Guiqing, LIN Xinren, RAO Dongping, WANG Hu, LIN Jian. 2024. Ore geology of typical deposits in the Timok Cu-Au ore field, Serbia. Geological Bulletin of China, 43(2~3): 270-288. doi: 10.12097/gbc.2022.08.016
Citation: ZHOU Xiaoshen, LIU Wenyuan, SHAN Siqi, CHEN Juan, ZHANG Anshun, XIE Guiqing, LIN Xinren, RAO Dongping, WANG Hu, LIN Jian. 2024. Ore geology of typical deposits in the Timok Cu-Au ore field, Serbia. Geological Bulletin of China, 43(2~3): 270-288. doi: 10.12097/gbc.2022.08.016

Ore geology of typical deposits in the Timok Cu-Au ore field, Serbia

More Information
  • The Tethys metallogenic belt is one of the three major metallogenic belts in the world. Porphyry deposits, epithermal deposits and skarn deposits are widely developed in this belt. The ABTS metallogenic belt is composed of Apuseni-Banat, Timok and Srednogorie ore concentration in the western part of the Tethys metallogenic belt. The mineralization is mainly related to calc-alkaline magmatic activity in the Late Cretaceous. Timok ore field is one of the ore fields with great economic significance in the ABTS metallogenic belt. It is of great significance to summarize the geological characteristics and metallogenic regularity of the deposit in this area for prospecting and exploration. Based on an overview of the geological characteristics of typical deposits in the Timok ore field, the metallogenic regularity and dynamic background of the ore field are discussed in this paper. The results show that the typical ore deposit in Timok ore field was formed between 88 Ma and 78 Ma, and the mineralization lasted only about 10 Ma. The mineralization age in Timok ore field also shows a trend of becoming younger from east to west. The typical deposit types in the ore field are mainly porphyry deposits (such as Majdanpek deposit, Veliki Krivelj deposit and Valja Strz deposit) and high sulfidation epithermal-porphyry deposits (such as Bor deposit and Cukaru Peki deposit), which are mainly Cu-Au mineralization. The differences in deposit types, mineralization characteristics and burial depth of ore bodies are caused by thrusting nappe structure and uneven denudation after mineralization. At the same time, the mineralization types of typical deposits and the change trend of depth of ore bodies in the ore field indicate that there are still great prospecting potential in the north-northwest of the ore field, the southeast of the Cukaru Peki deposit.

  • 加载中
  • [1] Antonijević I. 2011. The Novo Okno copper deposit of olistostrome origin (Bor, eastern Serbia)[J]. Geoloski anali Balkanskoga poluostrva, 72: 101−109.

    Google Scholar

    [2] Antonijević I, Mijatović P. 2014. The copper deposits of Bor, eastern Serbia: geology and origin of the deposits[J]. Geoloski anali Balkanskoga poluostrva, 75: 59−74.

    Google Scholar

    [3] Banješević M. 2010. Upper cretaceous magmatic suites of the Timok magmatic complex[J]. Geoloski Anali Balkanskoga poluostrva, 71: 13−22.

    Google Scholar

    [4] Banjesević M, Ingram S, Large D. 2014. Copper−gold exploration and discovery in the Timok Magmatic Complex, Serbia[C]//EGU General Assembly Conference Abstracts: 16450.

    Google Scholar

    [5] Banješević M, Large D. 2014. Geology and mineralization of the new copper and gold discovery south of Bor Timok magmatic complex[C]//Proceedings of the XVI Serbian Geological Congress, Serbian Geological Society, Donji Milanovac: 739−741.

    Google Scholar

    [6] Banješević M, Cvetković V, von Quadt A, et al. 2019. New constraints on the main mineralization event inferred from the latest discoveries in the Bor Metallogenetic Zone (BMZ, East Serbia)[J]. Minerals, 9(11): 672. doi: 10.3390/min9110672

    CrossRef Google Scholar

    [7] Baker T. 2019. Gold copper endowment and deposit diversity in the Western Tethyan magmatic belt, southeast Europe: Implications for exploration[J]. Economic Geology, 114(7): 1237−1250. doi: 10.5382/econgeo.4643

    CrossRef Google Scholar

    [8] Berza T, Constantinescu E, Vlad S L N. 1998. Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen[J]. Resource Geology, 48(4): 291−306. doi: 10.1111/j.1751-3928.1998.tb00026.x

    CrossRef Google Scholar

    [9] Cail T L, Cline J S. 2001. Alteration associated with gold deposition at the Getchell Carlin−type gold deposit, north−central Nevada[J]. Economic Geology, 96(6): 1343−1359. doi: 10.2113/gsecongeo.96.6.1343

    CrossRef Google Scholar

    [10] Ciobanu C L, Cook N J, Stein H. 2002. Regional setting and geochronology of the Late Cretaceous Banatitic magmatic and metallogenetic belt[J]. Mineralium Deposita, 37(6): 541−567.

    Google Scholar

    [11] Cioflica G. 1994. K−Ar ages of Alpine granitoids in the Hauzesti−Drinova area (Poiana Ruscai Mountains, Romania)[J]. Rev. Roum. Geol., 38: 3−8.

    Google Scholar

    [12] Clark A H, Ullrich T D. 2004. 40Ar−39Ar age data for andesitic magmatism and hydrothermal activity in the Timok Massif, eastern Serbia: implications for metallogenetic relationships in the Bor copper−gold subprovince[J]. Mineralium Deposita, 39(2): 256−262. doi: 10.1007/s00126-003-0370-3

    CrossRef Google Scholar

    [13] Cline J S, Hofstra A H, Muntean J L, et al. 2005. Carlin−type gold deposits in Nevada: Critical geologic characteristics and viable models[J]. Economic Geology, 100: 451−484.

    Google Scholar

    [14] Cook N J, Ciobanu C L. 2001. Paragenesis of Cu−Fe ores from Ocna de Fier−Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine, 65(3): 351−372. doi: 10.1180/002646101300119457

    CrossRef Google Scholar

    [15] Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801−818. doi: 10.2113/gsecongeo.100.5.801

    CrossRef Google Scholar

    [16] Cooke D R, Hollings P, Wilkinson J J, et al. 2014. Geochemistry of porphyry deposits[J]. Treatise on Geochemistry, 13: 357−381.

    Google Scholar

    [17] Đorđević M. 2005. Volcanogenic Turonian and epiclastics of senonian in the Timok magmatic complex between Bor and the Tupižnica mountain, eastern Serbia[J]. Geoloski Anali Balkanskoga Poluostrva, (66): 63−71.

    Google Scholar

    [18] Drew L J. 2006. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits: Applications to central Europe[R]. US Department of the Interior, US Geological Survey: 2005−5272.

    Google Scholar

    [19] Dupont A, Vander Auwera J, Pin C, et al. 2002. Trace element and isotope (Sr, Nd) geochemistry of porphyry−and skarn−mineralising Late Cretaceous intrusions from Banat, western South Carpathians, Romania[J]. Mineralium Deposita, 37(6): 568−586.

    Google Scholar

    [20] Einaudi M T, Hedenquist J W, Inan E E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments[J]. Society of Economic Geologists, 10: 285−313.

    Google Scholar

    [21] Fügenschuh B, Schmid S M. 2005. Age and significance of core complex formation in a very curved orogen: Evidence from fission track studies in the South Carpathians (Romania)[J]. Tectonophysics, 404(1/2): 33−53.

    Google Scholar

    [22] Gallhofer D, Quadt A, Peytcheva I, et al. 2015. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian‐Balkan orogen[J]. Tectonics, 34(9): 1813−1836. doi: 10.1002/2015TC003834

    CrossRef Google Scholar

    [23] Handler R, Neubauer F, Velichkova S H, et al. 2004. 40Ar/39Ar age constraints on the timing of magmatism and post−magmatic cooling in the Panagyurishte region, Bulgaria[J]. Swiss Bulletin of Mineralogy and Petrology, 84(1): 119−132.

    Google Scholar

    [24] Jankovic S. 1990. Types of copper deposits related to volcanic environment in the Bor district, Yugoslavia[J]. Geologische Rundschau, 79(2): 467−478. doi: 10.1007/BF01830639

    CrossRef Google Scholar

    [25] Jankovic S, Herrington R J, Kozelj D. 1998. The Bor and Madjanpek copper–gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia)[C]//Porphyry and Hydrothermal Copper and Gold Deposits: 169−178.

    Google Scholar

    [26] Jelenković R, Milovanović D, Koželj D, et al. 2016. The mineral resources of the Bor metallogenic zone: a review[J]. Geologia Croatica, 69(1): 143−155. doi: 10.4154/GC.2016.11

    CrossRef Google Scholar

    [27] Kincaid C, Griffiths R W. 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 425(6953): 58−62. doi: 10.1038/nature01923

    CrossRef Google Scholar

    [28] Klimentyeva D, Driesner T, von Quadt A, et al. 2021. Silicate−replacive high sulfidation massive sulfide orebodies in a porphyry Cu−Au system: Bor, Serbia[J]. Mineralium Deposita, 56(8): 1423−1448. doi: 10.1007/s00126-020-01023-2

    CrossRef Google Scholar

    [29] Knaak M, Márton I, Tosdal R M, et al. 2016. Geologic setting and tectonic evolution of porphyry Cu−Au, polymetallic replacement, and sedimentary rock−hosted au deposits in the northwestern area of the timok magmatic complex, Serbia[J]. Economic Geology, 19: 1−28.

    Google Scholar

    [30] Kolb M, Von Quadt A, Peytcheva I, et al. 2013. Adakite−like and normal arc magmas: distinct fractionation paths in the East Serbian segment of the Balkan–Carpathian arc[J]. Journal of Petrology, 54(3): 421−451. doi: 10.1093/petrology/egs072

    CrossRef Google Scholar

    [31] Koželj D I. 2002. Epithermal gold mineralization in the Bor metallogenic zone—morphogenetic types, structural−texture varieties and potentiality[C]// Koželj. Proceedings of the international symposium. Bor: Institut za Bakar Bor: 57−70.

    Google Scholar

    [32] Krstekanić N, Willingshofer E, Broerse T, et al. 2021. Analogue modelling of strain partitioning along a curved strike−slip fault system during backarc−convex orocline formation: Implications for the Cerna−Timok fault system of the Carpatho−Balkanides[J]. Journal of Structural Geology, 149: 104386. doi: 10.1016/j.jsg.2021.104386

    CrossRef Google Scholar

    [33] Lips A L W, Herrington R J, Stein G, et al. 2004. Refined timing of porphyry copper formation in the Serbian and Bulgarian portions of the Cretaceous Carpatho−Balkan Belt[J]. Economic Geology, 99(3): 601−609. doi: 10.2113/gsecongeo.99.3.601

    CrossRef Google Scholar

    [34] Minkovska V, Peybernès B, Nikolov T. 2002. Palaeogeography and geodynamic evolution of the Balkanides and Moesian ‘microplate’(Bulgaria) during the earliest Cretaceous[J]. Cretaceous Research, 23(1): 37−48. doi: 10.1006/cres.2001.0299

    CrossRef Google Scholar

    [35] Neubauer F. 2002. Contrasting late cretaceous with neogene ore provinces in the Alpine−Balkan−Carpathian−Dinaride collision belt[J]. Geological Society, London, Special Publications, 204(1): 81−102.

    Google Scholar

    [36] Popov P N. 1987. Tectonics of the Banat−Srednogorie rift[J]. Tectonophysics, 143(1/3): 209−216.

    Google Scholar

    [37] Pačevski A, Cvetković V, Šarić K, et al. 2016. Manganese mineralization in andesites of Brestovačka Banja, Serbia: evidence of sea−floor exhalations in the Timok Magmatic Complex[J]. Mineralogy and Petrology, 110(4): 491−502. doi: 10.1007/s00710-016-0425-7

    CrossRef Google Scholar

    [38] Quadt von A, Moritz R, Peytcheva I, et al. 2005. Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria[J]. Ore Geology Reviews, 27(1/4): 95−126.

    Google Scholar

    [39] Quadt von A, Peytcheva I, Heinrich C, et al. 2007. Upper Cretaceous magmatic evolution and related Cu–Au mineralization in Bulgaria and Serbia[C]//Ninth Biennial Meeting of the Society for Geology Applied to Mineral Deposits SGA, Dublin. Dublin: Irish Association for Economic Geology: 861−864.

    Google Scholar

    [40] Radtke A S, Heropoulos C, Fabbi B P, et al. 1972. Data on major and minor elements in host rocks and ores, Carlin gold deposit, Nevada[J]. Economic Geology, 67(7): 975−978. doi: 10.2113/gsecongeo.67.7.975

    CrossRef Google Scholar

    [41] Schmid S M, Bernoulli D, Fügenschuh B, et al. 2008. The Alpine−Carpathian−Dinaridic orogenic system: correlation and evolution of tectonic units[J]. Swiss Journal of Geosciences, 101(1): 139−183. doi: 10.1007/s00015-008-1247-3

    CrossRef Google Scholar

    [42] Selverstone J. 2005. Are the Alps collapsing?[J]. Annual Review of Earth and Planetary Sciences, 33(1): 113−132. doi: 10.1146/annurev.earth.33.092203.122535

    CrossRef Google Scholar

    [43] Sillitoe R H. 2000. Gold−rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery[J]. Reviews in Economic Geology, 13: 315−345.

    Google Scholar

    [44] Sillitoe R H. 2010. Porphyry copper systems[J]. Economic geology, 105(1): 3−41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    [45] Starostin V I. 1970. Bor and Maidanpek copper deposits in Yugoslavia[J]. International Geology Review, 12(4): 370−380. doi: 10.1080/00206817009475244

    CrossRef Google Scholar

    [46] Strashimirov S, Petrunov R, Kanazirski M. 2002. Porphyry−copper mineralisation in the central Srednogorie zone, Bulgaria[J]. Mineralium deposita, 37(6): 587−598.

    Google Scholar

    [47] Vaskovic N, Jovic V, Matovic V. 2010. Early Cretaceous glauconite formation and Late Cretaceous magmatism and metallogeny of the East Serbian part of the Carpathoe Balkanides[C]//Acta Mineralogica−Petrographica, Field Guide Series, 25: 1−32.

    Google Scholar

    [48] Van der Toorn J, Davidovic D, Hadjieva N, et al. 2013. A new sedimentary rock−hosted gold belt in eastern Serbia[C]// 12th Biennial SGA Meeting: Mineral deposit research for a high−tech world: 691−694.

    Google Scholar

    [49] Velojić M, Jelenkovic R, Cvetkovic V. 2020. Fluid Evolution of the Čukaru Peki Cu−Au Porphyry System (East Serbia) inferred from a fluid inclusion study[J]. Geologia Croatica, 73(3): 197−209. doi: 10.4154/gc.2020.14

    CrossRef Google Scholar

    [50] Wortel M J R, Spakman W. 2000. Subduction and slab detachment in the Mediterranean−Carpathian region[J]. Science, 290(5498): 1910−1917. doi: 10.1126/science.290.5498.1910

    CrossRef Google Scholar

    [51] Zimmerman A, Stein H J, Hannah J L, et al. 2008. Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans−South Carpathians, constrained by high precision Re–Os molybdenite ages[J]. Mineralium Deposita, 43(1): 1−21. doi: 10.1007/s00126-007-0149-z

    CrossRef Google Scholar

    [52] Zivanovic J. 2019. Structural, stratigraphic and temporal constraints of gold mineralization in the Bigar Hill deposit, Timok region, Serbia[D]. University of British Columbia: 1−207.

    Google Scholar

    [53] 韩宁, 江思宏, 白大明, 等. 2019. 东欧南部阿普塞尼-巴纳特-蒂莫克-斯雷德诺戈里斯基(ABTS)铜-金成矿带地质特征[J]. 地质通报, 38(11): 1920−1937. doi: 10.12097/j.issn.1671-2552.2019.11.015

    CrossRef Google Scholar

    [54] 黄腾骁, 王勤, 王亮亮. 2019. 塞尔维亚博尔州Majdanpek矿区2019年生产勘探设计[R]. 紫金矿业集团股份有限公司.

    Google Scholar

    [55] 林明钟. 2021. 塞尔维亚东部Z. Brdo金矿床地质特征及矿床成因分析[J]. 矿产勘查, 12(12): 2341−2348.

    Google Scholar

    [56] 饶东平. 2021. 多元素分析在岩性及含矿性判别的应用——以塞尔维亚佩吉铜金矿床为例[J]. 矿产勘查, 12(4): 980−988.

    Google Scholar

    [57] 宋国学, 秦克章, 李光明, 等. 2018. 中硫型浅成低温热液金多金属矿床基本特征、研究进展与展望[J]. 岩石学报, 34(3): 748−762.

    Google Scholar

    [58] 闫宝文, 苏金健, 郭红乐. 2019. 塞尔维亚博尔州VK矿区斑岩型铜矿床2019年生产勘探设计[R]. 紫金矿业集团股份有限公司.

    Google Scholar

    [59] 游富华, 王国平, 王勤. 2020. 塞尔维亚博尔地区Bor-Veliki Krivelj铜矿区Zlatno Brdo金矿床2020年度勘探地质设计[R]. 紫金矿业集团股份有限公司.

    Google Scholar

    [60] 紫金Timok项目组. 2019. 塞尔维亚2019年生产勘探设计[R]. 紫金矿业集团股份有限公司.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1113) PDF downloads(113) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint