2024 Vol. 43, No. 9
Article Contents

MENG Qiuyi, TONG Ying, XUE Chunji, ZHAO Yun, WANG Silin, LIU Yihao, LUO Sensen, LI Jiabao. 2024. Petrogenesis of porphyries in Baxi copper deposit in East Junggar, NW China and its enlightenment to mineral prospecting. Geological Bulletin of China, 43(9): 1595-1606. doi: 10.12097/gbc.2022.10.040
Citation: MENG Qiuyi, TONG Ying, XUE Chunji, ZHAO Yun, WANG Silin, LIU Yihao, LUO Sensen, LI Jiabao. 2024. Petrogenesis of porphyries in Baxi copper deposit in East Junggar, NW China and its enlightenment to mineral prospecting. Geological Bulletin of China, 43(9): 1595-1606. doi: 10.12097/gbc.2022.10.040

Petrogenesis of porphyries in Baxi copper deposit in East Junggar, NW China and its enlightenment to mineral prospecting

More Information
  • The recently discovered Baxi porphyry copper deposit is located in the Qiongheba ore−concentration area in East Junggar, Xinjiang. The ore−bearing porphyry are mainly composed of quartz diorite, quartz monzodiorite and granodiorite. Zircon U−Pb dating yielded two similar late Early Carboniferous ages of 337 Ma for quartz diorite and granodiorite. Quartz diorites and granodiorites are high SiO2, CaO, Al2O3, and low K2O contents, belonging the calc−alkaline, aluminum−weakly peraluminous. They are rich in LREE and LILE, such as Nb, Ta and Ti with weak negative Eu anomaly and high Sr and low Y contents, showing arc granitic characters with some Adakite futures. Combined with the regional research, we suggest the diorites and granodiorites in the Baxi porphyry copper deposit formed by partial melting of former subduction arc with magmatic mixing and following crystallization differentiation during the tectonic transition period from subduction to post−orogenic setting in Late Paleozoic. Porphyry copper deposits also formed in this period. In other words, except the Silurian−Devonian large−scale metallogenic stage, Carboniferous is also an important metallogenic stage in the Qiongheba area. It indicates that we should more attention on Late Paleozoic post−collision porphyry deposits in mineral exploration in northern Xinjiang and adjacent areas.

  • 加载中
  • [1] Chen B, Jahn B M, Wilde S, et al. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications[J]. Tectonophysics, 328(1): 157−182.

    Google Scholar

    [2] Du S J, Qu X, Deng G, et al. 2010. Chronology and tectonic setting of the intrusive bodies and associated porphyry copper deposit in Hersai area, eastern Junggar.[J]. Acta Petrologica Sinica, 26(10): 2981−2996(in Chinese with English abstract).

    Google Scholar

    [3] Gao F L, Gui X M, Li T Z, et al. 2018. Rock−forming and ore−forming ages and geochemistry of the Layikeleke porphyry Cu(Mo) deposit in East Junggar of Xinjiang and their geological significance[J]. Geological Bulletin of China, 37(6): 1113−1124.

    Google Scholar

    [4] Gao J, Klemd R, Zhu M, et al. 2018a. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: A review[J]. Journal of Asian Earth Sciences, 165: 7−36. doi: 10.1016/j.jseaes.2017.10.002

    CrossRef Google Scholar

    [5] Gao J, Qin K Z, Zhou M F, et al. 2018b. Large−scale porphyry−type mineralization in the Central Asian Metallogenic Domain: Geodynamic background, magmatism, fluid activity and metallogenesis[J]. Journal of Asian Earth Sciences, 165: 1−6. doi: 10.1016/j.jseaes.2018.08.023

    CrossRef Google Scholar

    [6] Gao J, Zhu M T, Wang X S, et al. 2019. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71(in Chinese with English abstract).

    Google Scholar

    [7] Gu L X, Yan Z F. 1996. Geology and genesis of peraluminous granites in East Tianshan Upper Paleozoic island arc belt[J]. Chinese Journal of Geochemistry, 15(1): 33−43. doi: 10.1007/BF03166794

    CrossRef Google Scholar

    [8] Guo L S, Zhang R, Liu Y L, et al. 2009. Zircon U−Pb age of Tonghualing intermediate−acid intrusive rocks, Eastern Junggar, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5): 819−824(in Chinese with English abstract).

    Google Scholar

    [9] Han Y, Zhao G. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012

    CrossRef Google Scholar

    [10] Hou K J, Qin Y, Li Y H, et al. 2013. In situ Sr−Nd Isotopic Measurement of Apatite Using Laser Ablation Multi−collector Inductively Coupled Plasma−Mass Spectrometry[J]. Rock and Mineral Analysis, 32(4): 547−554(in Chinese with English abstract).

    Google Scholar

    [11] Hou Z Q, Qu X M, Yang Z S, et al. 2006. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ. Mineralization in post−collisional extension setting[J]. Mineral Deposits, 25(6): 629−651(in Chinese with English abstract).

    Google Scholar

    [12] Huang G, Niu G Z, Wang X L, et al. 2016. Early Silurian adakitic rocks of East Junggar, Xinjiang: Evidence from zircon U−Pb age, geochemistry and Sr−Nd−Hf isotope of the quartz diorite[J]. Acta Petrologica et Mineralogica, 35(5): 751−767(in Chinese with English abstract).

    Google Scholar

    [13] Ji J Q, Chen J F, Han B F. 2018. Zircon U−Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 115(1/4): 137−152.

    Google Scholar

    [14] Liu Y S. 2014. The manual of ICPMSDataCal for LA-ICP-MS/LA-MCICP-MS data processing[R]. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences: 1–40(in Chinese).

    Google Scholar

    [15] Ludwig K R. 2012. User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel[M]. Berkeley, California: Berkeley Geochronology Center Special Publication.

    Google Scholar

    [16] Li J T, Zhu B Q. 1990. Main characteristics of late paleozoic platetectonics in the southern part of East Junggar, Xinjiang[J]. Geological Review, 36(4): 305−316(in Chinese with English abstract).

    Google Scholar

    [17] Li J T, Xiao X C, Chen W. 2000. Late Ordovician continental basement of the eastern Junggar Basin in Xinjiang, NW China: Evidence from the Laojunmiao metamorphic complex on the northeast basin margin[J]. Geological Bulletin of China, 19(3): 297−302(in Chinese with English abstract).

    Google Scholar

    [18] Li L. 2012. Study on the Granitic Magmatism and Tectonic Significance of the Silurian in the Eastern Junggar Region, Xinjiang[D]. Master's Thesis of Northwest University(in Chinese with English abstract).

    Google Scholar

    [19] Long X, Yuan C, Sun M, et al. 2012. Geochemistry and U−Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction−accretion processes in the southern Central Asian Orogenic Belt[J]. Gondwana Research, 21(2/3): 637−653. doi: 10.1016/j.gr.2011.05.015

    CrossRef Google Scholar

    [20] Lu P, Tong Y, Meng Q Y, et al. 2021. Petrogenesis and tectonic setting of the Late Permian A−type granitic dyke swarm in Ulungur, East Junggar[J]. Geological Bulletin of China, 40(1): 58−70(in Chinese with English abstract).

    Google Scholar

    [21] Meng Q Y. 2020. Spatiotemporal distribution and mineralization of Paleozoic granites in East Junggar[D]. Master's Thesis of China University of Geosciences(Beijing)(in Chinese with English abstract).

    Google Scholar

    [22] Qu X, Xu X W, Liang G L, et al. 2009. Geological and geochemical characteristics of the Mengxi Cu−Mo deposit and its constraint to tectonic setting of the Qiongheba magmatic arc in eastern Junggar, Xinjiang[J]. Acta Petrologica Sinica, 25(4): 765−776(in Chinese with English abstract).

    Google Scholar

    [23] Shen P. 2015. The magmatic oxygen fugacity of porphyry copper deposits in the Central Asian Metallogenic Domain and its control on the scale of ore deposits[J]. Acta Mineralogica Sinica, 2015(S1): 497(in Chinese).

    Google Scholar

    [24] Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42(12): 313−345.

    Google Scholar

    [25] Tong Y, Wang T, Hong D W, et al. 2010. Spatial and temporal distribution of the Carboniferous−Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica et Mineralogica, 29(6): 619−641(in Chinese with English abstract).

    Google Scholar

    [26] Wang D H, Li H Q, Ying L J, et al. 2009. Copper and gold metallogenic epoch and prospecting potential in Qiongheba area of Yiwu County, Xinjiang[J]. Mineral Deposits, 28(1): 73−82(in Chinese with English abstract).

    Google Scholar

    [27] Wang L, Chen A D. 2018. Discussion on geophysical characteristics and prospecting of Bashang copper deposit in Xinjiang[J]. World Nonferrous Metals, 496(4): 107−109(in Chinese with English abstract).

    Google Scholar

    [28] Wang S L, Qu S Z, Xu M S, et al. 2017. Geophysical characteristics and prospecting direction of Daxi copper depoasits[J]. Xingjiang Geology, 35(2): 201−206(in Chinese).

    Google Scholar

    [29] Wang S L, Guo Y, Gao K. 2018. Geological characteristics and metallogenic prospect analysis of Daxi copper deposit in Yiwu County, Xinjiang[J]. Xinjiang Youse Jinshu, 41(1): 22−24(in Chinese).

    Google Scholar

    [30] Windley B F, Alexeiev, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(12): 31−47.

    Google Scholar

    [31] Xiao W J, Han C M, Yuan C, et al. 2006. Unique Carboniferous−Permian tectonic−metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain[J]. Acta Petrologica Sinica, 22(5): 1062−1076(in Chinese with English abstract).

    Google Scholar

    [32] Xiao W, Windley B F, Han C, et al. 2018. Late Paleozoic to Early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [33] Xiao W, Li S, Santosh M, et al. 2012. Orogenic belts in Central Asia: Correlations and connections[J]. Journal of Asian Earth Sciences, 49: 1−6. doi: 10.1016/j.jseaes.2012.03.001

    CrossRef Google Scholar

    [34] Xiong X L, Cai Z Y, Niu H C, et al. 2005. The Late Paleozoic adakites in eastern Tianshan area and their metallogenetic significance[J]. Acta Petrologica Sinica, 21(3): 967−976(in Chinese with English abstract).

    Google Scholar

    [35] Yang F Q, Wu H, Han J L. 2001. Metallogenic series and metallogenic egularity of metallic ore deposits in East Zhungeer, Xinjiang[J]. Xinjiang Geology, 19(1): 54−58(in Chinese with English abstract).

    Google Scholar

    [36] Yang Z M, Hou Z Q. 2009. Porphyry Cu deposits in collisional orogen setting: A preliminary genetic model[J]. Mineral Deposits, 28(5): 515−538(in Chinese with English abstract).

    Google Scholar

    [37] Yu H X, Wu G Q, Liu J Y. 1998. Two types of granite and two metallogenic series in eastern Junggar Region of Xinjiang[J]. Geotectonica Et Metallogenia, 22(2): 119−127(in Chinese).

    Google Scholar

    [38] Zhang H X, Niu H C, Hiroaki Sato, et al. 2004. Late Paleozoic Adakite and Nb−enriched Basalt from Northern Xinjiang: Evidence for the Southward Subduction of the Paleo−Asian Ocean[J]. Geological Journal of China Universities, 10(1): 106−113(in Chinese with English abstract).

    Google Scholar

    [39] Zhang H X, Shen X M, Ma L , et al. 2008. Geochronology of the Fuyun adakite, North Xinjiang and its constraint to the initiation of the Paleo−Asian Ocean subduction[J]. Acta Petrologica Sinica, 24(5): 1054−1058(in Chinese with English abstract).

    Google Scholar

    [40] Zhang M H, Yao Y, Cheng Z G, et al. 2021. Early Carboniferous quartz diorite in the Baxi copper deposit, East Junggar: Insight into potential for porphyry copper deposits[J]. Acta Petrologica et Mineralogica, 40(1): 153−168(in Chinese with English abstract).

    Google Scholar

    [41] Zhang Y, Liang G L, Wu Q Y, et al. 2010. Characteristics and formation mechanism of the veins in Mengxi porphyry Cu−Mo deposit, eastern Junggar, Xinjiang, China.[J]. Acta Petrologica Sinica, 26(10): 2997−3006(in Chinese with English abstract).

    Google Scholar

    [42] Zhang Z C, Dong S Y, H H, et al. 2009. Geology and geochemistry of the Permian intermediate−acid intrusions in the southwestern Tianshan, Xinjiang, China: implications for petrogenesis and tectonics[J]. Geological Bulletin of China, 28(12): 1827−1839 (in Chinese with English abstract).

    Google Scholar

    [43] Zhao J X, Tong Y, Meng G X, et al. 2017. Zircon U−Pb age and petrogenesis of the Lüshigou high Ba−Sr quartz−monzonite in East Junggar, Xinjiang, and its geological significance[J]. Acta Petrologica et Mineralogica, 36(5): 743−754(in Chinese with English abstract).

    Google Scholar

    [44] 杜世俊, 屈迅, 邓刚, 等. 2010. 东准噶尔和尔赛斑岩铜矿成岩成矿时代与形成的构造背景[J]. 岩石学报, 26(10): 2981−2996.

    Google Scholar

    [45] 高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景, 流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71.

    Google Scholar

    [46] 郭丽爽, 张锐, 刘玉琳, 等. 2009. 新疆东准噶尔铜华岭中酸性侵入体锆石U−Pb年代学研究[J]. 北京大学学报: 自然科学版, 45(5): 819−824.

    Google Scholar

    [47] 侯可军, 秦燕, 李延河, 等. 2013. 磷灰石Sr−Nd同位素的激光剥蚀−多接收器电感耦合等离子体质谱微区分析[J]. 岩矿测试, 32(4): 547−554.

    Google Scholar

    [48] 侯增谦, 曲晓明, 杨竹森, 等. 2006. 青藏高原碰撞造山带: Ⅲ 后碰撞伸展成矿作用[J]. 矿床地质, 25(6): 629−651.

    Google Scholar

    [49] 黄岗, 牛广智, 王新录, 等. 2016. 新疆东准噶尔早志留世埃达克岩−来自锆石U−Pb年龄、地球化学及Sr−Nd−Hf同位素的证据[J]. 岩石矿物学杂志, 35(5): 751−767.

    Google Scholar

    [50] 李锦轶, 肖序常, 汤耀庆, 等. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 36(4): 305−316.

    Google Scholar

    [51] 李锦轶, 肖序常, 陈文. 2000. 准噶尔盆地东部的前晚奥陶世陆壳基底——来自盆地东北缘老君庙变质岩的证据[J]. 中国区域地质, 19(3): 297−302.

    Google Scholar

    [52] 李雷. 2012. 新疆东准噶尔地区志留纪花岗岩浆作用及构造意义研究[D]. 西北大学硕士学位论文.

    Google Scholar

    [53] 刘勇胜. 2014. LA-ICP-MS/LA-MC-ICP-MS 数据处理软件ICPMSDataCal(V9. 5) 使用手册[R]. 中国地质大学地质过程与矿产资源国家重点实验室: 1–40.

    Google Scholar

    [54] 卢鹏, 童英, 孟秋熠, 等. 2021. 东准噶尔北缘乌伦古地区晚二叠世A型花岗质岩墙成因及构造背景[J]. 地质通报, 40(1): 58−70.

    Google Scholar

    [55] 孟秋熠. 2020. 东准噶尔古生代花岗岩时空分布规律与成矿作用[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [56] 屈迅, 徐兴旺, 梁广林, 等. 2009. 蒙西斑岩型铜钼矿地质地球化学特征及其对东准噶尔琼河坝岩浆岛弧构造属性的制约[J]. 岩石学报, 25(4): 765−776.

    Google Scholar

    [57] 申萍. 2015. 中亚成矿域斑岩铜矿岩浆氧逸度及其对矿床规模的控制[J]. 矿物学报, (S1): 497.

    Google Scholar

    [58] 童英, 王涛, 洪大卫, 等. 2010. 北疆及邻区石炭—二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 29(6): 619−641.

    Google Scholar

    [59] 王登红, 李华芹, 应立娟, 等. 2009. 新疆伊吾琼河坝地区铜、金矿成矿时代及其找矿前景[J]. 矿床地质, 28(1): 73−82.

    Google Scholar

    [60] 王磊, 陈安德. 2018. 关于新疆坝西铜矿地球物理特征及找矿探讨[J]. 世界有色金属, 496(4): 107−109.

    Google Scholar

    [61] 王斯林, 屈栓柱, 徐敏山, 等. 2017. 坝西铜矿地质地球物理特征及找矿方向[J]. 新疆地质, 35(2): 201−206.

    Google Scholar

    [62] 王斯林, 郭燕, 高科. 2018. 新疆伊吾县坝西铜矿地质特征及成矿远景分析[J]. 新疆有色金属, 41(1): 22−24.

    Google Scholar

    [63] 肖文交, 韩春明, 袁超, 等. 2006. 新疆北部石炭纪—二叠纪独特的构造−成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 22(5): 1062−1076.

    Google Scholar

    [64] 熊小林, 蔡志勇, 牛贺才, 等. 2005. 东天山晚古生代埃达克岩成因及铜金成矿意义[J]. 岩石学报, 21(3): 967−976.

    Google Scholar

    [65] 杨富全, 吴海, 韩金良. 2001. 新疆东准噶尔金属矿床成矿系列及成矿规律[J]. 新疆地质, 19(1): 54−58.

    Google Scholar

    [66] 杨志明, 侯增谦. 2009. 初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿床地质, 28(5): 515−538.

    Google Scholar

    [67] 喻亨祥, 吴郭泉, 刘家远. 1998. 新疆东准噶尔地区两类花岗岩与两个成矿系列[J]. 大地构造与成矿学, 22(2): 119−127.

    Google Scholar

    [68] 张海祥, 沈晓明, 马林, 等. 2008. 新疆北部富蕴县埃达克岩的同位素年代学及其对古亚洲洋板块俯冲时限的制约[J]. 岩石学报, 24(5): 1054−1058.

    Google Scholar

    [69] 张海祥, 牛贺才, Sato H, 等. 2004. 新疆北部晚古生代埃达克岩、富铌玄武岩组合: 古亚洲洋板块南向俯冲的证据[J]. 高校地质学报, 10(1): 106−113.

    Google Scholar

    [70] 张铭鸿, 姚勇, 程志国, 等. 2021. 新疆东准噶尔坝西早石炭世石英闪长岩及其对斑岩铜矿的指示意义[J]. 岩石矿物学杂志, 40(1): 153−168.

    Google Scholar

    [71] 张永, 梁广林, 吴倩怡, 等. 2010. 东准噶尔蒙西斑岩铜钼矿床脉体特征及其形成机制[J]. 岩石学报, 26(10): 2997−3006.

    Google Scholar

    [72] 张招崇, 董书云, 黄河, 等. 2010. 西南天山二叠纪中酸性侵入岩的地质学和地球化学: 岩石成因和构造背景[J]. 地质通报, 28(12): 1827−1839.

    Google Scholar

    [73] 赵建新, 童英, 孟贵祥, 等. 2017. 新疆东准噶尔绿石沟高Ba−Sr石英二长岩的锆石U−Pb年龄、成因及地质意义[J]. 岩石矿物学杂志, 36(5): 743−754.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(292) PDF downloads(56) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint