2024 Vol. 43, No. 9
Article Contents

XU Junjie, TONG Dianjun, GAO Yuanyuan. 2024. Features of the basement-involved structure in the Beikang Basin and their implication for the tectonic evolution of the southern South China Sea. Geological Bulletin of China, 43(9): 1607-1619. doi: 10.12097/gbc.2022.11.039
Citation: XU Junjie, TONG Dianjun, GAO Yuanyuan. 2024. Features of the basement-involved structure in the Beikang Basin and their implication for the tectonic evolution of the southern South China Sea. Geological Bulletin of China, 43(9): 1607-1619. doi: 10.12097/gbc.2022.11.039

Features of the basement-involved structure in the Beikang Basin and their implication for the tectonic evolution of the southern South China Sea

More Information
  • Southern South China Sea, where abundant geological information and hydrocarbon preserved, is the key to figure out the tectonic evolution of Southeast Asia. The southern South China Sea has been attracting attentions because of that. However, tectonic framework of southern South China Sea is complex, which hinders the researches on it. The Beikang Basin locates in the southern South China Sea. The basement−involved structures in the Beikang Basin are relatively simple, which can be a key to the evolution of the southern South China Sea. Seismic interpretation, qualitative and quantitative analysis of faults and the extensional factor analysis of lithosphere are used to analyze the structural characteristics of the basin. Analysis suggests that the prototype of the lower Beikang Basin is rift basin, locally detachment basin, bounded by the Saba Orogeny unconformity. The prototype basin of this section is rifted basin. The basin locates in the thinning zone of the passive continental margin. The formation of the rift basin is mainly related to the pull of the subducted proto−South China Sea. The entirely different evolutional histories of the Zengmu Basin and Beikang Basin testify the existent of the West Baram Line and suggest new division of geodynamic provinces for the South China Sea. The area was divided by the West Baram Line into collision−extrusion basin group and proto−South China Sea slab pull basin group. The strike−slip of the line began at Late Eocene and ended at latest Early Miocene. Comparisons between basement−involved structures in the southern and northern South China Sea reveal that deformation concentration towards the oceanic crust can only be found in necking zone and distal zone of the South China Sea margin, while deformations away from the ocean are rarely affected by seafloor spreading. The variety of extensional tectonics perpendicular to the passive margin may be associated with the decoupling between the proximal and distal margin before seafloor spreading.

  • 加载中
  • [1] Bai Y L, Wang X Y, Dong D D, et al. 2020. Symmetry of the South China Sea conjugate margins in a rifting, drifting and collision context[J]. Marine and Petroleum Geology, 117: 104397. doi: 10.1016/j.marpetgeo.2020.104397

    CrossRef Google Scholar

    [2] Barckhausen U, Engels M, Franke D, et al. 2014. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 58: 599−611. doi: 10.1016/j.marpetgeo.2014.02.022

    CrossRef Google Scholar

    [3] Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Soil Earth, 98(B4): 6299−6328. doi: 10.1029/92JB02280

    CrossRef Google Scholar

    [4] Brune S, Heine C, Clift P D, et al. 2017. Rifted margin architecture and crustal rheology: Reviewing Iberia−Newfoundland, Central South Atlantic, and South China Sea[J]. Marine and Petroleum Geology, 79: 257−281. doi: 10.1016/j.marpetgeo.2016.10.018

    CrossRef Google Scholar

    [5] Cullen A. 2014. Reprint of Nature and significance of the West Baram and Tinjar Lines, NW Borneo[J]. Marine and Petroleum Geology, 58: 674−686. doi: 10.1016/j.marpetgeo.2014.01.009

    CrossRef Google Scholar

    [6] Duan L, Pei J X, Zhang Y Z, et al. 2018. Tectonic characteristics of extensional detachment basin in southern South China Sea[J]. Marine Origin Petroleum Geology, 23(4): 71−80(in Chinese with English abstract).

    Google Scholar

    [7] Fuller M, Ali J R, Moss S J, et al. 1999. Paleomagnetism of Borneo[J]. Journal of Asian Earth Sciences, 17(1/2): 3−24.

    Google Scholar

    [8] Gozzard S, Kusznir N, Franke D, et al. 2018. South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion[J]. Petroleum Geoscience, 25(1): 112−128.

    Google Scholar

    [9] Hall R, van Hattum M W A, Spakman W. 2008. Impact of India–Asia collision on SE Asia: The record in Borneo[J]. Tectonophysics, 451(1/4): 366−389.

    Google Scholar

    [10] Hall R. 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 570/571(11): 1−41.

    Google Scholar

    [11] Hall R, Spakman W. 2015. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics, 658: 14−45. doi: 10.1016/j.tecto.2015.07.003

    CrossRef Google Scholar

    [12] Hall R, Breitfeld T. 2017. Nature and demise of the Proto−South China Sea[J]. Bulletin of the Geological Society of Malaysia, 63: 61−76. doi: 10.7186/bgsm63201703

    CrossRef Google Scholar

    [13] Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic[J]. Science, 235: 1156−1167.

    Google Scholar

    [14] Hutchison C S. 1975. Ophiolite in Southeast Asia[J]. Geological Society of America Bulletin, 86: 797−806. doi: 10.1130/0016-7606(1975)86<797:OISA>2.0.CO;2

    CrossRef Google Scholar

    [15] Hutchison C S. 1996. The 'Rajang accretionary prism' and 'Lupar Line' problem of Borneo[J]. Geological Society London Special Publications, 106(1): 247−261. doi: 10.1144/GSL.SP.1996.106.01.16

    CrossRef Google Scholar

    [16] Lei C. 2012. Structure and evolution of Yinggehai and Qiongdongnan Basins, South China Sea: Implications for Cenozoic tectonic in Southeast Asia[D]. Doctoral Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    Google Scholar

    [17] Lei C, Ren J Y, Zhang J. 2015. Tectonic province division in the South China Sea: Implications for basin geodynamics[J]. Earth Science−Journal of China University of Geosciences, 40(4): 744−762(in Chinese with English abstract). doi: 10.3799/dqkx.2015.062

    CrossRef Google Scholar

    [18] Lei J P, Jiang S H, Li S Z, et al. 2016. Gravity anomaly in the southern South China Sea: a connection of Moho depth to the nature of the sedimentary basins' crust[J]. Geological Journal, 51(S1): 244−262. doi: 10.1002/gj.2817

    CrossRef Google Scholar

    [19] Lei Z Y, Zhang L, Wang L Z, et al. 2020. Provenance migration in the Beikang Basin of the Southern South China Sea during the Oligocene to the Mid−Miocene[J]. Earth Science, 45(5): 1855−1864(in Chinese with English abstract).

    Google Scholar

    [20] Li C F, Li J, Ding W, et al. 2015. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research Solid Earth, 120(3): 1377−1399. doi: 10.1002/2014JB011686

    CrossRef Google Scholar

    [21] Liang G H, Zhang B L. 2024. Discussion on the Cenozoic tectonic evolution of the South China Sea from continental margin extension[J]. Geological Bulletin of China, 43(1): 20−32(in Chinese with English abstract).

    Google Scholar

    [22] Liu J, Chen X, Wu W, et al. 2015. New tectono−geochronological constraints on timing of shearing along the Ailao Shan−Red River shear zone: Implications for genesis of Ailao Shan gold mineralization[J]. Journal of Asian Earth Sciences, 103: 70−86. doi: 10.1016/j.jseaes.2014.11.006

    CrossRef Google Scholar

    [23] Madon M, Kim C L, Wong R. 2013. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 76: 312−333. doi: 10.1016/j.jseaes.2013.04.040

    CrossRef Google Scholar

    [24] Menier D, Mathew M, Pubellier M, et al. 2017. Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard[J]. Scientific Reports, 7(1): 1−18. doi: 10.1038/s41598-016-0028-x

    CrossRef Google Scholar

    [25] Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 19(1): 3−21. doi: 10.1016/j.gr.2010.02.016

    CrossRef Google Scholar

    [26] Mohn G, Manatschal G, Beltrando M, et al. 2012. Necking of continental crust in magma−poor rifted margins: Evidence from the fossil Alpine Tethys margins[J]. Tectonics, 31(1): 1−28.

    Google Scholar

    [27] Morley C K. 2016. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 120: 62−86. doi: 10.1016/j.jseaes.2016.01.013

    CrossRef Google Scholar

    [28] Peron−Pinvidic G, Manatschal G, Osmundsen P T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts[J]. Marine and Petroleum Geology, 43: 21−47. doi: 10.1016/j.marpetgeo.2013.02.002

    CrossRef Google Scholar

    [29] Peron−Pinvidic G, Manatschal G. 2010. From microcontinents to extensional allochthons: witnesses of how continents rift and break apart?[J]. Petroleum Geoscience, 16(3): 189−197. doi: 10.1144/1354-079309-903

    CrossRef Google Scholar

    [30] Ranero C R, Perez−Gussinye M. 2010. quential faulting explains the asymmetry and extension discrepancy of conjugate margins[J]. Nature, 468(7321): 294−299. doi: 10.1038/nature09520

    CrossRef Google Scholar

    [31] Ren J Y, Pang X, Lei C, et al. 2015a. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 22(1): 102−114 (in Chinese with English abstract).

    Google Scholar

    [32] Ren J Y, Pang X, Lei C, et al. 2015b. Structure and evolution of deep water/superdeep water basins in the northern continental margins of South China Sea[C]// The 17th Annual Meeting of the China Association for Science and Technology—Minutes 9, Proceedings of the Symposium on Deepwater Oil and Gas Exploration and Development Technology in the South China Sea, Guangzhou, China: 8 (in Chinese with English abstract).

    Google Scholar

    [33] Ren J Y, Pang X, Yu P, et al. 2018. Characteristics and formation mechanism of deepwater and ultra−deepwater basins in the northern continental margin of the South China Sea[J]. Chinese Journal of Geophysics, 61(12): 4901−4920 (in Chinese with English abstract).

    Google Scholar

    [34] Sandoval L, Welford J K, Macmahon H, et al. 2019. etermining continuous basins across conjugate margins: The East Orphan, Porcupine, and Galicia Interior basins of the southern North Atlantic Ocean[J]. Marine and Petroleum Geology, 110: 138−161. doi: 10.1016/j.marpetgeo.2019.06.047

    CrossRef Google Scholar

    [35] Savva D, Meresse F, Pubellier M, et al. 2013. Seismic evidence of hyper−stretched crust and mantle exhumation offshore Vietnam[J]. Tectonophysics, 608: 72−83. doi: 10.1016/j.tecto.2013.07.010

    CrossRef Google Scholar

    [36] Savva D, Pubellier M, Franke D, et al. 2014. Different expressions of rifting on the South China Sea margins[J]. Marine and Petroleum Geology, 58: 579−598. doi: 10.1016/j.marpetgeo.2014.05.023

    CrossRef Google Scholar

    [37] Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea[J]. Tectonophysics, 692: 98−119. doi: 10.1016/j.tecto.2016.02.022

    CrossRef Google Scholar

    [38] Song T, Li C. 2015. Rifting to drifting transition of the Southwest Subbasin of the South China Sea[J]. Marine Geophysical Researches, 36(2/3): 167−185.

    Google Scholar

    [39] Tang W. 2018. Characteristics of major uncomformities and depositional evolution of Cenozoic in Beikang Basin, South China Sea[J]. China Offshore Oil and Gas, 30(2): 9−16(in Chinese with English abstract).

    Google Scholar

    [40] Wang P C, Li S Z, Guo L L, et al. 2016. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms[J]. Geological Journal, 51(S1): 464−489. doi: 10.1002/gj.2835

    CrossRef Google Scholar

    [41] Williams S E, Whittaker J M, Halpin J A, et al. 2018. Australian−Antarctic break up and seafloor spreading: Balancing geological and geophysical constraints[J]. Earth Science Reviews, 188: 41−58.

    Google Scholar

    [42] Wu D, Zhu X M, Zhang H H, et al. 2014. Deposition characteristics and hydrocarbon distribution in medium and large basins of Nansha, South China Sea[J]. Journal of Palaeogeography, 16(5): 673−686(in Chinese with English abstract).

    Google Scholar

    [43] Wu Z P, Liu Y Q, Zhang J, et al. 2018. Cenozoic characteristics and evolution of fault systems in the Liyue Basin, South China Sea[J]. Earth Science Frontiers, 25(2): 221−231 (in Chinese with English abstract).

    Google Scholar

    [44] Xie X N, Ren J Y, Wang Z F, et al. 2015. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 22(1): 77−87(in Chinese with English abstract).

    Google Scholar

    [45] Xu J J. 2019. The tectono−stratigraphic framework and geodynamics of the Zengmu Basin, southern South China Sea[D]. Doctoral Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    Google Scholar

    [46] Xu J, Ren J, Luo P. 2019. The evolution of a gravity−driven system accompanied by diapirism under the control of the prograding West Luconia Deltas in the Kangxi Depression, Southern South China Sea[J]. Marine Geophysical Research, 40(B4): 199−221.

    Google Scholar

    [47] Yao Y J, Xia B, Xu X. 2005. Tectonic evolution of the main sedimentary basins in southern area of the South China Sea[J]. Geological South China sea, 17: 1−11(in Chinese with English abstract).

    Google Scholar

    [48] Ye Q, Mei L, Shi H, et al. 2020. The Influence of Pre‐existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin[J]. Tectonics, 39(3): 290−312.

    Google Scholar

    [49] Zahirovic S, Matthews K J, Flament N, et al. 2016. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth−Science Reviews, 162: 293−337. doi: 10.1016/j.earscirev.2016.09.005

    CrossRef Google Scholar

    [50] Zahirovic S, Seton M, Miller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth Discussions, 5(2): 227−273.

    Google Scholar

    [51] Zhang Y, Xia S, Cao J, et al. 2020. Extensional tectonics and post−rift magmatism in the southern South China Sea: New constraints from multi−channel seismic data[J]. Marine and Petroleum Geology, 117: 104396. doi: 10.1016/j.marpetgeo.2020.104396

    CrossRef Google Scholar

    [52] Zhao S, Li X J, Yao Y J, et al. 2019. Orogenic events in Southern South China Sea and their relationship with the subduction of the Proto South China Sea[J]. Marine Geology & Quaternary Geology, 39(5): 147−162 (in Chinese with English abstract).

    Google Scholar

    [53] 段亮, 裴健翔, 张亚震, 等. 2018. 南海南部裂离型盆地构造特征[J]. 海相油气地质, 23(4): 71−80.

    Google Scholar

    [54] 雷超, 任建业, 张静. 2015. 南海构造变形分区及成盆过程[J]. 地球科学—中国地质大学学报, 40(4): 744−762.

    Google Scholar

    [55] 雷超. 2012. 南海北部莺歌海−琼东南盆地新生代构造变形格局及其演化过程分析[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [56] 雷振宇, 张莉, 王龙樟, 等. 2020. 南海南部北康盆地晚渐新世−中中新世物源变化[J]. 地球科学, 45(5): 1855−1864.

    Google Scholar

    [57] 梁光河, 张宝林. 2024. 从陆缘伸展探讨新生代南海构造演化[J]. 地质通报, 43(1): 20−32.

    Google Scholar

    [58] 任建业, 庞雄, 雷超, 等. 2015a. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 22(1): 102−114.

    Google Scholar

    [59] 任建业, 庞雄, 雷超, 等. 2015b. 南海北部陆缘深水—超深水盆地结构和演化[C]//第十七届中国科协年会——分9 南海深水油气勘探开发技术研讨会论文集, 广州.

    Google Scholar

    [60] 任建业, 庞雄, 于鹏, 等. 2018. 南海北部陆缘深水−超深水盆地成因机制分析[J]. 地球物理学报, 61(12): 4901−4920.

    Google Scholar

    [61] 唐武. 2018. 南海北康盆地新生代重要不整合界面特征与沉积演化规律[J]. 中国海上油气, 30(2): 9−16.

    Google Scholar

    [62] 吴冬, 朱筱敏, 张厚和, 等. 2014. 中国南沙海域大中型盆地沉积特征与油气分布[J]. 古地理学报, 16(5): 673−686.

    Google Scholar

    [63] 吴智平, 刘雨晴, 张杰, 等. 2018. 中国南海礼乐盆地新生代断裂体系的发育与演化[J]. 地学前缘, 25(2): 221−231.

    Google Scholar

    [64] 解习农, 任建业, 王振峰, 等. 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 22(1): 77−87.

    Google Scholar

    [65] 徐俊杰. 2019. 曾母盆地构造−地层格架及其成盆机制研究[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [66] 姚永坚, 夏斌, 徐行. 2005. 南海南部海域主要沉积盆地构造演化特征[J]. 南海地质研究, 17: 1−11.

    Google Scholar

    [67] 赵帅, 李学杰, 姚永坚, 等. 2019. 南海南部造山运动及其与古南海俯冲的成因联系[J]. 海洋地质与第四纪地质. 39(5): 147–162.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(222) PDF downloads(35) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint