2024 Vol. 43, No. 9
Article Contents

LIN Dongyong, WANG Lei, WANG Xiangdong, ZHANG Xiong, JIN Xinbiao, JIANG Jinchang. 2024. Depositional age and provenance of ore-hosting strata in the Dabaoshan copper polymetallic deposit, northern Guangdong Province: Implication on ore genesis. Geological Bulletin of China, 43(9): 1565-1594. doi: 10.12097/gbc.2023.10.022
Citation: LIN Dongyong, WANG Lei, WANG Xiangdong, ZHANG Xiong, JIN Xinbiao, JIANG Jinchang. 2024. Depositional age and provenance of ore-hosting strata in the Dabaoshan copper polymetallic deposit, northern Guangdong Province: Implication on ore genesis. Geological Bulletin of China, 43(9): 1565-1594. doi: 10.12097/gbc.2023.10.022

Depositional age and provenance of ore-hosting strata in the Dabaoshan copper polymetallic deposit, northern Guangdong Province: Implication on ore genesis

More Information
  • The Dabaoshan deposit is a large−sized polymetallic deposit in northern Guangdong province, South China, and consists mainly of porphyry− and skarn−type Mo–W mineralization and adjacent stratiform Cu–Pb–Zn mineralization. It has been debated for a long time whether the stratiform Cu–Pb–Zn mineralization is related to a Jurassic porphyry Cu–Mo system, or to a Devonian exhalative event with Jurassic overprinting. One of the key issues is that the depositional age of the ore−hosting strata and petrogenetic relationship to the layered volcanic rocks were not well constrained. In this paper, we conducted LA−ICP−MS zircon U−Pb dating and Hf isotope study for the ore−hosting strata in the Dabaoshan deposit. The results show that the youngest ages of detrital zircon from two ore−hosting strata samples yield 430±8 Ma and 431±4 Ma, whereas those from two footwall rocks samples of the layered volcanic rocks yield 239±3 Ma and 189±3 Ma, respectively. It suggests that the depositional age of the ore−hosting strata and footwall rocks of the layered volcanic rocks belongs to the Middle Devonian and the Early Jurassic, respectively. They were mainly derived from Neo− to Meso−proterozoic (1200~750 Ma) and Paleozoic (440~420 Ma) crust with minor input of Paleo−proterozoic (2500~1600 Ma) and Pan−African (650~520 Ma) material. In addition, the footwall rocks include the Late Paleozoic to the Early Mesozoic detrital zircons (340~210 Ma). The Hf isotopic signature suggests that these materials were mainly originated from recycled ancient crust and the Proterozoic juvenile crust. All above mentioned were the response to the early micro−continental evolution of the Cathaysia Block, amalgamation between the Yangtze Craton and the Cathaysia Block and their Phanerozoic evolution. The layered volcanic rocks were unconformable overlaid by the ore−hosting Devonian rocks, and they were both thrusting on the Jurassic clastic rocks. The stratiform Cu−Pb−Zn orebodies were suffering from the Devonian sedimentary exhalative, then overprinted by the Yanshanian magmatic−hydrothermal activity.

  • 加载中
  • [1] Blichert−Toft J, Albarède F. 1997. The Lu−Hf isotope geochemistry of chondrites and the evolution of the mantle−crust system[J]. Earth and Planetary Science Letters, 148(1): 243−258.

    Google Scholar

    [2] Cai J H, Liu J Q. 1993. Study and application of mineral inclusions in Dabaoshan polymetallic deposits in northern Guangdong[J]. Journal of Mineralogy and Petrology, (1): 33−40 (in Chinese with English abstract).

    Google Scholar

    [3] Chen J J, Xu X B, Liang C H, et al. 2021. Provenance analysis and tectonic implications of Middle Devonian quartzose conglomerate and sandstone in Southeastern Hunan Province, South China[J]. Earth Science, 46(10): 3421−3434 (in Chinese with English abstract).

    Google Scholar

    [4] Du G M, Mei Y P, Cai H, et al. 2012. Geochronology research and its significance for Mo−W polymetallic deposit of Dabao Mountain in Northern Guangdong province[J]. South China Geology, (3): 226−231 (in Chinese with English abstract).

    Google Scholar

    [5] Fu X M, Zhang D X, Dai T G. 2016. U-Pb ages and Hf isotopic composition characteristics of zircon from Jiuquling granite in the north of Dabaoshan region, northern Guangdong Province[J]. Geotectonica et Metallogenia, 40(6): 1299−1309(in Chinese with English abstract).

    Google Scholar

    [6] Fu X M, Zhang D X, Dai T G, et al. 2018. Trace element record of pyrite from diverse deposits—examples from the Dabaoshan Polymetallic deposit of northern Guangdong, South China[J].Geotectonica et Metallogenia,42(3):505−519(in Chinese with English abstract).

    Google Scholar

    [7] Ge C H, Han F. 1986. Genesis characteristics of marine volcanic hydrothermal sedimentation in Dabaoshan iron−polymetallic deposits[J]. Mineral Deposits, (1): 1−12 (in Chinese with English abstract).

    Google Scholar

    [8] Ge C H, Han F. 1987. Submarine volcanic hydrothermal sedimentary origin and geological geochemical characteristics of the Dabaoshan deposit in Guangdong province[M]. Beijing: Science and Technology Publishing House: 1−111(in Chinese with English abstract).

    Google Scholar

    [9] Gu L X, Hu W X, Ni P, et al. 2003. New discussion on the South China-type massive sulphide deposits formed on continental crust[J]. Geological Journal of China Universities, 9(4): 592−608(in Chinese with English abstract).

    Google Scholar

    [10] Gu L X, Khin Z, Hu W X, et al. 2007. Distinctive features of Late Palaeozoic massive sulphide deposits in South China[J]. Ore Geology Reviews, 31(1): 107−138.

    Google Scholar

    [11] He G C, Zhang J, Wu J, et al. 2016. LA−ICP−MS zircon U−Pb age of the Chuandu and Dabaoshan porphyries in the Dabaoshan ore filed, northern Guangdong Province and its metallogenic implication[J]. Geotectonica et Metallogenia, 40(1): 136−144 (in Chinese with English abstract).

    Google Scholar

    [12] Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy & Geochemistry, 53: 27−62.

    Google Scholar

    [13] Hu L S, Cawood P A, Du Y S, et al. 2017. Permo−Triassic detrital records of South China and implications for the Indosinian events in East Asia[J]. Palaeogeography Palaeoclimatology Palaeoecology, 485: 84−100. doi: 10.1016/j.palaeo.2017.06.005

    CrossRef Google Scholar

    [14] Jiang S Y, Zhao K D, Jiang Y H, et al. 2008. Characteristics and genesis of Mesozoic A−type granites and associated mineral deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi−Hang Belt, South China[J]. Geological Journal of China Universities, 14(4): 496−509 (in Chinese with English abstract).

    Google Scholar

    [15] Kong J T, Xu Z J, Cheng R H, et al. 2021. Provenance of Lower Jurassic sediments in the South China continental margin: Evidence from U−Pb ages of detrital zircons[J]. Palaeogeography Palaeoclimatology Palaeoecology, 569: 110−341.

    Google Scholar

    [16] Li C Y, Zhang H, Wang F Y, et al. 2012a. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback[J]. Lithos, 150: 101−110. doi: 10.1016/j.lithos.2012.04.001

    CrossRef Google Scholar

    [17] Li J H, Cawood P A, Ratschbacher L, et al. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth−Science Reviews, 201: 103056.

    Google Scholar

    [18] Li L M, Lin S F, Xing G F, et al. 2022. Identification of ca. 520 Ma mid−ocean−ridge−type ophiolite suite in the inner Cathaysia block, South China: Evidence from shearing−type oceanic plagiogranite[J]. Geological Society of America Bulletin, 134(7/8): 1701−1720.

    Google Scholar

    [19] Li W X, Zhao X L, Xing G F, et al. 2013. Geochronology of the detrital zircons from Early Jurassic sedimentary rocks from the Dongkeng Basin and its geological implications[J]. Geotectonica et Metallogenia, 37(1): 78−86 (in Chinese with English abstract).

    Google Scholar

    [20] Li X H, Li Z X, He B, et al. 2012b. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons[J]. Chemical Geology, 328: 195−207. doi: 10.1016/j.chemgeo.2011.10.027

    CrossRef Google Scholar

    [21] Li Y J, Wei J H, Santosh M, et al. 2016. Geochronology and petrogenesis of Middle Permian S−type granitoid in southeastern Guangxi Province, South China: Implications for closure of the eastern Paleo−Tethys[J]. Tectonophysics, 682: 1−16. doi: 10.1016/j.tecto.2016.05.048

    CrossRef Google Scholar

    [22] Liang X Q, Zhou Y, Jiang Y, et al. 2013. Difference of sedimentary response to Dongwu Movement: Study on LA−ICPMS U−Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 29(10): 3592−3606 (in Chinese with English abstract).

    Google Scholar

    [23] Liu G Q, Yang S Y, Zhang X L, et al. 1985. Preliminary discussion on the genesis of polymetallic deposits in Dabaoshan in northern Guangdong[J]. Acta Geologica Sinica, (1): 47−60, 92 (in Chinese with English abstract).

    Google Scholar

    [24] Liu N, Jiang B Y, Zhou X Y, et al. 2018. Detrital provenance of the Lower Jurassic Jinji Formation and its constrains to the Early Jurassic geodynamic background of South China[J]. Acta Metallurgica Sinica, 24(1): 65−76 (in Chinese with English abstract).

    Google Scholar

    [25] Liu S, Wang C L, Huang W T, et al. 2012. LA−ICP−MS zircon U−Pb age and dynamic background of the Dabaoshan porphyry associated with Mo−W mineralization in Northern Guangdong Province[J]. Geotectonica et Metallogenia, 36(3): 440−449 (in Chinese with English abstract).

    Google Scholar

    [26] Liu W S, Zhao R Y, Zhang X , et al. 2019. The EPMA and LA-ICP-MS in-situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu-polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 40(2): 291−306(in Chinese with English abstract).

    Google Scholar

    [27] Liu W S, Zhao H, Zhao R Y, et al. 2022. The constraints of carbonaceous mudstone Re−Os and detrital zircons U−Pb isotopic dating on the diagenetic and metallogenic ages from the Dabaoshan copper deposit in Guangdong Province[J]. Rock and Mineral Analysis, 41(2): 300−313 (in Chinese with English abstract).

    Google Scholar

    [28] Liu X S, Zhou S Z. 1984. Sulfide fossils and their geological significance were first discovered in the layer−controlled polymetallic deposit in Dabaoshan, Guangdong[J]. Journal of Nanjing University (Natural Sciences), 20(1): 139−143 (in Chinese with English abstract).

    Google Scholar

    [29] Liu X S, Zhou S Z. 1985. Analysis of the metallogenic mechanisms of Devonian volcanic rocks and stratiform banded iron formation and polymetallic deposits at the Dabaoshan area, Guangdong[J].Journal of Nanjing University(Natural Sciences), 21(2): 348−360(in Chinese with English abstract).

    Google Scholar

    [30] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [31] Liu Y S, Gao S, Hu Z C, et al. 2010a. Continental and oceanic crust recycling−induced melt–peridotite interactions in the trans−North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [32] Liu Y S, Hu Z C, Zong K Q, et al. 2010b. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA–ICP–MS[J]. Chinese Science Bulletin, 55: 1535−1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [33] Ludwig K R. 2003. Isoplot 3.0: A geochronological toolkit for microsoft Excel[M]. Berkeley Geochronology Center, Berkeley, California: BGC Special Publication.

    Google Scholar

    [34] Mao J W, Chen M H, Yuan S D, et al. 2011. Characteristics and spatial−temporal regularity of mineral deposits in Qinhang (or Shihang) metallogenic belt, South China[J]. Acta Geologica Sinica, 85(5): 636−658 (in Chinese with English abstract).

    Google Scholar

    [35] Mao J W, Cheng Y B, Chen M H, et al. 2013. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267−294. doi: 10.1007/s00126-012-0446-z

    CrossRef Google Scholar

    [36] Mao W, Li X F. 2013. Diagenetic chronology in Dabaoshan area, Guangdong[J]. Acta Mineralogica Sinica, 33(S2): 32 (in Chinese with English abstract).

    Google Scholar

    [37] Meng L F, Li Z X, Chen H L, et al. 2015. Detrital zircon U–Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China[J]. Journal of Asian Earth Sciences, 105: 286−299. doi: 10.1016/j.jseaes.2015.01.015

    CrossRef Google Scholar

    [38] Pan H B, Kang Z Q, Fu W C. 2014. SHRIMP zircon U-Pb ages of Xuwu subdacitic porphyry in the Dabaoshan ore district of northern Guangdong Province and its geological implications[J]. Geological Bulletin of China, 33(6): 894−899(in Chinese with English abstract).

    Google Scholar

    [39] Qiu S Q. 1981. A preliminary discussion on the genesis of the layered polymetallic deposits in Dabaoshan[J]. Geological Review, (4): 333−340 (in Chinese with English abstract).

    Google Scholar

    [40] Qu H Y, Chen M H, Yang F C, et al. 2014. Metallogenic chronology of the stratiform Cu orebody in the Dabaoshan Cu polymetallic deposit, northern Guangdong Province and its geological significance[J]. Acta Petrologica Sinica, 30(1): 152−162 (in Chinese with English abstract).

    Google Scholar

    [41] Qu H Y, Mao J W, Zhou S M, et al. 2019. Geochronology and geochemistry of Silurian dacite−porphyry in Daobaoshan deposit, northern Guangdong Province, and its geological significance[J]. Mineral Deposits, 38(2): 331−354 (in Chinese with English abstract).

    Google Scholar

    [42] Shu L S, Deng P, Yu J H, et al. 2008. The formation age of rhyolites on the western margin of Wuyi Mountain and their geochemical characteristics[J]. Science China(Earth Sciences), (8): 950−959 (in Chinese with English abstract).

    Google Scholar

    [43] Shu L S, Jahn B M, Charvet J, et al. 2014. Early Paleozoic depositional environment and intraplate tectono−magmatism in the Cathaysia block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154−186. doi: 10.2475/01.2014.05

    CrossRef Google Scholar

    [44] Song S M, Hu K, Jiang S Y, et al. 2007. The He−Ar−Pb−S isotope tracing on ore−forming fluid in Dabao hill polymetallic deposit, North Guangdong[J]. Contributions to Geology and Mineral Resources Research, 22(2): 87−92, 99 (in Chinese with English abstract).

    Google Scholar

    [45] Su S Q, Qin K Z, Li G M, et al. 2019. Geochronology and geochemistry of Early Silurian felsic volcanic rocks in the Dabaoshan ore district, South China: Implications for the petrogenesis and geodynamic setting[J]. Geological Journal, 54(6): 3286−3303. doi: 10.1002/gj.3328

    CrossRef Google Scholar

    [46] Tang J F, Liu J Q, Fu T A. 1992. Metallogenic conditions, tectonic rock control and ore control law and hidden ore deposit prediction in Dabaoshan and its peripheral areas in northern Guangdong[C]// Nanling Geology and Mineral Resources Anthology, Third Series. Geology Press, Beijing: 1−67 (in Chinese with English abstract).

    Google Scholar

    [47] Third Geological Team of Guangdong Provincial Bureau of Geology. 2016. Special research report on prospecting predictions for the Dabaoshan copper-polymetallic deposit in Shaoguan City, Guangdong Province[R](in Chinese).

    Google Scholar

    [48] Thirlwall M F, Anczkiewicz R. 2004. Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios[J]. International Journal of Mass Spectrometry, 235(1): 59−81. doi: 10.1016/j.ijms.2004.04.002

    CrossRef Google Scholar

    [49] Wang L. 2010. Metallogenic model and prospecting potential in Dabaoshan molybdenum polymetallic ore deposit, North Guangdong Province[D]. Doctoral Thesis of China University of Geosciences(in Chinese with English abstract).

    Google Scholar

    [50] Wang L, Hu M A, Yang Z, et al. 2011. U–Pb and Re–Os geochronology and geodynamic setting of the Dabaoshan polymetallic deposit, northern Guangdong Province, South China[J]. Ore Geology Reviews, 43(1): 40−49. doi: 10.1016/j.oregeorev.2011.06.008

    CrossRef Google Scholar

    [51] Wang L, Hu M A, Qu W J, et al. 2012. Zircon LA−ICP−MS U−Pb and molybdenite Re−Os dating of the Dabaoshan polymetallic deposit in northern Guangdong Province and its geological implications[J]. Geology in China, 39(1): 29−42 (in Chinese with English abstract).

    Google Scholar

    [52] Wang L, Long W G, Xu D M, et al. 2015. Zircon U−Pb geochronology of metamorphic basement in Yunkai area and its implications on the Grenvillian event in the Cathaysia Block[J]. Geoscience Frontiers, 22(2): 25−40 (in Chinese with English abstract).

    Google Scholar

    [53] Wang L. 2018. New constrains on the genesis of the Dabaoshan polymetallic deposit, South China: Textural, trace element, and Re–Os isotopic analyses of sulfides[C]//15th Quadrennial International Association on the Genesis of Ore Deposits Symposium Proceedings: 194−195.

    Google Scholar

    [54] Wang L, Jin X B, Xu D M, et al. 2019. Geochronological, geochemical, and Nd–Hf isotopic constraints on the origin of magmatism in the Dabaoshan ore district of South China[J]. Geological Journal, 54(3): 1518−1534. doi: 10.1002/gj.3248

    CrossRef Google Scholar

    [55] Wang X L, Zhou J C, Qiu J S, et al. 2006. LA–ICP–MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, south China: Implications for tectonic evolution[J]. Precambrian Research, 145: 111−130. doi: 10.1016/j.precamres.2005.11.014

    CrossRef Google Scholar

    [56] Wang X L, Zhou J C, Griffin W L, et al. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 159(1/2): 117−131. doi: 10.1016/j.precamres.2007.06.005

    CrossRef Google Scholar

    [57] Wang X L, Zhou J C, Qiu J S, et al. 2008. Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: Implications for petrogenesis and post−orogenic extension[J]. Geological Magazine, 145(2): 215−233.

    Google Scholar

    [58] Wang X, Chen J, Luo D. 2008. Study on the genesis of zircon in light bamboo granodiorite in southwest Zhejiang and its geological significance[J]. Geological Review, (3): 387−398 (in Chinese with English abstract).

    Google Scholar

    [59] Wang Y J, Wu C M, Zhang A M, et al. 2012. Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U–Pb geochronology and metamorphism of amphibolite and granulite[J]. Lithos, 150: 227−242. doi: 10.1016/j.lithos.2012.04.022

    CrossRef Google Scholar

    [60] Wang Y J, Zhang Y Z, Fan W M, et al. 2014. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological, Lu–Hf isotopic and geochemical evidence from granitoid gneisses[J]. Precambrian Research, 249: 144−161. doi: 10.1016/j.precamres.2014.05.003

    CrossRef Google Scholar

    [61] Wang Z H, Yang W Q, Zhou D, et al. 2018. Detrital zircon U−Pb geochronological records and its response of provenance transformation of strata surrounding Cambrian−Devonian unconformity in eastern margin of Yunkai Massif[J]. Earth Science, 43(11): 4193−4203 (in Chinese with English abstract).

    Google Scholar

    [62] Wu J, Wang G Q, Liang H Y, et al. 2014. Indentification of Caledonian volcanic rock in the Dabaoshan ore−field in northern Guangdong Province and its geological implication[J]. Acta Petrologica Sinica, 30(4): 1145−1154 (in Chinese with English abstract).

    Google Scholar

    [63] Wu Y B, Zheng Y F. 2004. Zircon genesis mineralogical studies and their constraints on U−Pb age interpretation[J]. Science Bulletin, (16): 1589−1604 (in Chinese with English abstract).

    Google Scholar

    [64] Xiang J H, Liang X Q, Shan Y H, et al. 2018. Two phases of mineralization in the Dabaoshan polymetallic deposit, Guangdong Province: Constraints from Re−Os geochronology of black carbonaceous mudstone and molybdenite[J]. Geotectonica et Metallogenia, 42(4): 732−745 (in Chinese with English abstract).

    Google Scholar

    [65] Xiang L, Shu L S. 2010. Pre−Devonian tectonic evolution in eastern South China: Evidence from clastic zircon[J]. Science China(Earth Sciences), 40(10): 1377−1388 (in Chinese with English abstract).

    Google Scholar

    [66] Xu K Q, Wang H N, Zhou J P, et al. 1996. On South China jet−sedimentary massive sulphide deposits[J]. Geological Journal of China Universities, (3): 2−17 (in Chinese with English abstract).

    Google Scholar

    [67] Xu Z J, Wang L L, Lan Y Z, et al. 2018. Detrital zircon U−Pb dating and its geological significance of Early Jurassic Lishan Formation in southwestern Fujian of South China[J]. Earth Science, (S1): 209−224 (in Chinese with English abstract).

    Google Scholar

    [68] Yang Z Y, He B. 2013. Transform of Jurassic tectonic configuration of South China Block: Evidence from U−Pb ages of detrital zircons[J]. Geotectonica et Metallogenia, 37(4): 580−591(in Chinese with English abstract).

    Google Scholar

    [69] Yao W H, Li Z X, Li W X, et al. 2012. Post−kinematic lithospheric delamination of the Wuyi–Yunkai orogen in south china: evidence from ca. 435 Ma high−Mg basalts[J]. Lithos, 154: 115−129. doi: 10.1016/j.lithos.2012.06.033

    CrossRef Google Scholar

    [70] Ying L J, Wang D H, Li C, et al. 2017. Re−Os dating of sulfides in the north stratiform ore body in Dabaoshan, Guangdong Province and its indication[J]. Geoscience Frontiers, 24(5): 31−38 (in Chinese with English abstract).

    Google Scholar

    [71] Yu J H, O'Reilly S Y, Wang L J, et al. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U−Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181(1/4): 97−114. doi: 10.1016/j.precamres.2010.05.016

    CrossRef Google Scholar

    [72] Yu J H, Liu Q, Hu X M, et al. 2013. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?[J]. Chinese Science Bulletin, 58(7): 788−795. doi: 10.1007/s11434-012-5376-8

    CrossRef Google Scholar

    [73] Zhang J W, Ye T P, Dai Y R, et al. 2019. Provenance and tectonic setting transition as recorded in the Neoproterozoic strata, western Jiangnan Orogen: Implications for South China within Rodinia[J]. Geoscience Frontiers, 10(5): 1823−1839. doi: 10.1016/j.gsf.2018.10.009

    CrossRef Google Scholar

    [74] Zhou D, Long W G, Wang L, et al. 2017. Geochronology and Lu−Hf isotope of Early Paleozoic Zhuya−Shiban gabbros in Yunkai terrane, South China[J]. Geological Bulletin of China, 36(5): 726−737 (in Chinese with English abstract).

    Google Scholar

    [75] Zhu X Y, Wei C S, Wang Y L, et al. 2011. The matallogenic system and the prognosis, Dabaoshan Mo−Cu−Pb−Zn deposit, Guangdong province[J]. Mineral Exploration, 2(6): 661−668 (in Chinese with English abstract).

    Google Scholar

    [76] Zhuang M Z. 1986. Discussion on metallogenic conditions and genesis of Dabaoshan polymetallic deposits[J]. Geology and Prospecting, (5): 27−31 (in Chinese with English abstract).

    Google Scholar

    [77] 蔡锦辉, 刘家齐. 1993. 粤北大宝山多金属矿床矿物包裹体特征研究及应用[J]. 矿物岩石, 13(1): 33−40.

    Google Scholar

    [78] 陈家驹, 徐先兵, 梁承华, 等. 2021. 湘东南中泥盆统石英砂砾岩物源分析及其大地构造意义[J]. 地球科学, 46(10): 3421−3434.

    Google Scholar

    [79] 杜国民, 梅玉萍, 蔡红, 等. 2012. 粤北大宝山钼钨多金属矿床年代学研究及其意义[J]. 华南地质与矿产, 28(3): 226−231.

    Google Scholar

    [80] 傅晓明, 张德贤, 戴塔根. 2016. 粤北大宝山北部九曲岭花岗岩锆石U−Pb年龄和Hf同位素特征[J]. 大地构造与成矿学, 40(6): 1299−1309.

    Google Scholar

    [81] 傅晓明, 张德贤, 戴塔根, 等. 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例[J]. 大地构造与成矿学, 42(3): 505−519.

    Google Scholar

    [82] 葛朝华, 韩发. 1986. 大宝山铁−多金属矿床的海相火山热液沉积成因特征[J]. 矿床地质, 5(1): 1−12.

    Google Scholar

    [83] 葛朝华, 韩发. 1987. 广东大宝山矿床喷气−沉积成因地质地球化学特征[M]. 北京: 北京科学技术出版社: 1−111.

    Google Scholar

    [84] 顾连兴, 胡文瑄, 倪培, 等. 2003. 再论大陆地壳断裂拗陷带中的华南型块状硫化物矿床[J]. 高校地质学报, 9(4): 592−608. doi: 10.3969/j.issn.1006-7493.2003.04.012

    CrossRef Google Scholar

    [85] 广东省地质局第三地质大队. 2016. 广东省韶关市大宝山铜多金属矿找矿预测专题研究报告[R].

    Google Scholar

    [86] 何国朝, 张健, 伍静, 等. 2016. 粤北大宝山矿区船肚岩体和大宝山花岗斑岩锆石LA−ICP−MS U−Pb年龄及多阶段成矿分析[J]. 大地构造与成矿学, 40(1): 136−144.

    Google Scholar

    [87] 蒋少涌, 赵葵东, 姜耀辉, 等. 2008. 十杭带湘南—桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J]. 高校地质学报, 14(4): 496−509.

    Google Scholar

    [88] 李武显, 赵希林, 邢光福, 等. 2013. 南岭东段早侏罗世沉积岩碎屑锆石U−Pb定年及其地质意义——以东坑盆地为例[J]. 大地构造与成矿学, 37(1): 78−86. doi: 10.3969/j.issn.1001-1552.2013.01.009

    CrossRef Google Scholar

    [89] 梁新权, 周云, 蒋英, 等. 2013. 二叠纪东吴运动的沉积响应差异: 来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA−ICP−MS U−Pb年龄研究[J]. 岩石学报, 29(10): 3592−3606.

    Google Scholar

    [90] 刘莎, 王春龙, 黄文婷, 等. 2012. 粤北大宝山斑岩钼钨矿床赋矿岩体锆石LA−ICP−MS U−Pb年龄与矿床形成动力学背景分析[J]. 大地构造与成矿学, 36(3): 440−449. doi: 10.3969/j.issn.1001-1552.2012.03.018

    CrossRef Google Scholar

    [91] 刘姤群, 杨世义, 张秀兰, 等. 1985. 粤北大宝山多金属矿床成因的初步探讨[J]. 地质学报, 1: 47−60.

    Google Scholar

    [92] 刘念, 姜宝玉, 周雪瑶, 等. 2018. 粤东盆地早侏罗世金鸡组物源分析及其对华南构造背景的约束[J]. 高校地质学报, 24(1): 65−76.

    Google Scholar

    [93] 刘武生,赵如意,张熊,等. 2019. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA-ICP-MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 40(2): 291–306.

    Google Scholar

    [94] 刘武生, 赵鸿, 赵如意, 等. 2022. 炭质泥岩Re−Os和碎屑锆石U−Pb同位素定年对广东大宝山铜矿床成矿时代的约束[J]. 岩矿测试, 41(2): 300−313. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202015

    CrossRef Google Scholar

    [95] 刘孝善, 周顺之. 1984. 广东大宝山层控多金属矿床中首次发现硫化物化石及其地质意义[J]. 南京大学学报(自然科学版), 20(1): 139−143.

    Google Scholar

    [96] 刘孝善, 周顺之. 1985. 广东大宝山中泥盆世火山岩与层状菱铁矿、多金属矿床成矿机制分析[J]. 南京大学学报(自然科学版), 21(2): 348−360.

    Google Scholar

    [97] 毛景文, 陈懋弘, 袁顺达, 等. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 85(5): 636−658.

    Google Scholar

    [98] 毛伟, 李晓峰, 杨富初. 2013. 广东大宝山多金属矿床花岗岩锆石LA−ICP−MS U−Pb定年及其地质意义[J]. 岩石学报, 29(12): 4104−4120.

    Google Scholar

    [99] 潘会彬, 康志强, 付文春. 2014. 粤北大宝山矿区徐屋岩体SHRIMP锆石U−Pb年龄及其地质意义[J]. 地质通报, 33(6): 894−899. doi: 10.3969/j.issn.1671-2552.2014.06.012

    CrossRef Google Scholar

    [100] 邱世强. 1981. 关于大宝山层状多金属矿床成因的初步探讨[J]. 地质论评, 27(4): 333−340. doi: 10.3321/j.issn:0371-5736.1981.04.007

    CrossRef Google Scholar

    [101] 瞿泓滢, 陈懋弘, 杨富初, 等. 2014. 粤北大宝山铜多金属矿床中层状铜矿体的成矿时代及其成因意义[J]. 岩石学报, 30(1): 152−162.

    Google Scholar

    [102] 瞿泓滢, 毛景文, 周淑敏, 等. 2019. 粤北大宝山志留纪次英安斑岩年代学、地球化学特征及其地质意义[J]. 矿床地质, 38(2): 331−354.

    Google Scholar

    [103] 舒良树, 邓平, 于津海, 等. 2008. 武夷山西缘流纹岩的形成时代及其地球化学特征[J]. 中国科学(D辑), 38(8): 950−959.

    Google Scholar

    [104] 宋世明, 胡凯, 蒋少涌, 等. 2007. 粤北大宝山多金属矿床成矿流体的He−Ar−Pb−S同位素示踪[J]. 地质找矿论丛, 22(2): 87−92. doi: 10.3969/j.issn.1001-1412.2007.02.002

    CrossRef Google Scholar

    [105] 汤吉方, 刘家齐, 傅太安, 等. 1992. 粤北大宝山及其外围地区多金属矿床成矿条件、构造控岩控矿规律及隐伏矿床预测[C]// 南岭地质矿产文集第三辑. 北京: 地质出版社: 1−67.

    Google Scholar

    [106] 王磊. 2010. 粤北大宝山钼多金属矿床成矿模式与找矿前景研究[D]. 中国地质大学博士学位论文.

    Google Scholar

    [107] 王磊, 胡明安, 屈文俊, 等. 2012. 粤北大宝山多金属矿床LA−ICP−MS锆石U−Pb和辉钼矿Re−Os定年及其地质意义[J]. 中国地质, 39(1): 29−42. doi: 10.3969/j.issn.1000-3657.2012.01.004

    CrossRef Google Scholar

    [108] 王磊, 龙文国, 徐德明, 等. 2015. 云开地区变质基底锆石U−Pb年代学及对华夏地块Grenvillian事件的指示[J]. 地学前缘, 22(2): 25−40.

    Google Scholar

    [109] 王志宏, 杨文强, 周岱, 等. 2018. 云开地块东缘寒武系—泥盆系不整合界面上下的碎屑锆石U−Pb年代学记录及对物源转换的响应[J]. 地球科学, 43(11): 4193−4203.

    Google Scholar

    [110] 汪相, 陈洁, 罗丹. 2008. 浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义[J]. 地质论评, 54(3): 387−398. doi: 10.3321/j.issn:0371-5736.2008.03.012

    CrossRef Google Scholar

    [111] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [112] 伍静, 王广强, 梁华英, 等. 2014. 粤北大宝山矿区加里东期火山岩的厘定及其地质意义[J]. 岩石学报, 30(4): 1145−1154.

    Google Scholar

    [113] 向建华, 梁新权, 单业华, 等. 2018. 广东大宝山多金属矿床两期成矿: 来自黑色炭质泥岩和辉钼矿Re−Os同位素定年的证据[J]. 大地构造与成矿学, 42(4): 732−745.

    Google Scholar

    [114] 向磊, 舒良树. 2010. 华南东段前泥盆纪构造演化: 来自碎屑锆石的证据[J]. 中国科学: 地球科学, 40(10): 1377−1388.

    Google Scholar

    [115] 徐克勤, 王鹤年, 周建平, 等. 1996. 论华南喷流−沉积块状硫化物矿床[J]. 高校地质学报, 2(3): 241−256.

    Google Scholar

    [116] 许中杰, 王嘹亮, 蓝艺植, 等. 2018. 华南闽西南早侏罗世梨山组碎屑锆石U−Pb定年及地质意义[J]. 地球科学, 43(S1): 209−224.

    Google Scholar

    [117] 杨宗永, 何斌. 2013. 华南侏罗纪构造体制转换: 碎屑锆石U−Pb年代学证据[J]. 大地构造与成矿学, 37(4): 580−591.

    Google Scholar

    [118] 应立娟, 王登红, 李超, 等. 2017. 广东大宝山北部层状矿体硫化物Re−Os测年及指示[J]. 地学前缘, 24(5): 31−38.

    Google Scholar

    [119] 周岱, 龙文国, 王磊, 等. 2017. 云开地区早古生代竹雅−石板辉长岩锆石U−Pb定年与Lu−Hf同位素特征[J]. 地质通报, 36(5): 726−737. doi: 10.3969/j.issn.1671-2552.2017.05.005

    CrossRef Google Scholar

    [120] 祝新友, 韦昌山, 王艳丽, 等. 2011. 广东大宝山钼钨多金属矿床成矿系统与找矿预测[J]. 矿产勘查, 2(6): 661−668. doi: 10.3969/j.issn.1674-7801.2011.06.004

    CrossRef Google Scholar

    [121] 庄明正. 1986. 大宝山多金属矿床成矿条件及矿床成因探讨[J]. 地质与勘探, 5: 27−31.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(263) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint