Citation: | MIN Jie, LIU Xiaohuang, XIAO Yuexin, LI Hongyu, LUO Xinping, WANG Ran, XING Liyuan, WANG Chao, ZHAO Honghui. 2025. Spatial and temporal distribution of ecosystem services and trade-offs in the Yangtze River Delta. Geological Bulletin of China, 44(1): 136-149. doi: 10.12097/gbc.2024.05.040 |
Valuation of ecosystem services is critical to the sustainable development of a region and human well−being.
Taking the Yangtze River Delta as the study area, we analysed the spatial and temporal distribution characteristics of four important ecosystem service functions, namely, net primary productivity (NPP) of vegetation, soil retention, habitat quality and carbon storage, in the Yangtze River Delta region from 1990 to 2020, based on the InVEST model and combining the land use types, normalised difference vegetation index (NDVI) and meteorological data. The spatial and temporal distribution characteristics of four important ecosystem services, namely vegetation net primary productivity (NPP), soil conservation, habitat quality and carbon storage, were analysed from 1990 to 2020, and hotspot areas for the four ecosystem services were identified. The correlation coefficient method was used to analyze the relationship between various ecosystem functions and land use types in the Yangtze River Delta region.
The results show that: ① the ecosystem service functions in the Yangtze River Delta region are spatially heterogeneous, with habitat quality, soil and water conservation and carbon storage showing a spatial pattern of "high in the southwest and low in the northeast", while the high values of habitat quality and carbon storage are distributed along the river. During the period 1990−2020, habitat quality and carbon storage services show a trend of "overall increase − local decrease", while soil conservation and vegetation net primary productivity services show a trend of "overall decrease − local increase". ② The area occupied by the three types of hotspots (hotspots, significant hotspots and very significant hotspots) in the Yangtze River Delta does not change significantly, and the distribution is obviously zonal, concentrated in the southwest. ③ In the Yangtze River Delta, there is a synergistic relationship between soil conservation, carbon storage and habitat, and NPP is a trade−off with carbon storage, habitat quality and soil conservation; among the seven land use types, NPP and soil conservation have a trade−off relationship. The trade−off/synergistic relationship between NPP and soil conservation is consistent with the Yangtze River Delta region. To ensure the sustainable management of local ecosystems, it is necessary to consider the interrelationships among ecosystem services in spatial planning to minimise trade−offs and enhance synergies.
This study focused on the Yangtze River Delta region and comprehensively evaluated four key ecosystem services (carbon storage, soil retention, habitat quality and net primary productivity of vegetation) in the Yangtze River Delta region through integrating multi−source datasets such as remote sensing data, geographical information data and socio−economic data, based on ArcGIS and Geoda. It systematically revealed the spatial pattern characteristics of ecosystem services in the Yangtze River Delta region on the grid−county scale, providing an important basis for in-depth understanding and optimizing the ecosystem services in this region.
[1] | Anselin L, Syabri I, Smirnov O. 2002. Visualizing multivariate spatial correlation with dynamically linked windows. New tools for spatial data analysis: Proceedings of the specialist meeting[M]. Santa Barbara, University of California. |
[2] | Bai Y, Zhuang C, Ouyang Z, et al. 2011. Spatial characteristics between biodiversity and ecosystem services in a human−dominated watershed[J]. Ecological Complexity, 8(2): 177−183. doi: 10.1016/j.ecocom.2011.01.007 |
[3] | Chen D, Li J, Yang X, Liu Y, et al. 2018. Trade−offs and optimization among ecosystem services in the Weihe River basin[J]. Acta Ecologica Sinica, 38(9): 3260−3271(in Chinese with English abstract). |
[4] | Chen W, Liu X, Li H, et al. 2024. Ecosystem service function and security pattern of Tianshan Mountains in Xinjiang from 1990 to 2050[J]. Geology in China, 51(5): 1−22(in Chinese with English abstract). |
[5] | Cord A, Bartkowski B, Beckmann M, et al. 2017. Towards systematic analyses of ecosystem service trade−offs and synergies: Main concept, methods and the road ahead[J]. Ecosystem Services, 28: 264−272. doi: 10.1016/j.ecoser.2017.07.012 |
[6] | Dai E, Wang X, Zhu J, et al. 2016. Methods, tools and research framework of ecosystem service trade−offs[J]. Geographical Research, 35(6): 1005−1016(in Chinese with English abstract). |
[7] | Ding Y, Wang L, Gui F, et al. 2023. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science, 44(6): 3343−3352(in Chinese with English abstract). |
[8] | Egoh B N, Reyers B, Rouget M, et al. 2008. Mapping ecosystem services for planning and management[J]. Agriculture Ecosystems & Environment, 127(1): 135−140. |
[9] | Fu B, Su C, Wei Y, et al. 2011. Double counting in ecosystem services valuation: causes and countermeasures[J]. Ecol. Res., 26(1): 1−14. doi: 10.1007/s11284-010-0766-3 |
[10] | Fu B, Zhao W, Chen L, et al. 2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China[J]. Land Degradation & Development, 16(1): 73−85. |
[11] | Guo F, Liu X, Zhang W, et al. 2024. Evolution of the spatial and temporal patterns of habitat quality and analysis of the driving forces in Yellow River Basin (Henan Section) from 2000 to 2040[J]. Geoscience, 38(3): 599−611(in Chinese with English abstract). |
[12] | He J, Zhuang D. 2006. Analysis of the relationship between urban dynamic change pattern of the Yangtze River Delta and the regional eco−environment[J]. Geographical Research, 3: 388−396,562(in Chinese with English abstract). |
[13] | Jiang Z, Sun X, Liu F, et al. 2019. Spatio−temporal variation of land us e and ecosystem service values and their impact factors in an urbanized agricultural basin since the reform and opening of China[J]. Environmental Monitoring and Assessment, 191: 1−14. doi: 10.1007/s10661-018-7122-4 |
[14] | Kragt M, Robertson M. 2014. Quantifying ecosystem services trade−offs from agricultural practices[J]. Ecological Economics, 102(2): 147−157. |
[15] | Lautenbach S, Volk M, Strauch M, et al. 2013. Optimization−based trade−off analysis of biodiesel crop production for managing an agricultural catchment[J]. Environmental Modelling & Software, 48(10): 98−112. |
[16] | Li J, Li H, Zhang L. 2016. Ecosystem service trade−offs in the Guanzhong−Tianshui economic region of China[J]. Acta Ecologica Sinica, 36(10): 3053−3062(in Chinese with English abstract). |
[17] | Li P, Jiang L, Feng Z, et al. 2012. Research progress on trade−offs and synergies of ecosystem services: An overview[J]. Acta Ecologica Sinica, 32(16): 5219−5229(in Chinese with English abstract). doi: 10.5846/stxb201109161360 |
[18] | Li S, Zhang C, Liu J, et al. 2013. The tradeoffs and synergies of ecosystem services: Research progress. development trend, and themes of geography[J]. Geographical Research, 32(8): 1379−1390(in Chinese with English abstract). |
[19] | Li Y, Luo Y, Liu G, et al. 2013. Effects of land use change on ecosystem services: A case study in Miyun reservoir watershed[J]. Acta Ecologica Sinica, 33(3): 726−736(in Chinese with English abstract). doi: 10.5846/stxb201205280787 |
[20] | Liu C, Wang C. 2018. Spatio−temporal evolution characteristics of habitat quality in the loess hilly region based on land use change: A case study in Yuzhong County[J]. Acta Ecologica Sinica, 38(20): 7300−7311(in Chinese with English abstract). |
[21] | Locatelli B, Imbach P, Wunder S. 2014. Synergies and trade− offs between ecosystem services in Costa Rica[J]. Environmental Conservation, 41(1): 27−36. doi: 10.1017/S0376892913000234 |
[22] | Lyu R, Zhao W, Tian X, et al. 2022. Non−linearity impacts of landscape pattern on ecosystem services and their trade−offs: A case study in the city belt along the Yellow River in Ning xia, China[J]. Ecological Indicators, 136: 108608. doi: 10.1016/j.ecolind.2022.108608 |
[23] | Ma W, Yang F, Wang N, et al. 2022. Study on spatial−temporal evolution and driving factors of ecosystem service value in the Yangtze River Delta Urban Agglomerations[J]. Journal of Ecology and Rural Environment, 38(11): 1365−1376(in Chinese with English abstract). |
[24] | Meehan T, Gratton C, Diehl E, et al. 2013. Ecosystem−service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest[J]. Plos One, 8(11): 1−13. |
[25] | Min J, Liu X, Xiao Y, et al. 2024. Analysis and predictions of the spatiotemporal variations of ecosystem carbon storages in the Xin’an river basin based on PLUS and InVEST models[J]. Geoscience, 38(3): 574−588(in Chinese with English abstract). |
[26] | Ni Z, Yang S, Zhang Q. et al. 2021. Evaluation, trade−off and synergy analysis of ecosystem supply service value in the Yangtze River Delta[J]. Ecological Economy, 37(11): 150−155(in Chinese with English abstract). |
[27] | Potter C, Randerson J, FieldI C, et al. 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 7(4): 811−841. doi: 10.1029/93GB02725 |
[28] | Rodriguez J, Beard T, Bennett E, et al. 2006. Trade−offs across space, time, and ecosystem services[J]. Ecology and Society, 11: 28−41. |
[29] | Ronchi E, Federico A, Musmeci F. 2002. A system oriented integrated indicator for sustainable development in Italy[J]. Ecological Indicators, 2(1/2): 197−210. doi: 10.1016/S1470-160X(02)00045-6 |
[30] | Shan W, Jin X, Ren J, et al. 2019. Ecological environment quality assessment based on remote sensing data for land consolidation[J]. J. Clean Prod., 239: 118126. doi: 10.1016/j.jclepro.2019.118126 |
[31] | Sheng S. 2023. Spatial pattern and driving force of service coordination and tradeoff of coastal ecosystem systems in Shandong[J]. Research on Soil and Water Conservation, 30(2): 384−392. |
[32] | Su C, Fu B, Wei Y, et al. 2012. Ecosystem management based on ecosystem services and human activities: A case study in the Yan he watershed[J]. Sustainability Science, 7(1): 17−32. doi: 10.1007/s11625-011-0145-1 |
[33] | Sun F, Fang F, Hong W, et al. 2023. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model[J]. Journal of Soil and Water Conservation, 37(1): 151−158(in Chinese with English abstract). |
[34] | Sun Q. 2023. The spatial−temporal variation patterns of multiple forest ecosystem services in the Yangtze River basin During 2000−2020[D]. Master’s Thesis of Huazhong Agricultural University: 20−27(in Chinese with English abstract). |
[35] | Sun Y, Ren Z, Zhao S, et al. 2017. Spatial and temporal changing analysis of synergy and trade−off between ecosystem services in valley basins of Shaanxi Province[J]. Acta Geographica Sinica, 72(3): 521−532(in Chinese with English abstract). |
[36] | Tian Y. 2018. Study on the synergies and tradeoffs among cultivated land ecosystem services and its management strategies: A case study in Cixi county, Zheiiang Province[D]. Master’s Thesis of Zhejiang University: 29−62(in Chinese with English abstract). |
[37] | Turner K, Odgaard M, Bocher P, et al. 2014. Bundling ecosystem services in Denmark: Trade−offs and synergies in a cultural landscape[J]. Landscape and Urban Planning, 125(10): 89−104. |
[38] | Wallace K. 2007. Classification of ecosystem services: Problems and solutions[J]. Biological Conservation, 139(3/4): 235−246. doi: 10.1016/j.biocon.2007.07.015 |
[39] | Wang B, Zhao J, Hu X. 2018. Analysison trade−offs and synergistic relationships among multiple ecosystem services in the Shiyang River Basin[J]. Acta Ecologica Sinica, 38(21): 7582−7595(in Chinese with English abstract). |
[40] | Wang H, Wang L, Fu X, et al. 2022. Spatial−temporal pattern of ecosystem service supply−demand and coordination in the Ulansuhai Basin, China[J]. Ecological Indicators, 143: 109406. doi: 10.1016/j.ecolind.2022.109406 |
[41] | Wang P, Zhang L, Li Y, et al. 2017. Spatio−temporal characteristics of the trade−off and synergy relationships among multiple ecosystem services in the upper reaches of Hanjiang River Basin[J]. Acta Geographica Sinica, 72(11): 2064−2078(in Chinese with English abstract). |
[42] | Wu N, Chen N, Cheng P, et al. 2023. Evaluation of carbon storage on terrestrial ecosystem responses to land cover change under five future scenarios in Anhui Province[J]. Resources and Environment in the Yangtze, 32(2): 415−426(in Chinese with English abstract). |
[43] | Wu Q. 2024. Ecosystem services supply−demand pattern, influencing factors and optimal management strategy at multi−scale in the Yangtze River Delta[D]. Master’s Thesis of Zhejiang University: 25−27(in Chinese with English abstract). |
[44] | Wu W, Peng J, Liu Y, et al. 2017. Tradeoffs and synergies between ecosystem services in Ordos City[J]. Progress in Geography, 36(12): 1571−1581(in Chinese with English abstract). doi: 10.18306/dlkxjz.2017.12.012 |
[45] | Xu L, Huang Q, Ding D, et al. 2018. Modelling urban expansion guided by land ecological suitability: A case study of Changzhou City, China[J]. Habitat International, 75: 12−24. doi: 10.1016/j.habitatint.2018.04.002 |
[46] | Yang X, Li J, Qin K, et al. 2015. Trade−offs between ecosystem services in Guanzhong−Tianshui Economic Region[J]. Acta Geographica Sinica, 70(11): 1762−1773(in Chinese with English abstract). |
[47] | Yuan J, Liu X, Li H, et al. 2024. Spatial and temporal variability of carbon stocks in different land−use types in the Yiluo River Basin in the middle section of the Yellow River from 1990 to 2050[J]. Geoscience, 38(3): 559−573(in Chinese with English abstract). |
[48] | Zhang D, Sun X, Yuan X, et al. 2018. Land use change and its impact on habitat quality in Lake Nansi Basin from 1980 to 2015[J]. Journal of Lake Sciences, 30(2): 349−357(in Chinese with English abstract). doi: 10.18307/2018.0207 |
[49] | Zhang M, Wang K, Liu H, et al. 2018. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China[J]. Journal of Cleaner Production, 183: 831−842. doi: 10.1016/j.jclepro.2018.02.102 |
[50] | Zhang Y, Lu X, Liu B, et al. 2021. Spatial relationships between ecosystem services and society ecological drivers across a large−scale region: A case study in the Yellow River Basin[J]. Science of the Total Environment, 766: 142480. doi: 10.1016/j.scitotenv.2020.142480 |
[51] | Zhang Z, Tu Y, Li X. 2016. Quantifying the spatiotemporal patterns of urbanization along Urban−RuralGradient with a roadscape transect approach: A case study in Shanghai, China[J]. Sustainability, 8(9): 1−19. |
[52] | Zheng Z, Fu B, Hu H, et al. 2014. A method to identify the variable ecosystem services relationship across time: A case study on Yanhe Basin, China[J]. Landscape Ecology, 29(10): 1689−1696. doi: 10.1007/s10980-014-0088-x |
[53] | Zhou J, Zhang X, Mu F, et al. 2018. Spatial pattern reconstruction of soil organic carbon storage based on CA−Markov−A case study in Pan−Yangtze River Delta[J]. Resources and Environment in the Yangtze, 27(7): 1565−1575(in Chinese with English abstract). |
[54] | Zhu Y, Wu H, Ma M, et al. 2024. Multi−scale spatial relationship between carbon emissions and influencing factors in the Yangtze River Delta[J]. Geological Bulletin of China, 43(7): 1−10(in Chinese with English abstract). |
[55] | 陈登帅, 李晶, 杨晓楠, 等. 2018. 渭河流域生态系统服务权衡优化研究[J]. 生态学报, 38(9): 3260−3271. |
[56] | 陈武迪, 刘晓煌, 李洪宇, 等. 2024. 新疆天山1990—2050年生态系统服务功能及安全格局[J]. 中国地质, 51(5): 1−22. |
[57] | 戴尔阜, 王晓莉, 朱建佳, 等. 2016. 生态系统服务权衡: 方法、模型与研究框架[J]. 地理研究, 35(6): 1005−1016. |
[58] | 丁岳, 王柳柱, 桂峰等. 2023. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 44(6): 3343−3352. |
[59] | 郭富印, 刘晓煌, 张文博, 等. 2024. 2000—2040年黄河流域(河南段)生境质量时空格局演变及驱动力分析[J]. 现代地质, 38(3): 599−611. |
[60] | 何剑锋, 庄大方. 2006. 长江三角洲地区城镇时空动态格局及其环境效应[J]. 地理研究, 3: 388−396,562. doi: 10.3321/j.issn:1000-0585.2006.03.003 |
[61] | 李晶, 李红艳, 张良. 2016. 关中—天水经济区生态系统服务权衡与协同关系[J]. 生态学报, 36(10): 3053−3062. |
[62] | 李鹏, 姜鲁光, 封志明, 等. 2012. 生态系统服务竞争与协同研究进展[J]. 生态学报, 32(16): 5219−5229. |
[63] | 李双成, 张才玉, 刘金龙, 等. 2013. 生态系统服务权衡与协同研究进展及地理学研究议题[J]. 地理研究, 32(8): 1379−1390. |
[64] | 李屹峰, 罗跃初, 刘纲, 等. 2013. 土地利用变化对生态系统服务功能的影响: 以密云水库流域为例[J]. 生态学报, 33(3): 726−736. |
[65] | 刘春芳, 王川. 2018. 基于土地利用变化的黄土丘陵区生境质量时空演变特征——以榆中县为例[J]. 生态学报, 38(20): 7300−7311. |
[66] | 马伟波, 杨帆, 王楠, 等. 2022. 长江三角洲城市群地区生态系统服务价值时空演变及驱动因素研究[J]. 生态与农村环境学报, 38(11): 1365−1376. |
[67] | 闵婕, 刘晓煌, 肖粤新, 等. 2024. 基于PLUS模型和InVEST模型的新安江流域生态系统碳储量时空变化分析与预测[J]. 现代地质, 38(3): 574−588. |
[68] | 倪泽睿, 杨上广, 张全. 2021. 长江三角洲城市群地区生态系统供给服务价值评估及权衡协同分析[J]. 生态经济, 37(11): 150−155. |
[69] | 孙方虎, 方凤满, 洪炜林等. 2023. 基于PLUS和InVEST模型的安徽省碳储量演化分析与预测[J]. 水土保持学报, 37(1): 151−158. |
[70] | 孙琪. 2023. 2000−2020年间长江流域森林生态系统多重服务的时空变异规律[D]. 华中农业大学硕士学位论文: 20−27. |
[71] | 孙艺杰, 任志远, 赵胜男, 等. 2017. 陕西河谷盆地生态系统服务协同与权衡时空差异分析[J]. 地理学报, 72(3): 521−532. doi: 10.11821/dlxb201703012 |
[72] | 田榆寒. 2018. 耕地生态系统服务协同与权衡关系及管理策略——以慈溪市为例[D]. 浙江大学硕士学位论文: 29−62. |
[73] | 王蓓, 赵军, 胡秀芳. 2018. 石羊河流域生态系统服务权衡与协同关系分析[J]. 生态学报, 38(21): 7582−7595. |
[74] | 王鹏涛, 张立伟, 李英杰, 等. 2017. 汉江上游生态系统服务权衡与协同关系时空特征[J]. 地理学报, 72(11): 2064−2078. doi: 10.11821/dlxb201711011 |
[75] | 吴楠, 陈凝, 程鹏等. 2023. 安徽省陆地生态系统碳储量变化对未来土地覆被情景的响应[J]. 长江流域资源与环境, 32(2): 415−426. |
[76] | 吴卿. 2024. 长三角生态系统服务多尺度供需格局、影响因素与优化管理策略[D]. 浙江大学硕士学位论文: 25−27. |
[77] | 武文欢, 彭建, 刘炎序, 等. 2017. 鄂尔多斯市生态系统服务权衡与协同分析[J]. 地理科学进展, 36(12): 1571−1581. |
[78] | 杨晓楠, 李晶, 秦克玉, 等. 2015. 关中—天水经济区生态系统服务的权衡关系[J]. 地理学报, 70(11): 1762−1773. doi: 10.11821/dlxb201511006 |
[79] | 袁江龙, 刘晓煌, 李洪宇, 等. 2024. 1990−2050年黄河中游伊洛河流域不同土地利用类型碳储量时空分异特征[J]. 现代地质, 38(3): 559−573. |
[80] | 张大智, 孙小银, 袁兴中, 等. 2018. 南四湖流域1980—2015年土地利用变化及其对流域生境质量的影响[J]. 湖泊科学, 30(2): 349−357. doi: 10.18307/2018.0207 |
[81] | 周杰, 张学儒, 牟凤云, 等. 2018. 基于CA−Markov的土壤有机碳储量空间格局重建研究——以泛长三角地区为例[J]. 长江流域资源与环境, 27(7): 1565−1575. |
[82] | 朱一姝, 吴涵宇, 马明, 等. 2024. 长江三角洲城市群碳排放及其影响因素的多尺度空间关系研究[J]. 地质通报, 43(7): 1−10. |
Location of Yangtze River Delta
Spatial and temporal distribution of ecosystem services
Wind rose map of the distribution of four ecosystem services for seven land use types
Yangtze River Delta’s spatial mapping of thermal anomalies for four characteristic ecosystem services
Two-dimensional local spatial autocorrelation and cluster distribution of four important ecosystem services in the Yangtze River Delta