2024 Vol. 43, No. 2~3
Article Contents

JIN Jihao, REN Shoumai, WANG Shengjian, LIU Yongjiang, HOU Qidong, LIU Yimin, WANG Hao. 2024. Reconstruction of the northeastern margin of the North China Craton: Paleomagnetic records from tectonic thermal events in Huinan of Jilin Province. Geological Bulletin of China, 43(2~3): 289-301. doi: 10.12097/gbc.2023.04.007
Citation: JIN Jihao, REN Shoumai, WANG Shengjian, LIU Yongjiang, HOU Qidong, LIU Yimin, WANG Hao. 2024. Reconstruction of the northeastern margin of the North China Craton: Paleomagnetic records from tectonic thermal events in Huinan of Jilin Province. Geological Bulletin of China, 43(2~3): 289-301. doi: 10.12097/gbc.2023.04.007

Reconstruction of the northeastern margin of the North China Craton: Paleomagnetic records from tectonic thermal events in Huinan of Jilin Province

More Information
  • The northeastern margin of North China Craton is located in an active area of tectonic movement. Paleomagnetic study can provide a basis record for tectonic evolution and magmatic thermal events. 246 samples were collected from 32 mining sites of the Middle Cambrian in Huinan area, Jilin Province, for petrology, rock magnetism and systematic thermal demagnetization experiments. Rock magnetic study implies that the main magnetic minerals of the Xuzhuang Formation sandy mudstone are hematite and magnetite. The main magnetic minerals of the Zhangxia Formation limestone are magnetite with smaller particles and a small amount of pyrite. Stepwise thermal demagnetization succeeded in isolating the middle-temperature characteristic directions of the samples. The average direction of the Xuzhuang Formation (D/I = 10.9°/50.8°, α95 = 11.7°, corresponding pole position is 76°N, 264.6°E, A95 = 13°), indicates that magmatic activity in the Early Cretaceous affected it. The average direction of the Zhangxia Formation (D/I = 29.1°/59.0°, α95 = 6.5°, corresponding pole position is 68°N, 213.7°E, A95 = 8.4°) were remagnetized which is related to Quaternary volcanic activity. Based on the analysis of regional geological background, at least two strong tectonic thermal events may have occurred from the Early Cretaceous to Quaternary respectively in Huinan area of Jilin Province, which also moved toward north large distance affected by Dunhua−Minshan sinistral slip fault during that time. These magnetic minerals were all remagnetizd and recorded a stable middle−temperature characteristic direction.

  • 加载中
  • [1] Bychkova A Y, Popovaa Y A, Kivadzeb O E, et al. 2019. A thermodynamic model of chemical remagnetization based on the example of the girvas paleovolcano in the Onega structure of the Carelian craton[J]. Moscow University Geology Bulletin, 74(2): 154−161. doi: 10.3103/S0145875219020030

    CrossRef Google Scholar

    [2] Carvallo C, Muxworthy A R, Dunlop D J. 2006. First−order reversal curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements[J]. Physics of the Earth and Planetary Interiors, 154(3/4): 308−322. doi: 10.1016/j.pepi.2005.06.017

    CrossRef Google Scholar

    [3] Courtillot V, Chambon P, Brun J P, et al. 1986. A magnetotectonic study of the Hercynina Montagne Noire (France)[J]. Tectonics, 5: 733−751.

    Google Scholar

    [4] Fu Q, Yan M, Dekkers M J, et al. 2024. Inverse magnetic fabric of remagnetized limestones in the Zaduo area, Eastern Qiangtang Terrane: Implications for oroclinal bending in the Eastern Himalayan Syntaxis[J]. Tectonophysics, 871: 230175.

    Google Scholar

    [5] Huang W T, Jackson M J, Dekkers M J, et al. 2019. Challenges in isolating primary remanent magnetization from Tethyan carbonate rocks on the Tibetan Plateau: Insight from remagnetized Upper Triassic limestones in the eastern Qiangtang block[J]. Earth and Planetary Science Letters, 523: 115695. doi: 10.1016/j.jpgl.2019.06.035

    CrossRef Google Scholar

    [6] Huang W T, Jackson M J, Dekkers M J, et al. 2019. Nanogoethite as a Potential Indicator of Remagnetization in Red Beds[J]. Geophysical Research Letters, 46(22): 12841−12850. doi: 10.1029/2019GL084715

    CrossRef Google Scholar

    [7] Li Z X, Powell C M, Schmidt P W. 1989. Syn−deformational remanent magnetization of Mount Eclipse sandstone, Central Australia[J]. Geophysical Journal International, 99(1): 205−222. doi: 10.1111/j.1365-246X.1989.tb02025.x

    CrossRef Google Scholar

    [8] Liang G, Wang Q F, Deng J, et al. 2019. Magmatic−hydrothermal alteration mechanism for Late Mesozoic remagnetization in the South China Block[J]. Journal of Geophysical Research:Solid Earth, 124(11): 10704−10720. doi: 10.1029/2019JB018018

    CrossRef Google Scholar

    [9] Meng J, Gilder S A, Li Y, et al. 2022. Remagnetization age and mechanism of Cretaceous sediments in relation to dyke intrusion, Hainan Island: Tectonic implications for South China and the Red River fault [J]. Journal of Geophysical Research: Solid Earth, 127 (1): 1−19.

    Google Scholar

    [10] Pruner P. 1992. Palaeomagnetism and palaeogeography of Mongolia from the Carboniferous to the Cretaceous—Final report[J]. Physics of the Earth and Planetary Interiors, 70(3/4): 169−177. doi: 10.1016/0031-9201(92)90179-Y

    CrossRef Google Scholar

    [11] Salnaia N V, Rostovtseva Y V, Pilipenko O V, et al. 2022. Palaeomagnetism of the Sarmatian−Maeotian of the Eastern Paratethys: Remagnetization or Not? [J]. Izvestiya, Physics of the Solid Earth, (6): 882−901.

    Google Scholar

    [12] Smethrust M A, Khramov A N. 1992. A new paleomagnetic pole for the Russian platform and Baltica, and related apparent polar wander path[J]. Geophysical Journal International, 108: 179−192. doi: 10.1111/j.1365-246X.1992.tb00848.x

    CrossRef Google Scholar

    [13] Suk D, Peacor D R, Der Voo R V. 1990. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism[J]. Nature, 345: 611−613. doi: 10.1038/345611a0

    CrossRef Google Scholar

    [14] Suk D R, Halgedahl S L. 1996. Hysteresis properties of magnetic spherules and whole speciments from some Paleozoic platform carbonate rock[J]. Journal of geophysical research:Solid Earth, 101(B11): 25053−25075. doi: 10.1029/96JB02271

    CrossRef Google Scholar

    [15] Tauxe L, Mullender T, Pick T. 1996. Potbellies, wasp−waists, and superparam−agnetism in magnetic hysteresis[J]. Journal of geophysical research:Solid Earth, 101(B1): 571−583. doi: 10.1029/95JB03041

    CrossRef Google Scholar

    [16] Wang W, Xu W L, Ji W Q, et al. 2006. Late Mesozoic and Paleogene basalts and deep−derived xenocrysts in eastern Liaoning Province, China: Constraints on nature of lithospheric mantle[J]. Geological Journal of China Universities, 12(1): 30−40.

    Google Scholar

    [17] Zegers T E, Dekkers M J, Bailly S. 2003. Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: Role of temperature, fluids, and deformation[J]. Journal of Geophysical Research:Solid Earth, 108(B7): 2357.

    Google Scholar

    [18] Zhao X, Coe R, Wu H. 1990. New paleomagnetic results from Northern China, collision and suturing with Siberia and Kazakhstan[J]. Tectonophysics, 181: 43−81. doi: 10.1016/0040-1951(90)90008-V

    CrossRef Google Scholar

    [19] Zhu R X, Xu Y G, Zhu G, et al. 2012. Destruction of the North China Craton[J]. Science China:Earth Sciences, 121(10): 197−213.

    Google Scholar

    [20] Zhu R X, Zhao G C, Xiao W J, et al. 2021. Origin, Accretion, and Reworking of Continents[J]. Reviews of Geophysics, 59(3): 1−84.

    Google Scholar

    [21] 蔡书慧, 贺怀宇, 朱日祥. 2012. 燕山地区承德盆地下白垩统磁性地层学研究及其对华北克拉通破坏的制约[J]. 地球物理学报, 55(1): 66−75.

    Google Scholar

    [22] 程昌泉, 刘锦, 张健, 等. 2023. 辽东半岛丹东地区晚侏罗世花岗岩成因及其对华北克拉通破坏的制约[J]. 大地构造与成矿学, 47(1): 149−164.

    Google Scholar

    [23] 葛肖虹, 马文璞. 2007. 东北亚南区中—新生代大地构造轮廓[J]. 中国地质, 34(2): 212−228.

    Google Scholar

    [24] 关子成, 裴福萍, 魏敬洋, 等. 2023. 吉林敦化地区万宝岩组碎屑锆石U−Pb−Hf同位素组成: 对区域构造演化的制约[J/OL]. 吉林大学学报(地球科学版): 1−16. https://doi.org/10.13218/j.cnki.juese.2023008.

    Google Scholar

    [25] 雷建设, 赵大鹏. 2004. 长白山火山的起源和太平洋俯冲板块之间的关系[J]. 地球科学进展, 19(3): 364−367. doi: 10.3321/j.issn:1001-8166.2004.03.003

    CrossRef Google Scholar

    [26] 李海燕, 张世红. 2005. 黄铁矿加热过程中的矿相变化研究—基于磁化率随温度变化特征分析[J]. 地球物理学报, 48(6): 171−178.

    Google Scholar

    [27] 李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016.

    Google Scholar

    [28] 林强, 葛文春, 孙德有, 等. 1999. 东北亚中生代火山岩的地球动力学意义[J]. 地球物理学报, 42(增刊): 75−84.

    Google Scholar

    [29] 刘成英, 李仕虎, 邓成龙, 等. 2013. 扬子地块奥陶系碳酸盐岩重磁化机制探讨[J]. 地球物理学报, 56(2): 579−591. doi: 10.6038/cjg20130221

    CrossRef Google Scholar

    [30] 刘程. 2019. 敦化-密山断裂带构造特征与演化历史[D]. 合肥工业大学博士学位论文.

    Google Scholar

    [31] 刘俊来, 季雷, 倪金龙, 等. 2022. 早白垩世华北克拉通岩石圈减薄与破坏动力学: 兼论古太平洋型活动大陆边缘[J]. 地质学报, 96(10): 3360−3380. doi: 10.3969/j.issn.0001-5717.2022.10.007

    CrossRef Google Scholar

    [32] 刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010

    CrossRef Google Scholar

    [33] 任收麦, 朱日祥, 黄宝春, 等. 2002. 造山带内古地磁研究——以苏宏图早白垩世火山岩为例[J]. 中国科学(D辑), (10): 799−804.

    Google Scholar

    [34] 任收麦, 朱日祥, 邱海峻, 等. 2015. 黑龙江省饶河枕状玄武岩古地磁学研究及其构造意义[J]. 地球物理学报, 58(4): 1269−1283.

    Google Scholar

    [35] 石采东, 朱日祥. 2000. 铁硫化物在古地磁学和环境学中的应用[J]. 地球物理学进展, 15(3): 91−97.

    Google Scholar

    [36] 宋维民, 王建恒, 杨佳林, 等. 2022. 蒙古−鄂霍茨克洋闭合时限: 来自大兴安岭突泉地区下白垩统与下伏地质体之间角度不整合关系的约束[J]. 地质通报, 41(7): 1202−1213. doi: 10.12097/j.issn.1671-2552.2022.07.007

    CrossRef Google Scholar

    [37] 孙晓猛, 张旭庆, 何松, 等. 2016. 敦密断裂带白垩纪两期重要的变形事件[J]. 岩石学报, 32(4): 1114−1128.

    Google Scholar

    [38] 唐杰, 许文良, 王枫, 等. 2018. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代—古近纪岩浆记录[J]. 中国科学:地球科学, 48(5): 549−583.

    Google Scholar

    [39] 王枫, 许文良, 葛文春, 等. 2016. 敦化-密山断裂带的平移距离: 来自松嫩-张广才岭-佳木斯-兴凯地块古生代—中生代岩浆作用的制约[J]. 岩石学报, 32(4): 1129−1140.

    Google Scholar

    [40] 吴福元, 葛文春, 孙德有, 等. 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 10(3): 51−59.

    Google Scholar

    [41] 吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 29(4): 313−318.

    Google Scholar

    [42] 吴福元, 徐义刚, 高山, 等. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 24(6): 1145−1174.

    Google Scholar

    [43] 吴福元, 徐义刚, 朱日祥, 等. 2014. 克拉通岩石圈减薄与破坏[J]. 中国科学:地球科学, 44(11): 2358−2372.

    Google Scholar

    [44] 吴怀春. 2005. 华北蓟县地区中元古界古地磁研究及其古大陆再造意义[D]. 中国地质大学(北京) 博士学位论文: 1−142.

    Google Scholar

    [45] 徐和聆, 陈克樵, 马醒华, 等. 2000. 磁铁矿与黄铁矿双向交代研究及意义[J]. 地质力学学报, 26(3): 83−89.

    Google Scholar

    [46] 许文良, 王枫, 裴福萍, 等. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 29(2): 339−353.

    Google Scholar

    [47] 玄雨菲, 董晓杰, 王长兵, 等. 2022. 吉南白山地区早白垩世岩浆岩U−Pb年代学、岩石地球化学、Hf同位素证据: 对华北克拉通破坏的制约[J]. 岩石学报, 38(8): 2442−2466.

    Google Scholar

    [48] 杨清福, 王建, Hattori K H, 等. 2011. 吉林南部辉南—靖宇地区岩石圈地幔氧化-还原状态及研究意义[J]. 岩石学报, 27(6): 1797−1809.

    Google Scholar

    [49] 杨振宇, 马醒华, 孙知明, 等. 1998. 华北盆地南缘早古生代岩石的重磁化——Ⅰ. 古地磁结果及其意义[J]. 中国科学(D辑), 28(增刊): 24−30.

    Google Scholar

    [50] 杨振宇, 马醒华, 孙知明, 等. 1998. 华北盆地南缘早古生代岩石的重磁化——Ⅱ. 岩石磁学结果[J]. 中国科学(D辑), 28(增刊): 31−37.

    Google Scholar

    [51] 姚勇, 边伟伟, 沈中山, 等. 2023. 青藏高原拉萨地块中部上三叠统多布日组沉积岩古地磁研究及其构造意义[J]. 地球物理学报, 66(12): 5086−5106.

    Google Scholar

    [52] 于泓超. 2023. 胶-辽-吉造山带吉南地区古元古代沉积-岩浆作用及构造意义[D]. 吉林大学博士学位论文.

    Google Scholar

    [53] 张雪锋, 张世红, 孟宪刚, 等. 2014. 太平洋板块中生代俯冲构造事件的响应: 来自黑龙江东部饶河三叠纪层状燧石的古地磁证据[J]. 中国地质, 41(6): 2019−2027.

    Google Scholar

    [54] 周建波, 石爱国, 景妍. 2016. 东北地块群: 构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 46(4): 1042−1055.

    Google Scholar

    [55] 朱日祥. 2018. “华北克拉通破坏”重大研究计划结题综述[J]. 中国科学基金, 32(3): 282−290.

    Google Scholar

    [56] 朱日祥, 陈凌, 吴福元, 等. 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学(D辑), 41(5): 583−592.

    Google Scholar

    [57] 朱日祥, 刘椿. 1990. 长白山地区晚新生代古地磁场测定结果[J]. 科学通报, 35(19): 1518−1519.

    Google Scholar

    [58] 朱日祥, 邵济安, 潘永信, 等. 2002. 辽西白垩纪火山岩古地磁测定与陆内旋转运动[J]. 科学通报, 47(17): 1335−1340.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(995) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint