2024 Vol. 43, No. 2~3
Article Contents

YAO Shenghai, GAI Hailong, YIN Xiang, LI Xin, LIU Wei. 2024. Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province. Geological Bulletin of China, 43(2~3): 340-349. doi: 10.12097/gbc.2022.06.032
Citation: YAO Shenghai, GAI Hailong, YIN Xiang, LI Xin, LIU Wei. 2024. Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province. Geological Bulletin of China, 43(2~3): 340-349. doi: 10.12097/gbc.2022.06.032

Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province

  • The National Seismological Network officially determined that an earthquake of magnitude 6.9 occurred in Menyuan County, Haibei Prefecture, Qinghai, at 01:45 on January 8, 2022, with a focal depth of 10 km. This earthquake is another strong earthquake activity in the Lenglongling area after the 2016 Menyuan M6.4 earthquake. The macro-epicenter of the earthquake was located in the Liuhuanggou area of ​​Lenglongling, more than 50 kilometers northwest of Chenghaomen Town, Menyuan County, and a large-scale and well-continued surface rupture was formed in the area of Liuhuanggou−Daxigou. Surface surveys show that the total length of coseismic surface ruptures is about 23 km, and the overall trend is N40°~85°W. Surface rupture is mainly composed of echelon earthquake bulge, tensile crack and shear crack, and there are many secondary geological disasters such as landslides and collapses on the surface. According to the scale, strike and fracture characteristics of the surface rupture, it can be divided into three sections: the eastern section (Liuhuanggou section), about 10 km long, strikes N40°~60°W, the scale of the rupture is small, and it is accompanied by gravity. The middle section (Daogou section), about 9 km long, strikes N70°W, with a large scale of rupture, mainly developed large-scale seismic bulges and shear fractures, and large left-handed displacement; The western section (Daxigou section) is about 4 km long and strikes N85°W. This section is the smallest in scale and is dominated by extensional fractures in the geese. The middle and eastern sections together form the eastern branch of the fracture zone, while the western section forms the western branch, both of which have obvious left lateral strike slip characteristics, and it ruptures from east to west, showing a left step distribution as a whole, forming a left step area with tensile characteristics east of G227 National Highway. To the east, a left-order region with extensional features is formed. Comprehensive analysis shows that the earthquake occurred in the Qilian−Haiyuan active tectonic belt of the Qilian Mountains block, and the seismogenic fault should be the Lenglongling−Tuolaishan fault section of the Haiyuan left-lateral strike-slip fault belt. Combined with the preliminary research on the strong earthquake sequence of the Qilian−Haiyuan tectonic belt since 1900 and the Tuolaishan fault, it is believed that the historical seismicity of the tectonic belt as a whole has a trend of continuous westward development, but there is an existing trend between the Hala Lake and the Tuolaishan Mountain. There is a more obvious seismic gap, so it is inferred that the future strong earthquake risk of the Tuoleishan Mountain fault is likely to increase.

  • 加载中
  • [1] Lasserre C, Gaudemer Y, Tapponnier P, et al. 2002. Fast Late Pleistocene Slip Rate on the Lenglongling Segment of the Haiyuan Fault, Qinghai, China[J]. Journal of Geophysical Research:Solid Earth(1978−2012), 107(B11): 2276.

    Google Scholar

    [2] Guo P, Han Z J, An Y F, et al. 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China Earth Sciences, 60(5): 929−942. doi: 10.1007/s11430-016-9007-2

    CrossRef Google Scholar

    [3] Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of Crustal Slip bet ween Linked, Active Faults in the East−ern Qilian Shan, and Evidence for a Major Seismic Gap, the"Tianzhu Gap', on the Western Haiyuan Fault, Gansu(China)[J]. Geophysical Journal International, 120(3): 599−645. doi: 10.1111/j.1365-246X.1995.tb01842.x

    CrossRef Google Scholar

    [4] 崔笃信, 王庆良, 胡亚轩, 等. 2009. 用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J]. 地震学报, 31(5): 516−525. doi: 10.3321/j.issn:0253-3782.2009.05.004

    CrossRef Google Scholar

    [5] 陈杰, 陈宇坤, 丁国瑜, 等. 2001. 年昆仑山口西8.1级地震地表破裂带[J]. 第四纪研究, 23(6): 629−639.

    Google Scholar

    [6] 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造特征[J]. 中国科学(D辑), 32(17): 1020−1030.

    Google Scholar

    [7] 邓起东, 张维岐, 张培震, 等. 1989. 海原走滑断裂带及其尾端挤压构造[J]. 地震地质, 11(1): 1−14.

    Google Scholar

    [8] 甘卫军, 刘百篪. 2022. 景泰-天祝断裂单元与多重特征地震的危险性概率评估[J]. 地震地质, 24(1): 45−58.

    Google Scholar

    [9] 盖海龙, 姚生海, 杨丽萍, 等. 2021. 青海玛多“5·22”Ms7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27(6): 899−912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073

    CrossRef Google Scholar

    [10] 盖海龙, 李智敏, 姚生海, 等. 2022. 2022年青海门源Ms6.9地震地表破裂特征的初步调查研究[J]. 地震地质, 44(1): 238−255. doi: 10.3969/j.issn.0253-4967.2022.01.015

    CrossRef Google Scholar

    [11] 国家地震局震害防御司. 1995. 中国历史强震目录[M]. 北京: 地震出版社: 1−514.

    Google Scholar

    [12] 何文贵, 刘百篪, 袁道阳, 等. 2000. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报, 22(1): 90−97.

    Google Scholar

    [13] 何文贵, 袁道阳, 葛伟鹏, 等. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震, 30(1): 131−137.

    Google Scholar

    [14] 韩帅, 吴中海, 高扬, 等. 2022. 2022年1月8日青海门源Ms6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155−168.

    Google Scholar

    [15] 韩竹军, 牛鹏飞, 李科长, 等. 2022. 2022年1月8日青海门源6.9级地震的一些初步认识[EB/OL].https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html.

    Google Scholar

    [16] 侯康明. 1998. 皇城-双塔断裂带的几何分段及运动学特征[J]. 华南地震, 18(3): 28−34.

    Google Scholar

    [17] 刘兴旺, 袁道阳, 郑文俊, 等. 2012. 祁连山北缘佛洞庙-红崖子断裂晚第四纪滑动速率研究[J]. 地质科学, 47(1): 51−61.

    Google Scholar

    [18] 雷惊昊, 李有利, 胡秀, 等. 2017. 东大河阶地陡坎对民乐-大马营断裂垂直滑动速率的指示[J]. 地震地质, 39(6): 1256−1266. doi: 10.3969/j.issn.0253-4967.2017.06.011

    CrossRef Google Scholar

    [19] 刘百篪, 吕太乙, 袁道阳, 等. 2013. 祁连山活动断裂东段(老虎山毛毛山和金强河断裂)地质图[M]. 北京: 地震出版社.

    Google Scholar

    [20] 李彦宝, 甘卫军, 王阅兵, 等. 2017. 2016年门源Ms6.4强震的发震构造及其对“天祝地震空区”的影响[J]. 大地测量与地球动力学, 37(8): 792−796.

    Google Scholar

    [21] 罗浩, 何文贵, 袁道阳, 等. 2016. 昌马断裂带古地震活动特征的新认识[J]. 地震工程学报, 38(4): 632-637,668.

    Google Scholar

    [22] 马保起, 李德文. 2008. 祁连山中段门源盆地新构造运动的阶段划分[J]. 地质力学学报, 14(3): 201−211.

    Google Scholar

    [23] 潘家伟, 李海兵, Marie-Luce Chevalier, 等. 2022. 2022年青海门源Ms6.9地震地表破裂带及发震构造研究[J]. 地质学报, 96(1): 215−231.

    Google Scholar

    [24] 吴中海, 周春景, 冯卉, 等. 2014. 青海玉树地区活动断裂与地震[J]. 地质通报, 33(4): 419−469.

    Google Scholar

    [25] 许英才, 郭祥云, 冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制研究[J]. 地震学报, 44(2): 195−210. doi: 10.11939/jass.20220008

    CrossRef Google Scholar

    [26] 袁道阳, 刘小龙, 张培震, 等. 2003. 青海热水-日月山断裂带的新活动特征[J]. 地震地质, 25(1): 155−165.

    Google Scholar

    [27] 袁道阳, 张培震, 刘百娆, 等. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270−278.

    Google Scholar

    [28] 姚生海, 盖海龙, 殷翔, 等. 2021. 青海玛多Ms7.4地震地表破裂带的基本特征和典型现象[J]. 地震地质, 43(5): 1060−1072.

    Google Scholar

    [29] 张培震, 邓起东, 张国民, 等. 2003. 中国大陆强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12−20.

    Google Scholar

    [30] 郑文俊, 袁道阳, 何文贵, 等. 2004. 祁连山中东段强震复发概率模型及未来强震地点预测[J]. 西北地震学报, 26(3): 228−233.

    Google Scholar

    [31] 郑文俊, 张培震, 袁道阳, 等. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报, 5(10): 2491−2508. doi: 10.3969/j.issn.0001-5733.2009.10.008

    CrossRef Google Scholar

    [32] 周俊喜, 张生源, 1981. 1932年昌马7.5级地震形变带及其构造背景的初步分析[J].西北地震学报, 3(1): 92-100.

    Google Scholar

    [33] 朱琳, 戴勇, 石富强, 等. 2022. 祁连-海原断裂带库仑应力演化及地震危险性[J]. 地震学报, 44(2): 223−236.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1057) PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint