2024 Vol. 43, No. 2~3
Article Contents

GU Yuchao, JU Nan, CHEN Renyi, YANG Fengchao, XU Jia, YANG Hongzhi. 2024. Comparative study of the Lanhualing Paleoproterozoic I−type granitoids and the Liaoji A−type granitoids in eastern Liaoning. Geological Bulletin of China, 43(2~3): 317-339. doi: 10.12097/gbc.2022.08.017
Citation: GU Yuchao, JU Nan, CHEN Renyi, YANG Fengchao, XU Jia, YANG Hongzhi. 2024. Comparative study of the Lanhualing Paleoproterozoic I−type granitoids and the Liaoji A−type granitoids in eastern Liaoning. Geological Bulletin of China, 43(2~3): 317-339. doi: 10.12097/gbc.2022.08.017

Comparative study of the Lanhualing Paleoproterozoic I−type granitoids and the Liaoji A−type granitoids in eastern Liaoning

More Information
  • Liaodong Peninsula is a significant component of the Jiao-Liao-Ji belt. It experienced complex process of structural evolution with the recorded effects of magma metamorphism in multiple periods. The 2.2 Ga Liaoji A-type granite and 1.89~1.85 Ga porphyritic granite/ syenite indicate the beginning and end of the effects of mountain formation in Paleoproterozoic respectively. The latest research shows that two unique types of granites have been formed under the effects of magmatism of 2.20~2.15 Ga. These two granites have different petrogenesis mechanisms and tectonic significance. In this paper, a detailed study of the Lanhualing granodiorite, Bailazi granodiorite and Huangpo diabase collected in the North of Qingchengzi lead-zinc concentrated area was conducted. The corresponding zircon U-Pb ages are 2177±19 Ma, 2129±36 Ma and 1876±29 Ma, respectively. The rock type and geochemical characteristics of the granodiorite show obviously differences from the typical 2.2 Ga Liao-ji A-type granites. It is characterized by weak peraluminous, low potassium calc-alkaline to alkaline, low content of Zr, Hf, Nb, Rb, low K2O/Na2O value, and extremely low content of total rare earth element. Therefore, it is categorized as typical I-type granite. According to the analysis of zircon Lu-Hf isotope, the value of εHf (t) is −5.1~9.0. The age of the two-stage model(tDM2) is in a range of 2089 Ma to 2817 Ma. The magma source consists of 2.5 Ga Archean crustal materials and a small amount of asthenospheric mantle materials. The granodiorite from Lanhualing area has the affinity geochemical property of island arcs or active continental margin. It may have been formed in the subduction and compression environment of arc magma; according to the A-type granite formed in extensional settings, we believe that the Paleoproterozoic belt of eastern Liaoning had experienced a tectonic environment of overall extension and local compression in the period of 2.2 Ga, which is the back-arc basin formed during or after the collision of the oceanic plate with the Longgang block.

  • 加载中
  • [1] Blichert−Toft J, Albarède F. 1997. The Lu−Hf isotope geochemistry of chondrites and the evolution of the mantle−crust system[J]. Earth and Planetary Science Letters, 148(1/2): 243−258.

    Google Scholar

    [2] Bonin B. 2007. A−type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97(1/2): 1−29.

    Google Scholar

    [3] Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1/2): 1−26.

    Google Scholar

    [4] Dong Y, Bi J H, Xing D H, et al. 2019. Geochronology and geochemistry of Liaohe Group and Liaoji granitoid in the Jiao−Liao−Ji Belt, North China Craton: Implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 332: 1−19.

    Google Scholar

    [5] Eby G N. 1992. Chemical subdivision of the A−type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [6] Faure M, Lin W, Monie P, et al. 2004. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula (north−east China)[J]. Terra Nova, 16: 75−80. doi: 10.1111/j.1365-3121.2004.00533.x

    CrossRef Google Scholar

    [7] Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma genesis, SE China: In−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3): 237−269.

    Google Scholar

    [8] Li C, Li Z, Yang C. 2017. Paleoproterozoic granitic magmatism in the northern segment of the Jiao−Liao−Ji Belt: implications for orogenesis along the Eastern Block of the North China Craton[J]. International Geology Review, 60: 217−241.

    Google Scholar

    [9] Li S Z, Zhao G C, Sun M, et al. 2006. Are the South and North Liaohe groups of North China craton different exotic terranes? Nd isotope constraints[J]. Gondwana Research, 9(1/2): 198−208.

    Google Scholar

    [10] Li S Z, Zhao G C. 2007. SHRIMP U−Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao−Liao−Ji belt in the Eastern Block of the North China Craton[J]. Precambrian Research, 158(1/2): 1−16.

    Google Scholar

    [11] Li Z, Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoic meta−basalts from the Jiao−Liao−Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting[J]. Precambrian Research, 255: 653−667. doi: 10.1016/j.precamres.2014.07.003

    CrossRef Google Scholar

    [12] Li Z, Chen B, Wei C, et al. 2015. Provenance and tectonic setting of the Paleoproterozoic metasedimentary rocks from the Liaohe Group, Jiao−Liao−Ji Belt, North China Craton: Insights from detrital zircon U−Pb geochronology, whole−rock Sm−Nd isotopes, and geochemistry[J]. Journal of Asian Earth Sciences, 111: 711−732. doi: 10.1016/j.jseaes.2015.06.003

    CrossRef Google Scholar

    [13] Liu F L, Liu C H, Itano K, et al. 2017. Geochemistry, U−Pb dating, and Lu–Hf isotopes of zircon and monazite of porphyritic granites within the Jiao−Liao−Ji orogenic belt: implications for petrogenesis and tectonic setting[J]. Precambrian Research, 300: 78−106. doi: 10.1016/j.precamres.2017.08.007

    CrossRef Google Scholar

    [14] Liu J, Zhang J, Liu Z H, et al. 2018. Geochemical and geochronological study on the Paleoproterozoic rock assemblage of the Xiuyan region: new constraints on an integrated rift−and collision tectonic process involving the evolution of the Jiao−Liao−Ji Belt, North China Craton[J]. Precambrian Research, 310: 179−197. doi: 10.1016/j.precamres.2018.03.005

    CrossRef Google Scholar

    [15] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internalstandard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [16] Loiselle M C, Wones D S. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of American, Abstracts with Programs, 11: 468.

    Google Scholar

    [17] Luo Y, Sun M, Zhao G C, et al. 2004. LA−ICP−MS U−Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao−Liao−Ji Belt[J]. Precambrian Research, 134(3/4): 349−371.

    Google Scholar

    [18] Luo Y, Sun M, Zhao G C, et al. 2008. A comparison of U−Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao−Liao−Ji Belt, North China Craton[J]. Precambrian Research, 163(3/4): 279−306.

    Google Scholar

    [19] Maniar P, Piccoli P. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [20] Meng E, Liu F L, Liu P H, et al. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta−mafic rocks from central Liaodong Peninsula, Northeast China: evidence from zircon U−Pb dating and in situ Lu−Hf isotopes, and whole−rock geochemistry[J]. Precambrian Research, 247: 92−109. doi: 10.1016/j.precamres.2014.03.017

    CrossRef Google Scholar

    [21] Palmer M R, Slack J F. 1989. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contributions to Mineralogy and Petrology, 103: 434−451. doi: 10.1007/BF01041751

    CrossRef Google Scholar

    [22] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [23] Peccerillo R, Taylor S R. 1979. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 50: 63−81.

    Google Scholar

    [24] Söderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu−Hf and U−Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3/4): 311−324. doi: 10.1016/S0012-821X(04)00012-3

    CrossRef Google Scholar

    [25] Sun M, Armstrong R L, Lambert R S, et al. 1993. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning Province[J]. Precambrian Research, 62: 171−190. doi: 10.1016/0301-9268(93)90099-N

    CrossRef Google Scholar

    [26] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Geological Society Special Publication, 42: 313−345.

    Google Scholar

    [27] Wan Y S, Song B, Liu D Y, et al. 2006. SHRIMP U–Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Paleoproterozoic tectonothermal event[J]. Precambrian Research, 149: 249−271. doi: 10.1016/j.precamres.2006.06.006

    CrossRef Google Scholar

    [28] Wang X P, Peng P, Wang C, et al. 2016. Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: implications for an intra−continental rifting[J]. Gondwana Research, 39: 347−364. doi: 10.1016/j.gr.2016.01.009

    CrossRef Google Scholar

    [29] Wang X P, Peng P, Wang C, et al. 2017. Nature of three episodes of Paleoproterozoic magmatism (2180 Ma, 2115 Ma and 1890 Ma) in the Liaoji belt, North China with implications for tectonic evolution[J]. Precambrian Research, 298: 252−267. doi: 10.1016/j.precamres.2017.06.003

    CrossRef Google Scholar

    [30] Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effect in avariety of crustal magmas types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [31] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [32] Xie L W, Yang J H, Wu F Y, et al. 2011. Pb SL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton[J]. Journal of Asian Earth Sciences, 42: 142−154. doi: 10.1016/j.jseaes.2011.04.016

    CrossRef Google Scholar

    [33] Yuan L L, Zhang X H, Xue F H, et al. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning Province, North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 264: 119−139. doi: 10.1016/j.precamres.2015.04.017

    CrossRef Google Scholar

    [34] Zhai M G, Guo J H, Liu W J. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review[J]. Journal of Asian Earth Sciences, 24(5): 547−561. doi: 10.1016/j.jseaes.2004.01.018

    CrossRef Google Scholar

    [35] Zhang P, Kou L L, Zhao Y, et al. 2020. Genesis of the Wulong gold deposit, Liaoning Province, NE China: Constrains from noble gases, radiogenic and stable isotope studies[J]. Geoscience Frontiers, 11(2): 547−563. doi: 10.1016/j.gsf.2019.05.012

    CrossRef Google Scholar

    [36] Zhao Y, Zhang P, Li Y, et al. 2020. Geochemistry of Two Types of Paleoproterozoic Granites, and Zircon U−Pb Dating, and Lu−Hf Isotopic Characteristics in the Kuandian Area within the Jiao−Liao−Ji Belt: Implications for Regional Tectonic Setting[J]. Geological Journal, 55(11): 7564−7580.

    Google Scholar

    [37] Zhu K, Liu Z H, Xu Z Y, et al. 2019a. Paleoproterozoic Granitoids on Liaodong Peninsula, North China Craton[J]. Acta Geologica Sinica (English Edition), 93(5): 1377−1396. doi: 10.1111/1755-6724.14387

    CrossRef Google Scholar

    [38] Zhu K, Liu Z H, Xu Z Y, et al. 2019b. Petrogenesis and tectonic implications of two types of Liaoji granitoid in the Jiao−Liao−Ji Belt, North China Craton[J]. Precambrian Research, 331: 105369. doi: 10.1016/j.precamres.2019.105369

    CrossRef Google Scholar

    [39] 白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用[M]. 北京: 地质出版社: 47−89.

    Google Scholar

    [40] 毕君辉, 邢德和, 葛文春, 等. 2018. 辽东地区北辽河群变酸性火山岩形成的时代及构造背景: 古元古代陆内裂谷, 还是活动大陆边缘?[J]. 地学前缘, 25(3): 295−308.

    Google Scholar

    [41] 蔡剑辉, 阎国翰, 牟保磊, 等. 2002. 辽宁盖县梁屯−矿洞沟碱性正长岩杂岩体的U−Pb和Sm−Nd年龄及其地质意义[J]. 岩石学报, 18(3): 349−354.

    Google Scholar

    [42] 陈斌, 李壮, 王家林, 等. 2016. 辽东半岛~2.2Ga岩浆事件及其地质意义[J]. 吉林大学学报(地球科学版), 46(2): 303−320.

    Google Scholar

    [43] 陈荣度, 李显东, 张福生. 2003. 对辽东古元古代地质若干问题的讨论[J]. 中国地质, 30(2): 207−213.

    Google Scholar

    [44] 陈志刚, 朱凯, 刘杰勋, 等. 2021. 胶-辽-吉活动带中段古元古代早期构造演化: 来自牧牛河和大房身岩体的证据[J]. 地球科学, 46(5): 1710−1727.

    Google Scholar

    [45] 顾玉超, 赵岩, 杨中柱, 等. 2020. 辽东五龙重融型花岗质岩体锆石U−Pb年代学、岩石地球化学、Sr−Nd−Pb−Hf同位素特征及地质意义[J]. 地球科学, 45(11): 3913−3933.

    Google Scholar

    [46] 郝德峰, 李三忠, 赵国春, 等. 2004. 辽吉地区古元古代花岗岩成因及对构造演化的制约[J]. 岩石学报, 20(6): 1409−1416.

    Google Scholar

    [47] 李超, 陈斌, 李壮, 等. 2017. 辽东岫岩—宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义[J]. 岩石学报, 33(3): 963−977.

    Google Scholar

    [48] 李三忠, 郝德峰, 韩宗珠, 等. 2003. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 77(3): 328−340.

    Google Scholar

    [49] 李壮, 陈斌, 刘经纬, 等. 2015. 辽东半岛南辽河群锆石U−Pb年代学及其地质意义[J]. 岩石学报, 31(6): 1589−1605.

    Google Scholar

    [50] 刘福来, 刘平华, 王舫, 等. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 31(10): 2816−2846.

    Google Scholar

    [51] 刘文彬, 彭游博, 赵辰, 等. 2018. 辽南盖州卧龙泉岩体LA−ICP−MS锆石U−Pb年龄及岩石地球化学特征[J]. 地质与资源, 27(6): 531−539.

    Google Scholar

    [52] 路孝平. 2004. 通化地区古元古代构造岩浆事件[D]. 吉林大学博士学位论文: 1–152.

    Google Scholar

    [53] 路孝平, 吴福元, 林景仟, 等. 2004. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J]. 地质科学, 39(1): 123−138.

    Google Scholar

    [54] 路孝平, 吴福元, 郭敬辉, 等. 2005. 通化地区古元古代晚期花岗质岩浆作用与地壳演化[J]. 岩石学报, 21(3): 721−736.

    Google Scholar

    [55] 孟恩, 刘福来, 施建荣, 等. 2013. 辽宁省丹东地区"前震旦纪"侵入岩的锆石U−Pb年代学、地球化学及其构造意义[J]. 岩石学报, 29(2): 421−436.

    Google Scholar

    [56] 秦亚. 2013. 辽吉古元古裂谷带构造演化的年代学制约[D]. 吉林大学博士学位论文: 1–156.

    Google Scholar

    [57] 任云伟, 王惠初, 康健丽, 等. 2017. 辽宁营口虎皮峪地区古元古代岩浆事件及地质意义[J]. 地质学报, 91(11): 2456−2472.

    Google Scholar

    [58] 宋运红, 杨凤超, 闫国磊, 等. 2016. 辽东地区古元古代花岗岩SHRIMP U−Pb年龄、Hf同位素组成及构造意义[J]. 地质学报, 90(10): 2620−2636.

    Google Scholar

    [59] 滕大伟, 王玉奎, 郝鑫健, 等. 2017. 辽宁永甸地区辽吉花岗岩成因及对辽吉活动带构造演化的制约[J]. 世界地质, 36(4): 1100−1115.

    Google Scholar

    [60] 王博, 何艳红, 孟祥舒, 等. 2017. 辽宁海城地区老虎沟基性岩墙锆石U−Pb−Hf同位素、地球化学特征及其地质意义[J]. 西北地质, 50(2): 80−94.

    Google Scholar

    [61] 王惠初, 陆松年, 初航, 等. 2011. 辽阳河栏地区辽河群中变质基性熔岩的锆石U−Pb年龄与形成构造背景[J]. 吉林大学学报(地球科学版), 41(5): 1322−1334.

    Google Scholar

    [62] 王鹏森, 董永胜, 李富强, 等. 2017. 辽东黄花甸地区古元古代花岗质岩浆作用及其地质意义[J]. 岩石学报, 33(9): 2708−2724.

    Google Scholar

    [63] 王祥俭, 刘建辉, 冀磊. 2017. 胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J]. 岩石学报, 33(9): 2689−2707.

    Google Scholar

    [64] 王艺芬, 徐贵忠, 佘宏全, 等. 2005. 辽东地区早元古代火山岩特征及其形成的动力学背景[J]. 现代地质, 19(3): 315−324.

    Google Scholar

    [65] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf 同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220.

    Google Scholar

    [66] 吴文彬, 申亮, 李海洋, 等. 2023. 辽东清河地区晚三叠世侵入岩锆石U−Pb年龄、地球化学特征及其对华北克拉通东部构造演化的指示[J]. 地质通报, 42(7): 1118−1131.

    Google Scholar

    [67] 杨进辉, 吴福元, 谢烈文, 等. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U−Pb年龄和Hf同位素制约[J]. 岩石学报, 23(2): 263−276.

    Google Scholar

    [68] 杨明春, 陈斌, 闫聪. 2015a. 吉南地区古元古代双岔巨斑花岗岩成因及其构造意义: 岩石学、年代学、地球化学和Sr−Nd−Hf同位素证据[J]. 岩石学报, 31(6): 1573−1588.

    Google Scholar

    [69] 杨明春, 陈斌, 闫聪. 2015b. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及构造意义[J]. 地球科学与环境学报, 37(5): 31−51.

    Google Scholar

    [70] 杨玉伟, 余超, 王广伟, 等. 2020. 辽东黑沟地区古元古代碱长花岗岩年代学、地球化学、Hf同位素特征及其对辽吉造山带构造演化的制约[J]. 地质学报, 94(8): 2212−2226.

    Google Scholar

    [71] 杨仲杰, 王伟, 赵岩, 等. 2019. 辽东王家堡子地区古元古代花岗岩地球化学特征、锆石U−Pb年龄、Hf同位素及其地质意义[J]. 地质通报, 38(4): 603−618.

    Google Scholar

    [72] 张秋生, 杨振升, 刘连登. 1988. 辽东半岛早期地壳与矿床[M]. 北京: 地质出版社.

    Google Scholar

    [73] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772−1792.

    Google Scholar

    [74] 赵凤顺, 胡平. 1989. 虎皮峪条痕状花岗质岩石特征及成因探讨[J]. 辽宁地质,(4): 298−311.

    Google Scholar

    [75] 赵岩, 张朋, 毕中伟, 等. 2020. 辽东岫岩地区两类古元古代花岗岩年代学、地球化学及地质意义[J]. 地球科学, 2020,45(11): 4072−4090.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views(533) PDF downloads(121) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint