2025 Vol. 44, No. 6
Article Contents

ZHANG Bohui, CAO Hui, LIU Yifei, WANG Fengxiang. 2025. Age and petrogeochemistry of ore-forming granites, and the metallogenic prospects of U-Nb-Ta-REE in the southern section of the Daxing'anling Mountains for skarn-type iron-tin deposits. Geological Bulletin of China, 44(6): 1106-1131. doi: 10.12097/gbc.2023.02.042
Citation: ZHANG Bohui, CAO Hui, LIU Yifei, WANG Fengxiang. 2025. Age and petrogeochemistry of ore-forming granites, and the metallogenic prospects of U-Nb-Ta-REE in the southern section of the Daxing'anling Mountains for skarn-type iron-tin deposits. Geological Bulletin of China, 44(6): 1106-1131. doi: 10.12097/gbc.2023.02.042

Age and petrogeochemistry of ore-forming granites, and the metallogenic prospects of U-Nb-Ta-REE in the southern section of the Daxing'anling Mountains for skarn-type iron-tin deposits

    Fund Project: Supported by National Key R&D Program of China (No. 2021YFC2901801), China Geological Survey Projects (Nos. DD20221795, DD20221684-6), and National Natural Science Foundation of China (No.41873051)
More Information
  • Author Bio: ZHANG Bohui, male, born in 1998, master student, majoring in mineralogy, petrology and mineral deposits; E−mail:zbhbohui1030@163.com
  • Corresponding author: LIU Yifei, male, born in 1981, Ph.D., professor, engaged in the research of ore deposit geology and ore deposit geochemistry; E−mail:lyfsky@126.com 
  • Objective

    The southern segment of the Daxing'anling Range constitutes a significant tin-polymetallic metallogenic belt in northern China. Representative deposits include the Huanggang and Mogutu skarn-type Fe-Sn systems, which exhibit direct spatio-temporal and genetic relationships with highly fractionated alkali-feldspar granites or syenogranites. Further investigation is warranted regarding petrogeochemical characteristics of these granites and their implications for mineral exploration.

    Methods

    This study explores the characteristics of the ore−forming granites and their implications for ore prospecting through zircon U−Pb dating, whole−rock major, trace and rare earth element testing, and mineralogical studies.

    Results

    The weighted average U−Pb ages obtained from zircon dating are 131.8±2.0 Ma(MSWD=1.3) and 137.1±1.3 Ma(MSWD=0.8), indicating that the emplacement of alkali feldspar granite in the Huanggang and Damogotu deposits occurred during the Early Cretaceous. The main elements of the whole rock show that the granite has the characteristics of high silicon (73.97%~79.05%), high alkali (7.83%~8.88%), low calcium, iron, magnesium, titanium and phosphorus, and is a metaluminous to weak peraluminous (A/CNK=0.93~1.09) highly differentiated granite. The trace and rare earth elements in the whole rock show that the granite is characterized by high Rb, Th and Pb, and low Ba, Sr, P and Ti. The rare earth element distribution map is relatively flat (LaN/YbN=0.96~12.04), with strong negative Eu anomaly (Eu/Eu*=0.01~0.03) and weak negative Ce to positive Ce anomaly transition feature (Ce/Ce*=0.96~1.56), and the trace element distribution map has weak tetrad effect (TE1,3=0.99~1.14). In the ore−forming granites, elements such as Th, U, Nb, Ta and Yb are enriched with the increase of the degree of differentiation.

    Conclusions

    The metallogenic granites of the Huanggang and Mogutu skarn−type Fe−Sn deposits in the Southern Section of the Daxing'anling Mountains are Early Cretaceous high−silica highly fractionated granites, whose formation process has a significant enrichment effect on ore−forming elements such as U, Sn, Nb and REE. Combined with the research progress of regional geology, geophysical exploration, geochemical exploration and remote sensing, this study of chronology, mineralogy and geochemistry shows that the areas with Late Yanshanian differentiated granites in the Southern Section of the Daxing'anling Mountains not only have metallogenic potential for Sn−Pb−Zn−Ag polymetals, but also have prospecting potential for U−Nb−Ta−REE.

  • 加载中
  • [1] Bai D M, Liu G H. 1996. Discussion on the comprehensive geophysical−geochemical prospecting model of the Haobugao Pb−Zn−Cu−Sn deposit[J]. Nonferrous Metals Mineral Exploration, (6): 42−48(in Chinese with English abstract).

    Google Scholar

    [2] Blundy J D, Shimizu N. 1991. Trace element evidence for plagioclase recycling in calc−alkaline magmas[J]. Earth and Planetary Science Letters, 102(2): 178−197. doi: 10.1016/0012-821X(91)90007-5

    CrossRef Google Scholar

    [3] Chen Y, Han Y, Xu B, et al. 2021. Geochemical characteristics and genesis of red fluorite from the Huanggangliang Fe−Sn deposit in Inner Mongolia[J]. Acta Petrologica Sinica, 37(12): 3869−3879(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.12.15

    CrossRef Google Scholar

    [4] Clemens J D. 1997. Petrogenesis and experimental petrology of granitic rocks[J]. Mineralogical Magazine, 61(1): 149−150.

    Google Scholar

    [5] Ewart A, Griffin W L. 1994. Application of proton−microprobe data to trace−element partitioning in volcanic rocks[J]. Chemical Geology, 117(1): 251−284.

    Google Scholar

    [6] Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [7] Gu Y C, Chen R Y, Du J Y, et al. 2025. Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes[J]. Geological Bulletin of China, 44(1): 91−116.

    Google Scholar

    [8] Hou K J, Li Y H, Tian Y R. 2009. In−situ Zircon U−Pb Dating by LA−MC−ICP−MS[J]. Mineral Deposits, 28(4): 481−492(in Chinese with English abstract).

    Google Scholar

    [9] Hua R M, Zhang W L, Gu S Y, et al. 2007. Comparison between REE granite and W - Sn granite in the Nanling region, South China, and their mineralizations[J]. Acta Petrologica Sinica, 23(10): 2321−2328(in Chinese with English abstract).

    Google Scholar

    [10] Huang S Q, Lin D F, Yan R X, et al. 1986. The Dajing Sn−Ag−Cu Deposit and Its Genesis[J]. Geology and Exploration, (6): 28−32(in Chinese with English abstract).

    Google Scholar

    [11] Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 63(3): 489−508.

    Google Scholar

    [12] Janoušek V, Finger F, Roberts M, et al. 2004. Deciphering the petrogenesis of deeply buried granites: whole−rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95: 141−159.

    Google Scholar

    [13] Ji G Y, Jiang S H, Zhang L S, et al. 2021a. Petrogenetic and metallogenic significance of the Alubaoge Mountain pluton in the Maodeng mining area, Southern Da Hinggan Mountains: Mineralogical evidence from zircon, hornblende and biotite[J]. Mineral Deposits, 40(3): 449−474(in Chinese with English abstract).

    Google Scholar

    [14] Ji G Y, Jiang S H, Li G F, et al. 2021b. Magmatic constraints on mineralization of the Maodeng Sn−Cu Deposit in Southern Da Hinggan Mountains: Geochronological, geochemical and Sr−Nd−Pb isotopic evidence[J]. Geotectonica et Metallogenia, 45(4): 681−704(in Chinese with English abstract).

    Google Scholar

    [15] Ji G Y, Jiang S H, Zhang L S, et al. 2022. Petrogenetic age and geochemical characteristics of highly fractionated alkali−feldspar granite in Maodeng, Southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, 38(3): 855−882(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.15

    CrossRef Google Scholar

    [16] Jiang S H, Liang Q L, Liu Y F, et al. 2012. Zircon U-Pb ages of the magmatic rocks occurring in and around the Daingeo Cu-Ag-Sn polymetallic deposit of Inner Mongolia and constrains to the ore-forming age[J]. Acta Petrologica Sinica, 28(2): 495−513(in Chinese with English abstract).

    Google Scholar

    [17] Jiang S H, Zhang L L, Liu Y F, et al. 2018. Metallogeny of Xing–Meng Orogenic Belt and some related problems[J]. Mineral Deposits, 37(4): 671−711 (in Chinese with English abstract).

    Google Scholar

    [18] King P L, White A J, Chappell B W, et al. 1997. Characterization and origin of aluminous A−type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371−391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [19] King P L, Chappell B W, Allen C M, et al. 2001. Are A−type granites the high−temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 48(4): 501−514. doi: 10.1046/j.1440-0952.2001.00881.x

    CrossRef Google Scholar

    [20] Li C H, Wu Y Q, Wang S C, et al. 2018. Metallogenic conditions and prospect prediction of volcanic−type uranium deposits in the central−southern Da Hinggan Mountains[J]. Uranium Geology, 34(6): 329−336(in Chinese with English abstract).

    Google Scholar

    [21] Li H, Wu J H, Sun W B, et al. 2023. Research Progress and Prospect of Cu−Sn Composite Mineralization[J]. Acta Geologica Sinica (English Edition), 97(1): 262−279(in Chinese with English abstract).

    Google Scholar

    [22] Li J, Huang X L. 2013. Magmatic Evolution and Ta−Nb Enrichment Mechanism of the Yashan Granite in Jiangxi Province[J]. Acta Petrologica Sinica, 29(12): 4311−4322(in Chinese with English abstract).

    Google Scholar

    [23] Li J Y, Zhang J, Yang T N, et al. 2009. Crustal tectonic division and evolution of the Southern North Asia Orogenic Belt and adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584−605(in Chinese with English abstract).

    Google Scholar

    [24] Liang X J, Qiao L. 1991. Experimental study on metasomatite and iron ore in volcanic rocks[J]. Acta Petrologica et Mineralogica, (4): 300−314,385(in Chinese with English abstract).

    Google Scholar

    [25] Liu Y F, Fan Z Y, Jiang H C, et al. 2014. Porphyry−hydrothermal vein−type metallogenic system in the Weilasituo−Bairendaba area, Inner Mongolia[J]. Acta Geologica Sinica (English Edition), 88(12): 2373−2385(in Chinese with English abstract).

    Google Scholar

    [26] Liu Y F, Jiang SH, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag–Zn–Pb–Cu–(Sn–W) deposits in the shallow part of a porphyry Sn–W–Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75: 150−173.

    Google Scholar

    [27] Liu Y J, Zhang X Z, Jin W, et al. 2010. Late Paleozoic regional tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943−951(in Chinese with English abstract).

    Google Scholar

    [28] Liu Y Q. 1996a. Geology and genesis of the Maodeng Sn−Cu deposit in Inner Mongolia[J]. Mineral Deposits, (2): 133−143(in Chinese with English abstract).

    Google Scholar

    [29] Liu Y Q. 1996b. Metallogenic zoning and genetic discussion of the Maodeng Sn−Cu deposit[J]. Mineral Deposits, (4): 31−42(in Chinese with English abstract).

    Google Scholar

    [30] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    Google Scholar

    [31] Long X Y, Chen Z Q, Liu Z J, et al. 2021. Comparative analysis of metallogenic characteristics between the 414 and Songshugang Ta−Nb deposits in Yashan, Jiangxi[J]. Journal of East China University of Technology (Natural Science Edition), 44(3): 239−248(in Chinese with English abstract).

    Google Scholar

    [32] Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geol Soc Am Abstr With Progr, 11: 468.

    Google Scholar

    [33] Lyu G Y, Fu G Q, Li Y X, et al. 2025. Geological characteristics and prospecting prospects of mineralization in the Houbuhe-Machang area of the southern section of the DaHingganLing[J]. World Nonferrous Metals, (2): 56−58(in Chinese with English abstract).

    Google Scholar

    [34] Ma X H, Chen B. 2009. Geological characteristics, geochemistry of ore−bearing porphyry and zircon Hf isotopes of the Aolunhua Mo deposit in Inner Mongolia[J]. Acta Mineralogica Sinica, 29(S1): 19−20(in Chinese with English abstract).

    Google Scholar

    [35] Mao J W, Zhou Z H, Wu G, et al. 2013. Metallogenic regularity and metallogenic series of deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 716−730(in Chinese with English abstract).

    Google Scholar

    [36] Mei W, Lü X B, Cao X F, et al. 2015. Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit, southern Great Xing'an Range: Evidence from fluid inclusions and isotope analyses[J]. Ore Geology Reviews, 64: 239−252.

    Google Scholar

    [37] Nie F J, Wen Y W, Zhao Y Y, et al. 2007. Geological characteristics and prospecting direction of the Baiyinchagan Ag−polymetallic mineralization area in Inner Mongolia[J]. Mineral Deposits, (2): 213−220(in Chinese with English abstract).

    Google Scholar

    [38] Papu D, Maniar P M, Piccoli P. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [39] Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [40] Pan L J, Sun E S. 1992. Geological characteristics of the Jiawula Ag−Pb−Zn deposit in Inner Mongolia[J]. Mineral Deposits, (1): 45−53(in Chinese with English abstract).

    Google Scholar

    [41] Pfänder J A, Münker C, Stracke A, et al. 2007. Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust−mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 254(1): 158−172.

    Google Scholar

    [42] Stepanov A S, Mavrogenes J A, Meffre S, et al. 2014. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 167(6): 1−8.

    Google Scholar

    [43] Shao J A, Mu B L, Zhu H Z, et al. 2010. Deep sources and settings of Mesozoic metallogenic materials in the central−southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, 26(3): 649−656(in Chinese with English abstract).

    Google Scholar

    [44] She H Q, Li H H, Li J W, et al. 2009. Metallogenic regularity and prospecting direction of Cu−Pb−Zn−Au−Ag polymetallic deposits in the central−northern Da Hinggan Mountains, Inner Mongolia[J]. Acta Geologica Sinica (English Edition), 83(10): 1456−1472(in Chinese with English abstract).

    Google Scholar

    [45] Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [46] Tian L. 2024. Early Cretaceous magmatism and its constraints on rare and rare earth metal mineralization in Kunduleng-Xizhelimu area, Southern Great Xing’an Range[D]. Doctoral Dissertation of Jilin University: 111–119 (in Chinese with English abstract).

    Google Scholar

    [47] Tiepolo M, Vannucci R, Oberti R, et al. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal–chemical constraints and implications for natural systems[J]. Earth and Planetary Science Letters, 176(2): 185−201. doi: 10.1016/S0012-821X(00)00004-2

    CrossRef Google Scholar

    [48] Wang C M, Zhang S T, Deng J, et al. 2007. Sedex origin of stratiform skarn in the Huanggangliang Sn−Fe−polymetallic deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, (5): 409−417(in Chinese with English abstract).

    Google Scholar

    [49] Wang J F, Li Y J, Li H Y, et al. 2017. LA−ICP−MS zircon U−Pb age and geological significance of Early Cretaceous A−type granite in Nuhete, Xiwuqi, Inner Mongolia[J]. Geological Bulletin of China, 36(8): 1343−1358(in Chinese with English abstract).

    Google Scholar

    [50] Wang J F, Li Y J, Li H Y, et al. 2018a. Formation age of Early Cretaceous A−type granite in Deleha, Xiwuqi, Inner Mongolia: Evidence from zircon U−Pb dating[J]. Geology in China, 45(1): 197−198(in Chinese with English abstract).

    Google Scholar

    [51] Wang J F, Li Y J, Li H Y, et al. 2018b. Zircon U−Pb age and tectonic setting of Late Jurassic−Early Cretaceous A−type granite in Shijiangshan, Xiwuqi, Inner Mongolia[J]. Geological Bulletin of China, 37(Z1): 382−396(in Chinese with English abstract).

    Google Scholar

    [52] Wang L J, Wang J B, Wang Y W, et al. 2001. Fluid−melt inclusions in fluorite from the Huanggangliang skarn−type Fe−Sn deposit and their implications for genesis[J]. Acta Geologica Sinica (English Edition), (2): 287(in Chinese with English abstract).

    Google Scholar

    [53] Wang L J, Wang J B, Wang Y W, et al. 2002. Rare earth element geochemistry of the Huanggangliang skarn−type Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica Sinica, (4): 575−584(in Chinese with English abstract).

    Google Scholar

    [54] Wang X L, Liu J J, Zhai D G, et al. 2014. Isotope geochemical characteristics and source of metallogenic materials of the Bianjiadayuan Ag−polymetallic deposit, Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1288−1303(in Chinese with English abstract).

    Google Scholar

    [55] Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [56] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [57] Wu F Y, Jahn B M, Wilde S A, et al. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241−273.

    Google Scholar

    [58] Wu F Y, Li X H, Yang J H, et al. 2007. Some issues in granite genetic research[J]. Acta Petrologica Sinica, 23(6): 1217−1238(in Chinese with English abstract).

    Google Scholar

    [59] Wu F Y, Liu X C, Ji W Q, et al. 2017. Identification and study of highly fractionated granites[J]. Science China Earth Sciences, 60(7): 1129−1149(in Chinese with English abstract).

    Google Scholar

    [60] Wu G, Liu R L, Chen G Z, et al. 2021. Metallogenesis of the Weilasituo rare metal−Sn−polymetallic deposit, Inner Mongolia: Insights from fractional crystallization of granitic magma[J]. Acta Petrologica Sinica, 37(3): 637−664(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.01

    CrossRef Google Scholar

    [61] Xie C B, Liu M. 2001. Geological characteristics and genetic type of the Chaganbulagen Ag−Pb−Zn (Au) deposit[J]. Global Geology, (1): 25−29(in Chinese with English abstract).

    Google Scholar

    [62] Xu B, Chen B. 1997. Structure and evolution of the Middle Paleozoic Orogenic Belt between the North China and Siberian Plates in Northern Inner Mongolia[J]. Science in China Series D: Earth Sciences, 40(3): 227−232(in Chinese with English abstract).

    Google Scholar

    [63] Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary division of Pre−Mesozoic tectonic units in the Xingmeng Orogenic Belt[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).

    Google Scholar

    [64] Xu Q, Tang G, Zou T, et al. 2020. Metallogenic system and target prediction of the Haobugao Sn−polymetallic ore field in Balinzuoqi, Southern Da Hinggan Mountains[J]. Geology and Exploration, 56(2): 265−276(in Chinese with English abstract).

    Google Scholar

    [65] Xu W L, Sun C Y, Tang J, et al. 2019. The basement properties and tectonic evolutionary process of the Xingmeng Orogenic Belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).

    Google Scholar

    [66] Yang C L, Yang S S, Zhu X Y, et al. 2019. Geological characteristics and genetic type of the Mogutu Fe−Sn deposit, Inner Mongolia[J]. Mineral Exploration, 10(3): 467−480(in Chinese with English abstract).

    Google Scholar

    [67] Yang J H, Peng J T, Zhao J H, et al. 2012. Petrogenesis of the Xihuashan Granite in Southern Jiangxi Province, South China: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd Isotopes[J]. Acta Geologica Sinica (English Edition), 86(1): 131−152.

    Google Scholar

    [68] Yang Q D, Guo L, Wang T, et al. 2014. Ages, petrogenesis, provenance and tectonic settings of two phases of Late Mesozoic granites in the Ganzhuer Temple area, Central−Southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, 30(7): 1961−1981(in Chinese with English abstract).

    Google Scholar

    [69] Yang W B, Su W C, Liao S P, et al. 2011. Melt and melt−fluid inclusions in the Baerzhe alkaline granite: Insights into magma−hydrothermal transition[J]. Acta Petrologica Sinica, 27(5): 1493−1499(in Chinese with English abstract).

    Google Scholar

    [70] Yang Z L, Qiu J S, Xing G F, et al. 2014. Petrogenesis and evolution of the Yashan granite pluton in Yichun, Jiangxi, and their constraints on mineralization[J]. Acta Geologica Sinica (English Edition), 88(5): 850−868(in Chinese with English abstract).

    Google Scholar

    [71] Yang Z L, Zou T, Zhu X Y, et al. 2021. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. Geology in China, 48(1): 247−263 (in Chinese with English abstract).

    Google Scholar

    [72] Yao L, Lyu Z C, Ye T Z, et al. 2017. Zircon U−Pb ages, geochemistry and Nd−Hf isotopes of quartz porphyry from the Baiyinchagan Sn−polymetallic deposit, Southern Da Hinggan Mountains, Inner Mongolia, and their geological significance[J]. Acta Petrologica Sinica, 33(10): 3183−3199(in Chinese with English abstract).

    Google Scholar

    [73] Ye J, Liu J M, Zhang A L, et al. 2002. Petrological evidence for sedex mineralization: Examples from the Huanggang and Dajing deposits in Southern Da Hinggan Mountains[J]. Acta Petrologica Sinica, (4): 585−592, 609−610(in Chinese with English abstract).

    Google Scholar

    [74] Yu B, Wang C D, Yu H L, et al. 2022. Application of comprehensive geophysical survey to uranium prospecting in the Chaomifang area, Southern Da Hinggan Mountains[J]. Geology and Exploration, 58(5): 1070−1081(in Chinese with English abstract).

    Google Scholar

    [75] Zhai D G, Liu J J, Zhang H Y, et al. 2014. S–Pb isotopic geochemistry, U–Pb and Re–Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews, 59: 109−122.

    Google Scholar

    [76] Zhai D G, Liu J J, Zhang H Y, et al. 2018. A magmatic-hydrothermal origin for Ag-Pb-Zn vein formation at the Bianjiadayuan deposit, inner Mongolia, NE China: Evidences from fluid inclusion, stable (C-H-O) and noble gas isotope studies[J]. Ore Geology Reviews, 101: 1−16.

    Google Scholar

    [77] Zhang D H, Wei J H, Fu L B, et al. 2013. Formation of the Jurassic Changboshan-Xieniqishan highly fractionated I - type granites, northeastern China: Implication for the partial melting of juvenile crust induced by asthenospheric mantle upwelling[J]. Geological Journal, 50(2): 122−138.

    Google Scholar

    [78] Zhang D Q, Lei Y F, Luo T Y, et al. 1992. Mineralization Zoning and ore−fluid flow direction of the Baiyinnuoer Pb−Zn deposit[J]. Mineral Deposits, (3): 203−212(in Chinese with English abstract).

    Google Scholar

    [79] Zheng F S, Cai H J, Zhang Z F. 2006. Discovery and prospecting significance of the super−large Bairendaba−Weilastuo Ag−Pb−Zn deposit, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 30(1): 13−20,25(in Chinese with English abstract).

    Google Scholar

    [80] Zhou Z H, Lyu L S, Feng J R, et al. 2010. Molybdenite Re−Os ages of the Huanggang skarn−type Sn−Fe deposit, Inner Mongolia, and their geological significance[J]. Acta Petrologica Sinica, 26(3): 667−679(in Chinese with English abstract).

    Google Scholar

    [81] Zhou Z H, Mao J W, Peter L. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn–Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 272−286.

    Google Scholar

    [82] 白大明, 刘光海. 1996. 浩布高铅锌铜锡矿床地物化综合找矿模式探讨[J]. 有色金属矿产与勘查, (6): 42−48.

    Google Scholar

    [83] 陈缘, 韩禹, 许博, 等. 2021. 内蒙古黄岗梁铁锡矿床中红色萤石的地球化学特征及成因探讨[J]. 岩石学报, 37(12): 3869−3879. doi: 10.18654/1000-0569/2021.12.15

    CrossRef Google Scholar

    [84] 顾玉超, 陈仁义, 杜继宇, 鞠楠. 2025. 大兴安岭南段黄岗梁地区早白垩世正长花岗岩成因及构造启示: 锆石 U−Pb 年龄、岩石地球化学和 Sr−Nd−Pb 同位素证据[J]. 地质通报, 44(1): 91−116.

    Google Scholar

    [85] 华仁民, 张文兰, 顾晟彦, 等. 2007. 南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比[J]. 岩石学报, 23(10): 2321−2328.

    Google Scholar

    [86] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [87] 黄世乾, 林达富, 晏汝逊, 等. 1986. 大井锡-银-铜矿床及其成因[J]. 地质与勘探, (6): 28−32.

    Google Scholar

    [88] 江思宏, 梁清玲, 刘翼飞, 等. 2012. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J]. 岩石学报, 28(2): 495−513.

    Google Scholar

    [89] 江思宏, 张莉莉, 刘翼飞, 等. 2018. 兴蒙造山带成矿规律及若干科学问题[J]. 矿床地质, 37(4): 671−711.

    Google Scholar

    [90] 荆凤. 2005. 内蒙古大兴安岭南段多金属成矿带遥感多源信息综合研究[D]. 中国地质大学(北京)硕士学位论文: 50−60.

    Google Scholar

    [91] 季根源, 江思宏, 张龙升, 等. 2021a. 大兴安岭南段毛登矿区阿鲁包格山岩体成岩成矿意义 — 锆石、角闪石和黑云母矿物学证据[J]. 矿床地质, 40(3): 449−474.

    Google Scholar

    [92] 季根源, 江思宏, 李高峰, 等. 2021b. 大兴安岭南段毛登 Sn−Cu 矿床岩浆作用对成矿制约: 年代学、地球化学及 Sr−Nd−Pb 同位素证据[J]. 大地构造与成矿学, 45(4): 681−704.

    Google Scholar

    [93] 季根源, 江思宏, 张龙升, 等. 2022. 大兴安岭南段毛登高分异碱长花岗岩成岩时代与地球化学特征[J]. 岩石学报, 38(3): 855−882. doi: 10.18654/1000-0569/2022.03.15

    CrossRef Google Scholar

    [94] 李长华, 吴燕清, 王世成, 等. 2018. 大兴安岭中南段火山岩型铀矿成矿条件及远景预测[J]. 铀矿地质, 34(6): 329−336.

    Google Scholar

    [95] 李欢, 吴经华, 孙文博, 等. 2023. 铜锡复合成矿研究进展与展望[J]. 地质学报, 97(1): 262−279.

    Google Scholar

    [96] 李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta−Nb富集机制[J]. 岩石学报, 29(12): 4311−4322.

    Google Scholar

    [97] 李锦轶, 张进, 杨天南, 等. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报 (地球科学版), 39(4): 584−605.

    Google Scholar

    [98] 李鹏川, 刘正宏, 李世超, 等. 2016. 内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf 同位素特征及构造背景[J]. 地球科学, 41(12): 1995−2007.

    Google Scholar

    [99] 刘翼飞, 樊志勇, 蒋胡灿, 等. 2014. 内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究[J]. 地质学报, 88(12): 2373−2385.

    Google Scholar

    [100] 刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951.

    Google Scholar

    [101] 刘玉强. 1996a. 内蒙古毛登锡铜矿床地质及成因[J]. 矿床地质, (2): 133−143.

    Google Scholar

    [102] 刘玉强. 1996b. 毛登锡铜矿床成矿分带及其成因讨论[J]. 矿床地质, (4): 31−42.

    Google Scholar

    [103] 龙细友, 陈正钱, 刘志军, 等. 2021. 江西雅山 414 和灵山松树岗钽铌矿成矿特征对比分析研究[J]. 东华理工大学学报 (自然科学版), 44(3): 239−248.

    Google Scholar

    [104] 吕耿毅, 富广全, 李永新, 等. 2025. 大兴安岭南段后卜河-马场地区成矿地质特征及其找矿前景分析[J]. 世界有色金属, (2): 56−58.

    Google Scholar

    [105] 马星华, 陈斌. 2009. 内蒙古敖仑花钼矿床地质特征、含矿斑岩地球化学及锆石 Hf 同位素研究[J]. 矿物学报, 29(S1): 19−20.

    Google Scholar

    [106] 毛景文, 周振华, 武广, 等. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 716−730.

    Google Scholar

    [107] 聂凤军, 温银维, 赵元艺, 等. 2007. 内蒙古白音查干银多金属矿化区地质特征及找矿方向[J]. 矿床地质, (2): 213−220.

    Google Scholar

    [108] 潘龙驹, 孙恩守. 1992. 内蒙古甲乌拉银铅锌矿床地质特征[J]. 矿床地质, (1): 45−53.

    Google Scholar

    [109] 邵济安, 牟保磊, 朱慧忠, 等. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景[J]. 岩石学报, 26(3): 649−656.

    Google Scholar

    [110] 佘宏全, 李红红, 李进文, 等. 2009. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J]. 地质学报, 83(10): 1456−1472. doi: 10.3321/j.issn:0001-5717.2009.10.010

    CrossRef Google Scholar

    [111] 田丽. 2024. 大兴安岭南部坤都冷—西哲里木地区早白垩世岩浆作用及对稀有稀土金属成矿的制约[D]. 吉林大学博士学位论文: 111–119

    Google Scholar

    [112] 王长明, 张寿庭, 邓军, 等. 2007. 内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J]. 岩石矿物学杂志, (5): 409−417.

    Google Scholar

    [113] 王金芳, 李英杰, 李红阳, 等. 2017. 内蒙古西乌旗努和特早白垩世A型花岗岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(8): 1343−1358. doi: 10.3969/j.issn.1671-2552.2017.08.005

    CrossRef Google Scholar

    [114] 王金芳, 李英杰, 李红阳, 等. 2018a. 内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代: 锆石U−Pb定年证据[J]. 中国地质, 45(1): 197−198.

    Google Scholar

    [115] 王金芳, 李英杰, 李红阳, 等. 2018b. 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U−Pb年龄及构造环境[J]. 地质通报, 37(Z1): 382−396.

    Google Scholar

    [116] 王莉娟, 王京彬, 王玉往, 等. 2001. 黄岗梁夕卡岩型铁锡矿床萤石中流体-熔融包裹体及对矿床成因研究的意义[J]. 地质学报, (2): 287.

    Google Scholar

    [117] 王莉娟, 王京彬, 王玉往, 等. 2002. 内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J]. 岩石学报, 18(4): 575−584. doi: 10.3969/j.issn.1000-0569.2002.04.017

    CrossRef Google Scholar

    [118] 王喜龙, 刘家军, 翟德高, 等. 2014. 内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J]. 中国地质, 41(4): 1288−1303.

    Google Scholar

    [119] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [120] 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    Google Scholar

    [121] 武广, 刘瑞麟, 陈公正, 等. 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示[J]. 岩石学报, 37(3): 637−664.

    Google Scholar

    [122] 解成波, 刘明. 2001. 查干布拉根银铅锌 (金) 矿床地质特征及成因类型[J]. 世界地质, (1): 25−29.

    Google Scholar

    [123] 徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学 (D辑: 地球科学), (3): 227−232.

    Google Scholar

    [124] 徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857.

    Google Scholar

    [125] 徐巧, 唐果, 邹滔, 等. 2020. 大兴安岭南段巴林左旗浩布高锡多金属矿田成矿系统与靶区预测[J]. 地质与勘探, 56(2): 265−276.

    Google Scholar

    [126] 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    Google Scholar

    [127] 杨朝磊, 杨尚松, 祝新友, 等. 2019. 内蒙古莫古吐铁锡矿床地质特征及成因类型[J]. 矿产勘查, 10(3): 467−480. doi: 10.3969/j.issn.1674-7801.2019.03.009

    CrossRef Google Scholar

    [128] 杨朝磊, 邹滔, 祝新友, 等. 2021. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用[J]. 中国地质, 48(1): 247−263.

    Google Scholar

    [129] 杨奇荻, 郭磊, 王涛, 等. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961−1981.

    Google Scholar

    [130] 杨武斌, 苏文超, 廖思平, 等. 2011. 巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体: 岩浆-热液过渡的信息[J]. 岩石学报, 27(5): 1493−1499.

    Google Scholar

    [131] 杨泽黎, 邱检生, 邢光福, 等. 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约[J]. 地质学报, 88(5): 850−868.

    Google Scholar

    [132] 姚磊, 吕志成, 叶天竺, 等. 2017. 大兴安岭南段内蒙古白音查干 Sn 多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和 Nd−Hf 同位素特征及地质意义[J]. 岩石学报, 33(10): 3183−3199.

    Google Scholar

    [133] 叶杰, 刘建明, 张安立, 等. 2002. 沉积喷流型矿化的岩石学证据——以大兴安岭南段黄岗和大井矿床为例[J]. 岩石学报, (4): 585−592, 609−610.

    Google Scholar

    [134] 于兵, 王常东, 余弘龙, 等. 2022. 综合物探测量在大兴安岭南段炒米房地区铀矿勘查中的应用[J]. 地质与勘探, 58(5): 1070−1081.

    Google Scholar

    [135] 张德全, 雷蕴芬, 罗太阳, 等. 1992. 白音诺铅锌矿床矿化分带及矿液流向[J]. 矿床地质, (3): 203−212.

    Google Scholar

    [136] 郑翻身, 蔡红军, 张振法. 2006. 内蒙古拜仁达坝维拉斯托超大型银铅锌矿的发现及找矿意义[J]. 物探与化探, (1): 13−20,25.

    Google Scholar

    [137] 周振华, 吕林素, 冯佳睿, 等. 2010. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re−Os年龄及其地质意义[J]. 岩石学报, 26(3): 667−679.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(5)

Article Metrics

Article views(258) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint