Citation: | CHEN Mulong, LYU Zhaoying, MA Changqian, XUE Guicheng, HE Yusheng, WEI Changxin, YUAN Qinmin, HUANG Wuxuan, CHANG Zhenyu, LYU Changyan. 2024. Mineralogical characteristics of the Late Cretaceous Qianjia pluton from southwestern Hainan Island and their constraints on petrogenesis. Geological Bulletin of China, 43(4): 503-515. doi: 10.12097/gbc.2022.05.031 |
The Qianjia granitoid pluton is a typical granitic complex in Hainan Island during the Late Cretaceous. The complex consists of three major rock types, i.e., granodiorite, monzogranite and syenogranite. The mineral assemblages commonly composed of biotite,hornblende, plagioclase, alkali feldspar, and quartz. To further reveal the processes of rock formation and the characteristics of their source regions, as well as to infer crust-mantle interactions, this paper selects the Qianjia pluton and utilizes electron microprobe to analyze major elements of major minerals in different rock types. The results show that hornblendes and biotites are likely originated from crust-mantle mixing, and annulus zoned plagioclase may represent a magmatic activity. Microscpic identification shows a large number of magma unbalanced structures occur in the Qianjia pluton, such as embedded crystal structure of plagioclases and hornblendes, and acicular apatites, These phenomena indicate a mixing process for generation of the Qianjia composite magma combines mineral assemblages and morphological characteristics of the enclaves. As a result, the petrological and mineralogical data indicate a crust-mantle mixing generation for the Qianjia granitic complex, the mineralogical data also shows similar characteristic to I-type granites with calc-alkaline magma source, biotites formed in a low oxygen fugacity environment.
[1] | Abdel−Rahman A F M. 1994. Nature of biotites from alkaline, calc−alkaline and peraluminous magmas[J]. Journal of Petrology, 35(2): 525−541. doi: 10.1093/petrology/35.2.525 |
[2] | Barbarin B, Didier J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 145−153. doi: 10.1017/S0263593300007835 |
[3] | Beane R E. 1974. Biotite stability in the porphyry copper environment[J]. Economic Geology, 69(2): 241−256. doi: 10.2113/gsecongeo.69.2.241 |
[4] | Betsi T B L D R. 2013. Chemical composition of rock−forming minerals in granitoids associated with Au−Bi−Cu, Cu−Mo, and Au−Ag mineralization at the Freegold Mountain, Yukon, Canada: magmatic and hydrothermal fluid chemistry and petrogenetic implications[J]. International Geology Review, 55(6): 657−691. doi: 10.1080/00206814.2012.731767 |
[5] | Blundy J D, Holland T J B. 1990. Calcic amphibole equilibria and a new amphibole−plagioclase geothermometer[J]. Contrib. Mineral. Petrol., 104(2): 208−224. doi: 10.1007/BF00306444 |
[6] | Castro A, Gerya T, García−Casco A, et al. 2010. Melting relations of MORB–sediment mélanges in underplated mantle wedge plumes: implications for the origin of cordilleran−type batholiths[J]. Journal of Petrology, 51(6): 1267−1295. doi: 10.1093/petrology/egq019 |
[7] | Castro A. 2013. Tonalite–granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis[J]. Earth−Science Reviews, 124: 68−95. doi: 10.1016/j.earscirev.2013.05.006 |
[8] | Clemens J D, Stevens G, Farina F. 2011. The enigmatic sources of I−type granites: the peritectic connexion[J]. Lithos, 126(3): 174−181. |
[9] | Dahlquist A. 2002. Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J]. Journal of South American Earth Sciences, 15(6): 643−655. doi: 10.1016/S0895-9811(02)00112-8 |
[10] | Deer W A, Howie R A, Zussman J. 1992. An Introduction to the Rock Forming Minerals[M]. (2nd Edition). Harlow: Longman Group: 1−232. |
[11] | Douce A E P. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55−75. |
[12] | Feeley T C, Sharp Z D. 1996. Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers[J]. Geology, 24(11): 1021−1024. doi: 10.1130/0091-7613(1996)024<1021:CAHIEF>2.3.CO;2 |
[13] | Fernandez A, Barbarin B. 1991. Relative rheology of coeval mafic and felsic magmas: nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves[C]//Enclaves and Granite Petrology: 263−275. |
[14] | Ford J H. A. 1978. Chemical study of alteration at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J]. Economic Geology, 73(5): 703−720. doi: 10.2113/gsecongeo.73.5.703 |
[15] | Foster M D. 1960. Interpretation of the composition of trioctahedral micas[J]. US Geological Survey Professional Paper, 354B: 11−49. |
[16] | Gray C M, Kemp A. 2009. The two−component model for the genesis of granitic rocks in southeastern Australia—Nature of the metasedimentary−derived and basaltic end members[J]. Lithos, 111(3): 113−124. |
[17] | Hammarstrom J, Zen E. 1986. Aluminum in hornblende: An empirical igneous geobarometer[J]. Am. Miner., 71(11/12): 1297−1313. |
[18] | Healy B, Collins W J, Richards S W. 2004. A hybrid origin for Lachlan S−type granites: the Murrumbidgee Batholith example[J]. Lithos, 78(1/2): 197−216. doi: 10.1016/j.lithos.2004.04.047 |
[19] | Janoušek V, Braithwaite C J R, Bowes D R, et al. 2004. Magma−mixing in the genesis of Hercynian calc−alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic[J]. Lithos, 78(1/2): 67−99. doi: 10.1016/j.lithos.2004.04.046 |
[20] | Jiang X Y, Li X H. 2014. In situ zircon U−Pb and Hf−O isotopic results for ca. 73Ma granite in Hainan Island: Implications for the termination of an Andean−type active continental margin in Southeast China[J]. Journal of Asian Earth Sciences, 82: 32. doi: 10.1016/j.jseaes.2013.12.013 |
[21] | Keay S, Collins W J, Mcculloch M T. 1997. A three−component Sr−Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia[J]. Geology, 25(4): 307−310. doi: 10.1130/0091-7613(1997)025<0307:ATCSNI>2.3.CO;2 |
[22] | Kemp A, Hawkesworth C J, Foster G L, et al. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf−O isotopes in zircon[J]. Science, 315(5814): 980−983. doi: 10.1126/science.1136154 |
[23] | Kesler S E, Issigonis M J, Brownlow A H, et al. 1975. Geochemistry of biotites from mineralized and barren intrusive systems[J]. Economic Geology, 70(3): 559−567. doi: 10.2113/gsecongeo.70.3.559 |
[24] | Leake B E. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. Mineralogical Magazine, 61(405): 295−321. doi: 10.1180/minmag.1997.061.405.13 |
[25] | Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 5(12): 862−867. doi: 10.1038/ngeo1634 |
[26] | Roberts M P, Clemens J D. 1993. Origin of high−potassium, talc−alkaline, I−type granitoids[J]. Geology, 21(9): 825−828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 |
[27] | Schmidt M W. 1992. Amphibole compostion in tonalite as a function of pressure: An experimental calibration of the Al−in−hornbleende barometer[J]. Contrib. Mineral., 110: 304−310. doi: 10.1007/BF00310745 |
[28] | Soesoo A. 2000. Fractional crystallization of mantle‐derived melts as a mechanism for some I‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia[J]. Journal of the Geological Society, 157(1): 135−149. doi: 10.1144/jgs.157.1.135 |
[29] | Vernon R H. 1990. Crystallization and hybridism in microgranitoid enclave magmas: Microstructural evidence[J]. Journal of Geophysical Research, 95(B11): 17849−17859. doi: 10.1029/JB095iB11p17849 |
[30] | Wang Q, Li X H, Jia X H, et al. 2012a. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 328: 222−243. doi: 10.1016/j.chemgeo.2012.04.029 |
[31] | Wang X C, Li Z X, Li X H, et al. 2012b. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones?[J]. Journal of Petrology, 53(1): 177−233. doi: 10.1093/petrology/egr061 |
[32] | Whalen J B, Chappell B W. 1988. Opaque mineralogy and mafic mineral chemistry of I−and S−type granites of the Lachlan fold belt, southeast Australia[J]. American Mineralogist, 3/4(73): 281−296. |
[33] | Wones D R, Eugster H P. 1965. Stability of biotite−experiment theory and application[J]. American Mineralogist, 50(9): 1228. |
[34] | Wones D R. 1989. Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks[J]. American Mineralogist, 74(7/8): 744−749. |
[35] | Xu D R, Xia B, Bakun−Czubarow N, et al. 2008. Geochemistry and Sr−Nd isotope systematics of metabasites in the Tunchang area, Hainan Island, South China: Implications for petrogenesis and tectonic setting[J]. Mineralogy and Petrology, 92(3): 361−391. |
[36] | Xu D R, Wang Z L, Cai J X, et al. 2013. Geological characteristics and metallogenesis of the shilu Fe−ore deposit in Hainan Province, South China[J]. Ore Geology Reviews, 53: 318−342. doi: 10.1016/j.oregeorev.2013.01.015 |
[37] | 陈斌, 刘超群, 田伟. 2006. 太行山中生代岩浆作用过程中的壳幔岩浆混合作用: 岩石学和地球化学证据[J]. 地学前缘, 13(2): 140−147. doi: 10.3321/j.issn:1005-2321.2006.02.012 |
[38] | 陈光远. 1993. 胶东郭家岭花岗闪长岩成因矿物学与金矿化[M]. 武汉: 中国地质大学出版社. |
[39] | 陈沐龙, 李孙雄, 曾雁玲, 等. 2008. 海南岛白垩纪千家岩体岩石地球化学特征及其成矿作用分析[J]. 矿产与地质, 22(1): 36−42. doi: 10.3969/j.issn.1001-5663.2008.01.008 |
[40] | 陈沐龙, 马昌前, 吕昭英, 等. 2014. 海南岛千家复式岩体锆石U−Pb年代学及其地质意义[J]. 地质科技情报, 33(6): 1−10. |
[41] | 陈荣, 邢光福, 杨祝良, 等. 2005. 浙东白垩纪北漳和梁弄花岗岩体及其暗色岩石包体研究[J]. 高校地质学报, 11(2): 264−275. doi: 10.3969/j.issn.1006-7493.2005.02.015 |
[42] | 姜常义, 安三元. 1984. 论火成岩中钙质角闪石化学特征和它们的成因意义[J]. 矿物岩石, 8(3): 1−9. |
[43] | 解怀生, 张建芳, 龚瑞君, 等. 2013. 浙西北萧山—诸暨地区晚中生代侵入岩地球化学特征及构造意义[J]. 地质找矿论丛, 28(3): 424−433. doi: 10.6053/j.issn.1001-1412.2013.03.014 |
[44] | 李鸿莉, 毕献武, 胡瑞忠, 等. 2007. 芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义[J]. 岩石学报, 23(10): 2605−2614. doi: 10.3969/j.issn.1000-0569.2007.10.026 |
[45] | 李胜荣, 孙丽, 张华锋. 2006. 西藏曲水碰撞花岗岩的混合成因: 来自成因矿物学证据[J]. 岩石学报, 22(4): 884−894. doi: 10.3321/j.issn:1000-0569.2006.04.012 |
[46] | 李艳军, 魏俊浩, 姚春亮, 等. 2009. 浙东南石平川花岗岩体LA−ICP−MS锆石U−Pb年代学及构造意义[J]. 地质论评, 55(5): 673−684. doi: 10.3321/j.issn:0371-5736.2009.05.009 |
[47] | 林文蔚, 彭丽君. 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J]. 长春地质学院学报, 24(2): 155−162. |
[48] | 邱检生, 胡建, 王孝磊, 等. 2005. 广东河源白石冈岩体: 一个高分异的Ⅰ型花岗岩[J]. 地质学报, 79(4): 503−514. doi: 10.3321/j.issn:0001-5717.2005.04.008 |
[49] | 任启江, 杨荣勇, 孙冶东, 等. 1991. 安徽庐江巴家滩岩体岩浆结晶的物理化学条件及其研究意义[J]. 矿物岩石, (3): 48−55. |
[50] | 陶继华, 李武显, 李献华, 等. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf−O同位素研究[J]. 中国科学:地球科学, 43(5): 770−788. |
[51] | 吴平霄, 吴金平, 肖文丁, 等. 1997. 斜长石环带的成因机制[J]. 地质地球化学, (4): 40−49. |
[52] | 徐克勤, 孙鼐, 王德滋, 等. 1982. 华南两类不同成因花岗岩岩石学特征[J]. 岩矿测试, 1(2): 1−12. |
[53] | 张德全, 孙桂英. 1988. 中国东部花岗岩[M]. 武汉: 中国地质大学出版社. |
[54] | 周作侠. 1986. 湖北丰山洞岩体成因探讨[J]. 岩石学报, (1): 59−70. doi: 10.3321/j.issn:1000-0569.1986.01.008 |
Geologic sketch map of the Qianjia pluton
The classification diagrams of the amphiboles
Chemical composition classification diagram of the biotites
Chemical composition classification diagram for the plagioclases
Chemical composition classification diagram for the alkali feldspars
Diagram of TFeO−MgO−Al2O3 for the biotites
Field photos of the mafic enclaves in the Qianjia pluton
Magma unbalanced structures of the mafic enclaves in the Qianjia pluton
Discrimination diagram of Al2O3−TiO2 for the amphiboles
MgO−TFeO/(MgO+TFeO) discrimination diagram for biotites
Diagram of annulus zoned plagioclase for the plagioclases
Diagram of oxygen fugacity for the biotite