2024 Vol. 43, No. 4
Article Contents

CHEN Mulong, LYU Zhaoying, MA Changqian, XUE Guicheng, HE Yusheng, WEI Changxin, YUAN Qinmin, HUANG Wuxuan, CHANG Zhenyu, LYU Changyan. 2024. Mineralogical characteristics of the Late Cretaceous Qianjia pluton from southwestern Hainan Island and their constraints on petrogenesis. Geological Bulletin of China, 43(4): 503-515. doi: 10.12097/gbc.2022.05.031
Citation: CHEN Mulong, LYU Zhaoying, MA Changqian, XUE Guicheng, HE Yusheng, WEI Changxin, YUAN Qinmin, HUANG Wuxuan, CHANG Zhenyu, LYU Changyan. 2024. Mineralogical characteristics of the Late Cretaceous Qianjia pluton from southwestern Hainan Island and their constraints on petrogenesis. Geological Bulletin of China, 43(4): 503-515. doi: 10.12097/gbc.2022.05.031

Mineralogical characteristics of the Late Cretaceous Qianjia pluton from southwestern Hainan Island and their constraints on petrogenesis

More Information
  • The Qianjia granitoid pluton is a typical granitic complex in Hainan Island during the Late Cretaceous. The complex consists of three major rock types, i.e., granodiorite, monzogranite and syenogranite. The mineral assemblages commonly composed of biotite,hornblende, plagioclase, alkali feldspar, and quartz. To further reveal the processes of rock formation and the characteristics of their source regions, as well as to infer crust-mantle interactions, this paper selects the Qianjia pluton and utilizes electron microprobe to analyze major elements of major minerals in different rock types. The results show that hornblendes and biotites are likely originated from crust-mantle mixing, and annulus zoned plagioclase may represent a magmatic activity. Microscpic identification shows a large number of magma unbalanced structures occur in the Qianjia pluton, such as embedded crystal structure of plagioclases and hornblendes, and acicular apatites, These phenomena indicate a mixing process for generation of the Qianjia composite magma combines mineral assemblages and morphological characteristics of the enclaves. As a result, the petrological and mineralogical data indicate a crust-mantle mixing generation for the Qianjia granitic complex, the mineralogical data also shows similar characteristic to I-type granites with calc-alkaline magma source, biotites formed in a low oxygen fugacity environment.

  • 加载中
  • [1] Abdel−Rahman A F M. 1994. Nature of biotites from alkaline, calc−alkaline and peraluminous magmas[J]. Journal of Petrology, 35(2): 525−541. doi: 10.1093/petrology/35.2.525

    CrossRef Google Scholar

    [2] Barbarin B, Didier J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 145−153. doi: 10.1017/S0263593300007835

    CrossRef Google Scholar

    [3] Beane R E. 1974. Biotite stability in the porphyry copper environment[J]. Economic Geology, 69(2): 241−256. doi: 10.2113/gsecongeo.69.2.241

    CrossRef Google Scholar

    [4] Betsi T B L D R. 2013. Chemical composition of rock−forming minerals in granitoids associated with Au−Bi−Cu, Cu−Mo, and Au−Ag mineralization at the Freegold Mountain, Yukon, Canada: magmatic and hydrothermal fluid chemistry and petrogenetic implications[J]. International Geology Review, 55(6): 657−691. doi: 10.1080/00206814.2012.731767

    CrossRef Google Scholar

    [5] Blundy J D, Holland T J B. 1990. Calcic amphibole equilibria and a new amphibole−plagioclase geothermometer[J]. Contrib. Mineral. Petrol., 104(2): 208−224. doi: 10.1007/BF00306444

    CrossRef Google Scholar

    [6] Castro A, Gerya T, García−Casco A, et al. 2010. Melting relations of MORB–sediment mélanges in underplated mantle wedge plumes: implications for the origin of cordilleran−type batholiths[J]. Journal of Petrology, 51(6): 1267−1295. doi: 10.1093/petrology/egq019

    CrossRef Google Scholar

    [7] Castro A. 2013. Tonalite–granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis[J]. Earth−Science Reviews, 124: 68−95. doi: 10.1016/j.earscirev.2013.05.006

    CrossRef Google Scholar

    [8] Clemens J D, Stevens G, Farina F. 2011. The enigmatic sources of I−type granites: the peritectic connexion[J]. Lithos, 126(3): 174−181.

    Google Scholar

    [9] Dahlquist A. 2002. Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J]. Journal of South American Earth Sciences, 15(6): 643−655. doi: 10.1016/S0895-9811(02)00112-8

    CrossRef Google Scholar

    [10] Deer W A, Howie R A, Zussman J. 1992. An Introduction to the Rock Forming Minerals[M]. (2nd Edition). Harlow: Longman Group: 1−232.

    Google Scholar

    [11] Douce A E P. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geological Society, London, Special Publications, 168(1): 55−75.

    Google Scholar

    [12] Feeley T C, Sharp Z D. 1996. Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers[J]. Geology, 24(11): 1021−1024. doi: 10.1130/0091-7613(1996)024<1021:CAHIEF>2.3.CO;2

    CrossRef Google Scholar

    [13] Fernandez A, Barbarin B. 1991. Relative rheology of coeval mafic and felsic magmas: nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves[C]//Enclaves and Granite Petrology: 263−275.

    Google Scholar

    [14] Ford J H. A. 1978. Chemical study of alteration at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J]. Economic Geology, 73(5): 703−720. doi: 10.2113/gsecongeo.73.5.703

    CrossRef Google Scholar

    [15] Foster M D. 1960. Interpretation of the composition of trioctahedral micas[J]. US Geological Survey Professional Paper, 354B: 11−49.

    Google Scholar

    [16] Gray C M, Kemp A. 2009. The two−component model for the genesis of granitic rocks in southeastern Australia—Nature of the metasedimentary−derived and basaltic end members[J]. Lithos, 111(3): 113−124.

    Google Scholar

    [17] Hammarstrom J, Zen E. 1986. Aluminum in hornblende: An empirical igneous geobarometer[J]. Am. Miner., 71(11/12): 1297−1313.

    Google Scholar

    [18] Healy B, Collins W J, Richards S W. 2004. A hybrid origin for Lachlan S−type granites: the Murrumbidgee Batholith example[J]. Lithos, 78(1/2): 197−216. doi: 10.1016/j.lithos.2004.04.047

    CrossRef Google Scholar

    [19] Janoušek V, Braithwaite C J R, Bowes D R, et al. 2004. Magma−mixing in the genesis of Hercynian calc−alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic[J]. Lithos, 78(1/2): 67−99. doi: 10.1016/j.lithos.2004.04.046

    CrossRef Google Scholar

    [20] Jiang X Y, Li X H. 2014. In situ zircon U−Pb and Hf−O isotopic results for ca. 73Ma granite in Hainan Island: Implications for the termination of an Andean−type active continental margin in Southeast China[J]. Journal of Asian Earth Sciences, 82: 32. doi: 10.1016/j.jseaes.2013.12.013

    CrossRef Google Scholar

    [21] Keay S, Collins W J, Mcculloch M T. 1997. A three−component Sr−Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia[J]. Geology, 25(4): 307−310. doi: 10.1130/0091-7613(1997)025<0307:ATCSNI>2.3.CO;2

    CrossRef Google Scholar

    [22] Kemp A, Hawkesworth C J, Foster G L, et al. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf−O isotopes in zircon[J]. Science, 315(5814): 980−983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    [23] Kesler S E, Issigonis M J, Brownlow A H, et al. 1975. Geochemistry of biotites from mineralized and barren intrusive systems[J]. Economic Geology, 70(3): 559−567. doi: 10.2113/gsecongeo.70.3.559

    CrossRef Google Scholar

    [24] Leake B E. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. Mineralogical Magazine, 61(405): 295−321. doi: 10.1180/minmag.1997.061.405.13

    CrossRef Google Scholar

    [25] Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 5(12): 862−867. doi: 10.1038/ngeo1634

    CrossRef Google Scholar

    [26] Roberts M P, Clemens J D. 1993. Origin of high−potassium, talc−alkaline, I−type granitoids[J]. Geology, 21(9): 825−828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    CrossRef Google Scholar

    [27] Schmidt M W. 1992. Amphibole compostion in tonalite as a function of pressure: An experimental calibration of the Al−in−hornbleende barometer[J]. Contrib. Mineral., 110: 304−310. doi: 10.1007/BF00310745

    CrossRef Google Scholar

    [28] Soesoo A. 2000. Fractional crystallization of mantle‐derived melts as a mechanism for some I‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia[J]. Journal of the Geological Society, 157(1): 135−149. doi: 10.1144/jgs.157.1.135

    CrossRef Google Scholar

    [29] Vernon R H. 1990. Crystallization and hybridism in microgranitoid enclave magmas: Microstructural evidence[J]. Journal of Geophysical Research, 95(B11): 17849−17859. doi: 10.1029/JB095iB11p17849

    CrossRef Google Scholar

    [30] Wang Q, Li X H, Jia X H, et al. 2012a. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 328: 222−243. doi: 10.1016/j.chemgeo.2012.04.029

    CrossRef Google Scholar

    [31] Wang X C, Li Z X, Li X H, et al. 2012b. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones?[J]. Journal of Petrology, 53(1): 177−233. doi: 10.1093/petrology/egr061

    CrossRef Google Scholar

    [32] Whalen J B, Chappell B W. 1988. Opaque mineralogy and mafic mineral chemistry of I−and S−type granites of the Lachlan fold belt, southeast Australia[J]. American Mineralogist, 3/4(73): 281−296.

    Google Scholar

    [33] Wones D R, Eugster H P. 1965. Stability of biotite−experiment theory and application[J]. American Mineralogist, 50(9): 1228.

    Google Scholar

    [34] Wones D R. 1989. Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks[J]. American Mineralogist, 74(7/8): 744−749.

    Google Scholar

    [35] Xu D R, Xia B, Bakun−Czubarow N, et al. 2008. Geochemistry and Sr−Nd isotope systematics of metabasites in the Tunchang area, Hainan Island, South China: Implications for petrogenesis and tectonic setting[J]. Mineralogy and Petrology, 92(3): 361−391.

    Google Scholar

    [36] Xu D R, Wang Z L, Cai J X, et al. 2013. Geological characteristics and metallogenesis of the shilu Fe−ore deposit in Hainan Province, South China[J]. Ore Geology Reviews, 53: 318−342. doi: 10.1016/j.oregeorev.2013.01.015

    CrossRef Google Scholar

    [37] 陈斌, 刘超群, 田伟. 2006. 太行山中生代岩浆作用过程中的壳幔岩浆混合作用: 岩石学和地球化学证据[J]. 地学前缘, 13(2): 140−147. doi: 10.3321/j.issn:1005-2321.2006.02.012

    CrossRef Google Scholar

    [38] 陈光远. 1993. 胶东郭家岭花岗闪长岩成因矿物学与金矿化[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    [39] 陈沐龙, 李孙雄, 曾雁玲, 等. 2008. 海南岛白垩纪千家岩体岩石地球化学特征及其成矿作用分析[J]. 矿产与地质, 22(1): 36−42. doi: 10.3969/j.issn.1001-5663.2008.01.008

    CrossRef Google Scholar

    [40] 陈沐龙, 马昌前, 吕昭英, 等. 2014. 海南岛千家复式岩体锆石U−Pb年代学及其地质意义[J]. 地质科技情报, 33(6): 1−10.

    Google Scholar

    [41] 陈荣, 邢光福, 杨祝良, 等. 2005. 浙东白垩纪北漳和梁弄花岗岩体及其暗色岩石包体研究[J]. 高校地质学报, 11(2): 264−275. doi: 10.3969/j.issn.1006-7493.2005.02.015

    CrossRef Google Scholar

    [42] 姜常义, 安三元. 1984. 论火成岩中钙质角闪石化学特征和它们的成因意义[J]. 矿物岩石, 8(3): 1−9.

    Google Scholar

    [43] 解怀生, 张建芳, 龚瑞君, 等. 2013. 浙西北萧山—诸暨地区晚中生代侵入岩地球化学特征及构造意义[J]. 地质找矿论丛, 28(3): 424−433. doi: 10.6053/j.issn.1001-1412.2013.03.014

    CrossRef Google Scholar

    [44] 李鸿莉, 毕献武, 胡瑞忠, 等. 2007. 芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义[J]. 岩石学报, 23(10): 2605−2614. doi: 10.3969/j.issn.1000-0569.2007.10.026

    CrossRef Google Scholar

    [45] 李胜荣, 孙丽, 张华锋. 2006. 西藏曲水碰撞花岗岩的混合成因: 来自成因矿物学证据[J]. 岩石学报, 22(4): 884−894. doi: 10.3321/j.issn:1000-0569.2006.04.012

    CrossRef Google Scholar

    [46] 李艳军, 魏俊浩, 姚春亮, 等. 2009. 浙东南石平川花岗岩体LA−ICP−MS锆石U−Pb年代学及构造意义[J]. 地质论评, 55(5): 673−684. doi: 10.3321/j.issn:0371-5736.2009.05.009

    CrossRef Google Scholar

    [47] 林文蔚, 彭丽君. 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J]. 长春地质学院学报, 24(2): 155−162.

    Google Scholar

    [48] 邱检生, 胡建, 王孝磊, 等. 2005. 广东河源白石冈岩体: 一个高分异的Ⅰ型花岗岩[J]. 地质学报, 79(4): 503−514. doi: 10.3321/j.issn:0001-5717.2005.04.008

    CrossRef Google Scholar

    [49] 任启江, 杨荣勇, 孙冶东, 等. 1991. 安徽庐江巴家滩岩体岩浆结晶的物理化学条件及其研究意义[J]. 矿物岩石, (3): 48−55.

    Google Scholar

    [50] 陶继华, 李武显, 李献华, 等. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf−O同位素研究[J]. 中国科学:地球科学, 43(5): 770−788.

    Google Scholar

    [51] 吴平霄, 吴金平, 肖文丁, 等. 1997. 斜长石环带的成因机制[J]. 地质地球化学, (4): 40−49.

    Google Scholar

    [52] 徐克勤, 孙鼐, 王德滋, 等. 1982. 华南两类不同成因花岗岩岩石学特征[J]. 岩矿测试, 1(2): 1−12.

    Google Scholar

    [53] 张德全, 孙桂英. 1988. 中国东部花岗岩[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    [54] 周作侠. 1986. 湖北丰山洞岩体成因探讨[J]. 岩石学报, (1): 59−70. doi: 10.3321/j.issn:1000-0569.1986.01.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(5)

Article Metrics

Article views(710) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint