Citation: | QIN Xuwen, DAI Yiyun, ZHANG Yaoyang, XIAO Du, FANG Hui, PEI Fagen, HE Dashuang, FENG Bin. 2024. Future plan and prospect for national magnetotelluric datum network. Geological Bulletin of China, 43(4): 489-502. doi: 10.12097/gbc.2023.03.013 |
Array magnetotelluric sounding is one of the most promising techniques in regional geophysical investigation. In consideration of the advantages of foreign developed countries and the basic needs of society, the development of array magnetotelluric sounding in China lacks integral planning and is lagging behind. It is urgent to carry out a magnetotelluric observation plan at the national level. In this paper, we review the current development trend of regional geophysics and the construction status of magnetotelluric network in China and abroad. Furthermore, we put forward the top-level concept and construction plan of the national magnetotelluric datum network and the relevant big data bank, and point out the future development priorities. The implementation of this project will expand a new parameter of regional geophysical survey in our country, and promote constructing the 4D model of physical earth, structural earth and geophysical field, which are of great significance to transform the regional geophysical research paradigm and work mode, and help China's deep earth exploration to move forward all over the world.
[1] | Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358−362. |
[2] | Bedrosian P A, Feucht D W. 2014. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data[J]. Earth and Planetary Science Letters, 402: 275−289. doi: 10.1016/j.jpgl.2013.07.035 |
[3] | Brewer J A, Matthews D H, Warner M R, et al. 1996. BIRPS deep seismic reflection studies of the British Caledonides[J]. Nature, 1983,305(5931): 206−210. |
[4] | Brown L D, Zhao W J, Nelson K D, et al. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science, 274(5293): 1688−1690. |
[5] | Carbonell R, Pérez−Estaún A, Gallart J, et al. 1996. Crustal root beneath the Urals: Wide−angle seismic evidence[J]. Science, 274(5285): 222−224. doi: 10.1126/science.274.5285.222 |
[6] | Cavazza W, Roure F, Spakman W, et al. 2004. The TRANSMED Atlas−The Mediterranean region from crust to mantle[M]. Springer Berlin Heidelberg. |
[7] | Chave A D, Jones A G. 2012. The Magnetotelluric Method − Theory and Practice[M]. London: Cambridge University Press. |
[8] | Chen L, Wang T, Zhao L, et al. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton[J]. Earth and Planetary Science Letters, 267(1/2): 56−68. doi: 10.1016/j.jpgl.2007.11.024 |
[9] | Clowes R, Cook F, Hajnal Z, et al. 1999. Canada’s LITHOPROBE Project (Collaborative, multidisciplinary geoscience research leads to new understanding of continental evolution)[J]. Episodes Journal of International Geoscience, 22(1): 3−20. |
[10] | Clowes R M. 2010. Initiation, development, and benefits of Lithoprobe—shaping the direction of Earth science research in Canada and beyond[J]. Canadian Journal of Earth Sciences, 47(4): 291−314. doi: 10.1139/E09-074 |
[11] | Council N R. 2002. Review of earthscope integrated science[M]. National Academies Press. |
[12] | DEKORP−BASIN Research Group. 1999. Deep crustal structure of the Northeast German basin: New DEKORP−BASIN'96 deep−profiling results[J]. Geology, 27(1): 55−58. doi: 10.1130/0091-7613(1999)027<0055:DCSOTN>2.3.CO;2 |
[13] | DEKORP Research Group. 1990. Results of deep−seismic reflection investigations in the Rhenish Massif[J]. Tectonophysics, 173(1/4): 507−515. doi: 10.1016/0040-1951(90)90242-Z |
[14] | Dong H, Wei W, Ye G, et al. 2014. Three−dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification[J]. Geochemistry Geophysics Geosystems, 15(6): 2414−2425. doi: 10.1002/2014GC005270 |
[15] | Dong H, Wei W B, Jin S, et al. 2020. Shaping the Surface Deformation of Central and South Tibetan Plateau: Insights From Magnetotelluric Array Data[J]. Journal of Geophysical Research:Solid Earth, 125(9): e2019JB019206. doi: 10.1029/2019JB019206 |
[16] | Dong S W, Li T D, Lv Q T, et al. 2013. Progress in deep lithospheric exploration of the continental China: A review of the SinoProbe[J]. Tectonophysics, 606: 1−13. doi: 10.1016/j.tecto.2013.05.038 |
[17] | Fuchs K. 1990. The international lithosphere program[J]. Episodes Journal of International Geoscience, 13(4): 239−246. |
[18] | Haines S S, Klemperer S L, Brown L, et al. 2003. INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet[J]. Tectonics, 22(1). |
[19] | He Z X, Hu Z Z, Gao Y, et al. 2015. Field test of monitoring gas reservoir development using time−lapse continuous electromagnetic profile method[J]. Geophysics, 80(2): 127−134. doi: 10.1190/geo2014-0195.1 |
[20] | Henderson S, Cryan G, Cahill J, et al. 2005. Glass Earth gold exploration: combining geoinformatics data intervention processes with ultra−detailed geophysical prospecting[C]//Proceedings of the 37th Annual Conference: 134−141. |
[21] | Jiang F, Chen X B, Unsworth M J, et al. 2022a. Mechanism for the uplift of Gongga Shan in the Southeastern Tibetan Plateau constrained by 3D magnetotelluric data[J]. Geophysical Research Letters, 49(9): e2021GL097394. doi: 10.1029/2021GL097394 |
[22] | Jiang W, Duan J, Doublier M, et al. 2022b. Application of multiscale magnetotelluric data to mineral exploration: an example from the east Tennant region, Northern Australia[J]. Geophys. J. Int., 229(3): 1628−1645. doi: 10.1093/gji/ggac029 |
[23] | Jones A G. 1992. Electrical conductivity of the continental lower crust[C]//Continental Lower Crust, Amsterdam, Elsevier: 81−143. |
[24] | Kay B, Heinson G, Brand K. 2022. Crustal magnetotelluric imaging of a Paleoproterozoic graphitic suture zone, Curnamona Province, Australia[J]. Gondwana Research, 106: 1−14. doi: 10.1016/j.gr.2021.12.005 |
[25] | Kelbert A, Meqbel N, Egbert G D, et al. 2014. ModEM: A modular system for inversion of electromagnetic geophysical data[J]. Computers & Geosciences, 66: 40−53. |
[26] | Kirkby A L, Musgrave R J, Czarnota K, et al. 2020. Lithospheric architecture of a Phanerozoic orogen from magnetotellurics: AusLAMP in the Tasmanides, southeast Australia[J]. Tectonophysics, 793:228560. |
[27] | Klemperer S L, Hobbs R, Hobbs R W, 1991. The BIRPS Atlas: Deep seismic reflections profiles around the British Isles[M]. Cambridge University Press. |
[28] | Knapp J H, Steer D N, Brown L D, et al. 1996. Lithosphere−scale seismic image of the southern Urals from explosion−source reflection profiling[J]. Science, 274(5285): 226−228. doi: 10.1126/science.274.5285.226 |
[29] | Liu L J, Hasterok D. 2016. High−resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging[J]. Science, 353(6307): 1515−1519. doi: 10.1126/science.aaf6542 |
[30] | Lovell J E J, McCallum J N, Reid P B, et al. 2013. The AuScope geodetic VLBI array[J]. Journal of Geodesy, 87: 527−538. doi: 10.1007/s00190-013-0626-3 |
[31] | Meqbel N M, Egbert G D, Wannamaker P E, et al. 2014. Deep electrical resistivity structure of the northwestern U. S. derived from 3−D inversion of USArray magnetotelluric data[J]. Earth and Planetary Science Letters, 402: 290−304. doi: 10.1016/j.jpgl.2013.12.026 |
[32] | Meltzer A. 2003. EarthScope: Opportunities and challenges for earth−science research and education[J]. The Leading Edge, 22(3): 268−271. doi: 10.1190/1.1564533 |
[33] | Nelson K D, Zhao W J, Brown L D, et al. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results[J]. Science, 274(5293): 1684−1688. doi: 10.1126/science.274.5293.1684 |
[34] | Oliver J. 1978. Exploration of the continental basement by seismic reflection profiling[J]. Nature, 275(5680): 485−488. doi: 10.1038/275485a0 |
[35] | Oliver J, Cook F, Brown L. 1983. COCORP and the continental crust[J]. Journal of Geophysical Research:Solid Earth, 88(B4): 3329−3347. doi: 10.1029/JB088iB04p03329 |
[36] | Price G P, Stoker P. 2002. Australian Geodynamics Cooperative Research Centre's integrated research program delivers a new minerals exploration strategy for industry[J]. Australian Journal of Earth Sciences, 49(4): 595−600. doi: 10.1046/j.1440-0952.2002.00947.x |
[37] | Robertson K, Heinson G, Thiel S. 2016. Lithospheric reworking at the Proterozoic–Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data[J]. Earth and Planetary Science Letters, 452: 27−35. doi: 10.1016/j.jpgl.2016.07.036 |
[38] | Robertson K, Thiel S, Meqbel N. 2020. Quality over quantity: on workflow and model space exploration of 3D inversion of MT data[J]. Earth, Planets and Space, 72(1): 2. |
[39] | Simpson F. 2001. Fluid trapping at the brittle–ductile transition re−examined[J]. Geofluids, 1(2): 123−136. doi: 10.1046/j.1468-8123.2001.00011.x |
[40] | Siripunvaraporn W, Egbet G, Lenbury Y, et al. 2005. Three−dimensional magnetotelluric inversion: data−space method[J]. Physics of the Earth and Planetary Interiors, 150(1/3): 3−14. doi: 10.1016/j.pepi.2004.08.023 |
[41] | Thiel S, Goleby B R, Pawley M J, et al. 2020. AusLAMP 3D MT imaging of an intracontinental deformation zone, Musgrave Province, Central Australia[J]. Earth, Planets and Space, 72(1): 1−21. |
[42] | Vanyan L L, Kuznetsov V A, Lyubetskaya T V, et al. 2002. Electrical Conductivity of the Crust beneath Central Lapland[J]. Izvestiya Physics of the Solid Earth, 38(10): 798−815. |
[43] | Wang L J, Duan J M, Hitchman A P, et al. 2020. Modeling Geoelectric Fields Induced by Geomagnetic Disturbances in 3D Subsurface Geology, an Example From Southeastern Australia[J]. Journal of Geophysical Research: Solid Earth, 125(9): e2020JB019843. |
[44] | Wei W B, Unsworth M, Jones A, et al. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science, 292(5517): 716−719. |
[45] | Wu C L, Liu G. 2015. Current situation, existent problems, trend and strategy of the construction of “Glass Earth”[J]. Geological Bulletin of China, 34(7): 1280−1287. |
[46] | Xiao Z, Fuji N, Iidaka T, et al. 2020. Seismic structure beneath the Tibetan plateau from iterative finite−frequency tomography based on ChinArray: New insights into the Indo−Asian collision[J]. Journal of Geophysical Research:Solid Earth, 125(2): e2019JB018344. doi: 10.1029/2019JB018344 |
[47] | Xu S, Unsworth M J, Hu X Y, et al. 2019. Magnetotelluric Evidence for Asymmetric Simple Shear Extension and Lithospheric Thinning in South China[J]. Journal of Geophysical Research:Solid Earth, 124(1): 104−124. doi: 10.1029/2018JB016505 |
[48] | Yang B, Egbert G D, Kelbert A, et al. 2015. Three−dimensional electrical resistivity of the north−central USA from EarthScope long period magnetotelluric data[J]. Earth and Planetary Science Letters, 422: 87−93. |
[49] | Yang B, Egbert G D, Zhang H Q, et al. 2021. Electrical resistivity imaging of continental United States from three−dimensional inversion of EarthScope USArray magnetotelluric data[J]. Earth and Planetary Science Letters, 576: 117244. doi: 10.1016/j.jpgl.2021.117244 |
[50] | Yin Y T, Jin S, Wei W B, et al. 2021. Lithosphere structure and its implications for the metallogenesis of the Nanling Range, South China: Constraints from 3−D magnetotelluric imaging[J]. Ore Geology Reviews, 131: 104064. |
[51] | Zhao G Z, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data[J]. Geology, 40(12): 1139−1142. doi: 10.1130/G33703.1 |
[52] | 陈学芬, 胡德军, 赵晶, 等. 2022. 中国地震科学实验场四川区野外实验观测现状及进展[J]. 大地测量与地球动力学, 42(2): 193−198. |
[53] | 仇根根, 方慧, 吕琴音, 等. 2019. 武夷山北段及相邻区深部电性构造与成矿分析: 基于三维大地电磁探测结果[J]. 中国地质, 46(4): 775−785. |
[54] | 董树文, 李廷栋, 高锐, 等. 2010. 地球深部探测国际发展与我国现状综述[J]. 地球学报, 84(6): 743−770. |
[55] | 高锐. 1996. 中国大陆岩石圈演化研究建议——来自全球地学断面 (GGT) 的启示[J]. 中国地质, (11): 23−25. |
[56] | 郭正堂, 吴海斌. 2004. 浅谈固体地球科学与地球系统科学[J]. 地球科学进展, 19(5): 699−705. |
[57] | 胡祥云, 林武乐, 杨文采 等. 2020. 克拉通岩石圈电性结构研究进展[J]. 中国科学:地球科学, 50(11): 1533−1552. |
[58] | 金胜, 张乐天, 魏文博, 等. 2010. 中国大陆深探测的大地电磁测深研究[J]. 地质学报, 84(6): 808−817. |
[59] | 李秋生, 陈凌, 王良书, 等. 2010. USArray及其近期科学发现[J]. 地质学报, 84(6): 847−853. |
[60] | 李世文, 翁爱华, 李建平, 等. 2020. 三维电性结构揭示的中国东北地区新生代火山深部起源[J]. 地球物理学报, 50(4): 538−552. |
[61] | 刘大鹏, 孙晓英, 杨艳艳, 等. 2022. 张衡一号电磁卫星在轨情况及主要的科学成果[J]. 地球与行星物理论评, 54(4): 455−465. |
[62] | 刘瑞丰, 高景春, 陈运泰, 等. 2008. 中国数字地震台网的建设与发展[J]. 地震学报, 30(5): 533−539. doi: 10.3321/j.issn:0253-3782.2008.05.012 |
[63] | 宋丽莉, 杨微, 葛洪魁, 等. 2012. 中国地震科学台阵流动观测现状及进展[J]. 国际地震动态, (3): 533−539. |
[64] | Sedikou B O D, 谢成良, 魏文博, 等. 2018. 华北大地电磁测深阵列观测实验与岩石圈导电性快速成像模型[J]. 地球物理学报, 61(6): 2508−2524. doi: 10.6038/cjg2018L0695 |
[65] | 太龄雪, 高原, 刘庚, 等. 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性: 第一期观测资料的剪切波分裂特征[J]. 地球物理学报, 58(11): 4079−4091. |
[66] | 滕吉文. 1994. 全球地球科学大断面与地球动力学 (Ⅰ)[J]. 地球物理学进展, 9(1): 40−58. |
[67] | 魏文博, 谢成良, 金胜, 等. 2010. 中国大陆岩石圈导电性结构研究--大陆电磁参数"标准网"实验(SinoProbe-01)[J]. 地质学报, 84(6): 788−800. |
[68] | 吴功建. 1994. 全球地学断面 (GGT)——以亚东-格尔木地学断面为例[J]. 地球物理学进展, 9(4): 1−3. |
[69] | 吴忠良, 丁志峰, 张晓东, 等. 2021a. 中国地震科学实验场: 历史与未来[J]. 地球与行星物理论评, 52(2): 234−238. |
[70] | 吴忠良, 李茜, 张晓东, 等. 2021b. 中国地震科学实验场: 起步与尝试[J]. 地球与行星物理论评, 52(6): 675−678. |
[71] | 吴忠良, 王龙, 车时, 等. 2021c. 中国地震科学实验场: 认识与实践[J]. 地球与行星物理论评, 52(3): 348−352. |
[72] | 徐义贤. 1995. 中下地壳高导层成因研究综述[J]. 地质科技情报, 14(3): 15−22. |
[73] | 杨文采, 魏文博, 金胜, 等. 2011. 大陆电磁参数标准网实验研究——SinoProbe-01项目介绍[J]. 地球学报, 32(supp1) : 24−33. |
[74] | 杨文采, 徐义贤, 张罗磊, 等. 2015. 塔里木地体大地电磁调查和岩石圈三维结构[J]. 地质学报, 89(7): 1151−1161. |
[75] | 杨文采, 金胜, 张罗磊, 等. 2020. 青藏高原岩石圈三维电性结构[J]. 地球物理学报, 63(3): 817−827. |
[76] | 叶高峰, 魏文博, 邓明, 等. 2010. 青藏及华北阵列式区域大地电磁场标准观测网建设方法与实验[J]. 地质学报, 84(6): 801−807. |
[77] | 郑人瑞, 吴登定, 杨宗喜, 等. 2019. 全球地质调查发展新动向与新趋势——国外主要国家地质调查机构新一轮发展战略综述[J]. 地质通报, 38(11): 1769−1776. doi: 10.12097/j.issn.1671-2552.2019.11.001 |
Distribution of array MT stations in the United States
Distribution of array MT stations in Australia
The distribution of MT stations for deep earth exploration in China
The deployment map of the 50 km×50 km MT datum nework
The deployment map of the high level MT datum nework
Framework diagram for data aggregation