2024 Vol. 43, No. 4
Article Contents

ZHAN Qing, ZHAO Baocheng, CHEN Kunyu, SHI Yujin, WANG Hanmei. 2024. Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction. Geological Bulletin of China, 43(4): 516-526. doi: 10.12097/gbc.2022.03.042
Citation: ZHAN Qing, ZHAO Baocheng, CHEN Kunyu, SHI Yujin, WANG Hanmei. 2024. Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction. Geological Bulletin of China, 43(4): 516-526. doi: 10.12097/gbc.2022.03.042

Grain size features of the modern tidal−flat sediment on the north bank of Hangzhou Bay and the implication of sea-level reconstruction

  • In this paper we take detail analyses on the sediment grain size for three tidal flat sections to set up the diagnostic indexes for recognization of tidal flat facies along the north bank of the Hangzhou Bay. The study also examined the application of the diagnostic indexes for distinguishing salt marsh, upper and lower tidal flats in a Holocene sediment core HZK11. The results show that clay and sand components could be the diagnostic indexes for distinguishing salt marsh, upper and lower tidal flats. Salt marsh volume curves are different from the upper and lower tidal plat. The parameters (Mode, Median and Mode) are effective indexes to identify salt marsh upper and lower tidal flat sediments.Above diagnostic sediment components, grain size parameters and volume curves are applied successfully to identify the exact tidal plat facies in boreholes and can be used to reconstruct relative sea-level which demonstrates sea-level rise of around 1.2 cm/a from 9700 cal a BP to 8700 cal a BP.

  • 加载中
  • [1] Bard E, Hamelin B, Arnold M, et al. 1996. Deglacial sea−level record from Tahiti corals and the timing of global meltwater discharge[J]. Nature, 382: 241−244. doi: 10.1038/382241a0

    CrossRef Google Scholar

    [2] Bird M I, Fifield L K, Teh T S, et al. 2007. An inflection in the rate of early mid−Holocene eustatic sea−level rise: A new sea−level curve from Singapore[J]. Estuarine Coastal & Shelf Science, 71(3/4): 523−536.

    Google Scholar

    [3] Bird M I, Fifield L K, Teh T S, et al. 2009. An inflection in the rate of early mid−Holocene eustatic sea−level rise: a new sea−level curve from Singapore[J]. Estuarine, Coastal and Shelf Science, 71: 523–536.

    Google Scholar

    [4] Bird M, Austin W E N, Wurster C M, et al. 2010. Punctuated eustatic sea−level rise in the early mid−Holocene[J]. Geology, 38: 803−806.

    Google Scholar

    [5] Chappell J, Polach H. 1991. Post−glacial sea−level rise from a coral record at Huon Peninsula, Papua New Guinea[J]. Nature, 349: 147−149. doi: 10.1038/349147a0

    CrossRef Google Scholar

    [6] Chen Z, Stanley D J. 1998. Rising sea level on eastern China’s Yangtze Delta[J]. Journal of Coastal Research, 14: 360−366.

    Google Scholar

    [7] Fairbanks R G. 1989. A 17000−year glacio−eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep−ocean circulation[J]. Nature, 342: 637−642. doi: 10.1038/342637a0

    CrossRef Google Scholar

    [8] Gehrels W R. 1999. Middle and Late Holocene sea−level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat[J]. Quaternary Research, 52: 350−359. doi: 10.1006/qres.1999.2076

    CrossRef Google Scholar

    [9] Hijma M P, Cohen K M. 2010. Timing and magnitude of the sea−level jump preluding the 8200 yr event[J]. Geology, 38(3): 275−278. doi: 10.1130/G30439.1

    CrossRef Google Scholar

    [10] Liu J P, Milliman J D, Gao S. 2004. Holocene development of the Yeoow River’s sub−aqueous delta, North Yellow Sea[J]. Marine Geology, 209: 45−67. doi: 10.1016/j.margeo.2004.06.009

    CrossRef Google Scholar

    [11] Saito Y. 1998. Sea levels of the last glacial in the East China Sea continental shel[J]. Quaternary Research, 37: 235−242. doi: 10.4116/jaqua.37.235

    CrossRef Google Scholar

    [12] Shennan I. 1986. Flandrian sea−level changes in the Fenland II: Tendencies of sea−level movement, altitudinal changes, and local and regional factors[J]. Journal of Quaternary Science, 1: 155−179. doi: 10.1002/jqs.3390010205

    CrossRef Google Scholar

    [13] Tamura T, Saito Y, Sieng S, et al. 2009. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland[J]. Quaternary Science Reviews, 28(3/4): 327−344. doi: 10.1016/j.quascirev.2008.10.010

    CrossRef Google Scholar

    [14] Törnqvist T E. 2004. Deciphering Holocene sea−level history on the U. S. Gulf Coast: A high−resolution record from the Mississippi Delta[J]. Geological Society of America, 116: 1026−1039. doi: 10.1130/B2525478.1

    CrossRef Google Scholar

    [15] Wang Z H, Saito Y, Zhan Q, et al. 2018. Three - Di- mensional Evolution of the Yangtze River Mouth, China during the Holocene: Impacts of Sea Level, Climate and Human Activity[J]. Earth−Science Reviews, 185: 938−955.

    Google Scholar

    [16] Wang Z, Zhan Q, Long H, et al. 2013. Early to mid−Holocene rapid sea−level rise and coastal response on the southern Yangtze delta plain, Chinae[J]. Journal of Quaternary Scienc, 28(7): 659−672. doi: 10.1002/jqs.2662

    CrossRef Google Scholar

    [17] Wang Z, Zhuang C, Saito Y, et al. 2012. Early mid−Holocene sea−level change and coastal environmental response of the southern Yangtze delta plain, China: implications for the rise of Neolithic culture[J]. Quaternary Science Review, 35: 51−62. doi: 10.1016/j.quascirev.2012.01.005

    CrossRef Google Scholar

    [18] Yang S, Milliman J, Li P, et al. 2011. 50000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 75(1): 14−20.

    Google Scholar

    [19] Yu S Y, Berglund B E, Sandgren P. 2007. Evidence for a rapid sea−level rise 7600 yr ago[J]. Geology, 35: 891−894.

    Google Scholar

    [20] Zhan Q, Wang Z H, Xie Y, et al. 2012. Assessing C/N and Δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China[J]. The Holocene, 22(6): 697−704. doi: 10.1177/0959683611423685

    CrossRef Google Scholar

    [21] Zong Y. 2004. Mid−Holocene sea−level highstand along the Southeast Coast of Chinal[J]. Quaternary Internationa, 117: 55−67.

    Google Scholar

    [22] 高晓琴, 王张华, 李琳, 等. 2012. 长江口现代潮滩表层沉积物磁性特征和铁硫化物在潮滩微相的分布[J]. 古地理学报, 14(5): 673−684.

    Google Scholar

    [23] 国家海洋局. 2012. 2011年中国海平面公报[R]. 北京: 国家海洋局.

    Google Scholar

    [24] 李琳, 王张华, 吴绪旭, 等. 2013. 长江口北支潮滩不同沉积微相有机地球化学元素分布[J]. 古地理学报, 15(1): 95–104.

    Google Scholar

    [25] 水利部长江水利委员会. 2021. 长江泥沙公报[M]. 武汉: 长江出版社.

    Google Scholar

    [26] 汪品先, 章纪军, 赵泉鸿, 等. 1988. 东海底质中的有孔虫和介形虫[M]. 北京: 海洋出版社.

    Google Scholar

    [27] 战庆, 王张华. 2014. 利用盐沼泥炭重建长江三角洲北部全新世中期海平面[J]. 古地理学报, 16(4): 548−556.

    Google Scholar

    [28] 赵亚楠, 王张华, 吴绪旭, 等. 2015. 长江口现代潮滩沉积物粒度特征及其在沉积相识别中的应用[J]. 古地理学报, 17(3): 405−416.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(941) PDF downloads(46) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint