2024 Vol. 43, No. 4
Article Contents

DOU Fangpeng, LI Jianghai, PENG Mou. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044
Citation: DOU Fangpeng, LI Jianghai, PENG Mou. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044

Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation

More Information
  • The development of marginal fault systems, exemplified by Hongche (Hongshanzui, Chepai), Kebai (Karamay, Baikouquan), and Wuxia (Wuerhe, Xiazijie) in the northwest margin of Junggar Basin, is a pivotal factor influencing the developmental characteristics of Carboniferous-Triassic strata and governing hydrocarbon accumulation. The nature and formation mechanism of the fault zone in the northwest margin of Junggar Basin have been extensively discussed within the earth science community. Building upon regional geological context and previous research findings, a physical sandbox experiment was conducted to simulate the tectonic deformation mechanism within the fault zone at northwestern Junggar Basin. The experimental outcomes reveal that the Wuxia and Kebai fault zones are primarily controlled by a west-dipping main fault with a symmetrically distributed subsidiary faults on both sides. Conversely, the Hongche fault zone is predominantly governed by two main faults exhibiting an en echelon distribution pattern with an approximately symmetrical flower-like structure. Through forward physical simulation, it can be inferred that Early Carboniferous to Late Triassic evolution at the northwest margin of Junggar Basin can be divided into two stages: residual ocean basin subduction stage followed by right-lateral strike-slip stage. The development of Carboniferous-Triassic stratigraphic traps in this region may be attributed to thrust faults and folds forming fault noses, fault blocks, and aligned anticlines. These associated structural traps serve as key factors for hydrocarbon accumulation at the northwest margin of Junggar Basin.

  • 加载中
  • [1] Ablimiti I, Zha M, Ding X J, et al. 2020. Identification of a Permian foreland basin in the western Junggar Basin(NW China) and its impact on hydrocarbon accumulation[J]. Journal of Petroleum Science and Engineering, 187: 920−4105.

    Google Scholar

    [2] Carroll A R, Liang Y, Graham S A, et al. 1990. Junggar basin, northwest China: Trapped Late Paleozoic ocean[J]. Tectonophysics, 181(1/4): 1−14. doi: 10.1016/0040-1951(90)90004-R

    CrossRef Google Scholar

    [3] Deng B, Jiang L, Zhao G, et al. 2017. Insights into the velocity−dependent geometry and internal strain in accretionary wedges from analogue models[J]. Geological Magazine, 155(5): 1089−1104.

    Google Scholar

    [4] Ding X J, Gao C H, Zha M, et al. 2017. Depositional environment and factors controlling β−carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 833−842.

    Google Scholar

    [5] Ding X J, Qu J H, Ablimit I, et al. 2019. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag[J]. Journal of Petroleum Science and Engineering, 179: 696−706. doi: 10.1016/j.petrol.2019.05.004

    CrossRef Google Scholar

    [6] Hoshino K. 1972. Mechanical properties of Japanese Tertiary sedimentary rocks under high confining pressures[R]. Geological Survey of Japan.

    Google Scholar

    [7] Konstantinovskaya E, Malavieille J. 2011. Thrust wedges with decollement levels and syntectonic erosion: A view from analog models[J]. Tectonophysics, 502(3/4): 336−350.

    Google Scholar

    [8] Liang Y Y, Zhang Y Y, Chen S, et al. 2020. Controls of a strike−slip fault system on the tectonic inversion of the Mahu depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 198: 104229. doi: 10.1016/j.jseaes.2020.104229

    CrossRef Google Scholar

    [9] Meng J, Guo Z, Fang S. 2009. A new insight into the thrust structures at the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 16(3): 171−180.

    Google Scholar

    [10] Oncken A O. 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges[J]. Journal of Structural Geology, 25(10): 1691−1711. doi: 10.1016/S0191-8141(03)00005-1

    CrossRef Google Scholar

    [11] Souloumiac P, Maillot B, Leroy Y M. 2012. Bias due to side wall friction in sand box experiments[J]. Journal of Structural Geology, 35(2): 90−101.

    Google Scholar

    [12] Tang W B, Zhang W W, Pe−Piper G, et al. 2021. Permian to early Triassic tectono−sedimentary evolution of the Mahu sag, Junggar Basin, western China: sedimentological implications of the transition from rifting to tectonic inversion[J]. Marine and Petroleum Geology, 123: 104730. doi: 10.1016/j.marpetgeo.2020.104730

    CrossRef Google Scholar

    [13] Tao K Y, Cao J, Wang Y, et al. 2016. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems[J]. Organic Geochemistry, 100: 62−79. doi: 10.1016/j.orggeochem.2016.08.004

    CrossRef Google Scholar

    [14] Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth Planet, 263: 288−308. doi: 10.1016/j.jpgl.2007.08.037

    CrossRef Google Scholar

    [15] Weijermars R, Schmeling H. 1986. Scaling of Newtonian and non−Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth & Planetary Interiors, 43(4): 316−330.

    Google Scholar

    [16] Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [17] Xu Q Q, Ji J Q, Zhao L, et al. 2013. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth−Science Reviews, 126: 178−205. doi: 10.1016/j.earscirev.2013.08.005

    CrossRef Google Scholar

    [18] Yh A, Gza B. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean−ScienceDirect[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012

    CrossRef Google Scholar

    [19] Yi Z, Huang B C, Xiao W J, et al. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 27(2): 862−877. doi: 10.1016/j.gr.2013.11.006

    CrossRef Google Scholar

    [20] Zhao S, Li S, Xin L, et al. 2014. Intracontinental orogenic transition: Insights from structures of the eastern Junggar Basin between the Altay and Tianshan orogens[J]. Journal of Asian Earth Sciences, 88(6): 137−1484.

    Google Scholar

    [21] Zhou Y C, Chen Q H, Wu K Y, et al. 2019. The basin and range systems and their evolution of the northwestern margin of Junggar Basin, China: Implications for the hydrocarbon accumulation[J]. Energy Exploration & Exploitation, 37(5): 1577−1598.

    Google Scholar

    [22] 陈石, 郭召杰, 漆家福, 等. 2016. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油与天然气地质, 37(3): 322−331. doi: 10.11743/ogg20160304

    CrossRef Google Scholar

    [23] 邓洪菱, 张长厚, 李海龙, 等. 2009. 褶皱相关断裂构造及其地质意义[J]. 自然科学进展, 19(3): 285−296. doi: 10.3321/j.issn:1002-008X.2009.03.007

    CrossRef Google Scholar

    [24] 管树巍, 李本亮;侯连华, 等. 2008. 准噶尔盆地西北缘下盘掩伏构造油气勘探新领域[J]. 石油勘探与开发, 35(1): 17−22. doi: 10.3321/j.issn:1000-0747.2008.01.004

    CrossRef Google Scholar

    [25] 韩宝福, 季建清, 宋彪, 等. 2006. 新疆准噶尔晚古生代陆壳垂向生长—后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077−1086. doi: 10.3321/j.issn:1000-0569.2006.05.003

    CrossRef Google Scholar

    [26] 况军, 张越迁, 侯连华. 2008. 准噶尔盆地西北缘克百掩伏带勘探领域分析[J]. 新疆石油地质, 29(4): 431−434.

    Google Scholar

    [27] 杨庚, 王晓波, 李本亮, 等. 2011. 准噶尔盆地西北缘斜向挤压构造与走滑断裂[J]. 地质科学, 46(3): 696−708. doi: 10.3969/j.issn.0563-5020.2011.03.007

    CrossRef Google Scholar

    [28] 谭开俊, 张帆, 吴晓智, 等. 2008. 准噶尔盆地西北缘盆山耦合与油气成藏[J]. 天然气工业, 28(5): 10−13. doi: 10.3787/j.issn.1000-0976.2008.05.003

    CrossRef Google Scholar

    [29] 王鹤华, 吴孔友, 裴仰文, 等. 2015. 扎伊尔山冲断-走滑构造演化特征与物理模拟[J]. 地质力学学报, 21(1): 56−65. doi: 10.3969/j.issn.1006-6616.2015.01.007

    CrossRef Google Scholar

    [30] 蔚远江, 何登发, 雷振宇, 等. 2004. 准噶尔盆地西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应[J]. 地质学报, 78(5): 612−625. doi: 10.3321/j.issn:0001-5717.2004.05.005

    CrossRef Google Scholar

    [31] 张元元, 曾宇轲, 唐文斌. 2021. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 6(3): 333−343. doi: 10.3969/j.issn.2096-1693.2021.03.027

    CrossRef Google Scholar

    [32] 孙自明, 洪太元, 张涛. 2008. 新疆北部哈拉阿拉特山走滑-冲断复合构造特征与油气勘探方向[J]. 地质科学, 43(2): 309−320. doi: 10.3321/j.issn:0563-5020.2008.02.007

    CrossRef Google Scholar

    [33] 张越迁, 张年富. 2006. 准噶尔大型叠合盆地油气富集规律[J]. 中国石油勘探, 11(1): 59−64. doi: 10.3969/j.issn.1672-7703.2006.01.009

    CrossRef Google Scholar

    [34] 张越迁, 汪新, 刘继山, 等. 2011. 准噶尔盆地西北缘乌夏走滑构造及油气勘探意义[J]. 新疆石油地质, 32(5): 447−450.

    Google Scholar

    [35] 支东明, 唐勇, 郑孟林, 等. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质, 39(1): 1−1. doi: 10.7657/XJPG20180101

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(827) PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint