Citation: | DOU Fangpeng, LI Jianghai, PENG Mou. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation. Geological Bulletin of China, 43(4): 527-535. doi: 10.12097/gbc.2022.03.044 |
The development of marginal fault systems, exemplified by Hongche (Hongshanzui, Chepai), Kebai (Karamay, Baikouquan), and Wuxia (Wuerhe, Xiazijie) in the northwest margin of Junggar Basin, is a pivotal factor influencing the developmental characteristics of Carboniferous-Triassic strata and governing hydrocarbon accumulation. The nature and formation mechanism of the fault zone in the northwest margin of Junggar Basin have been extensively discussed within the earth science community. Building upon regional geological context and previous research findings, a physical sandbox experiment was conducted to simulate the tectonic deformation mechanism within the fault zone at northwestern Junggar Basin. The experimental outcomes reveal that the Wuxia and Kebai fault zones are primarily controlled by a west-dipping main fault with a symmetrically distributed subsidiary faults on both sides. Conversely, the Hongche fault zone is predominantly governed by two main faults exhibiting an en echelon distribution pattern with an approximately symmetrical flower-like structure. Through forward physical simulation, it can be inferred that Early Carboniferous to Late Triassic evolution at the northwest margin of Junggar Basin can be divided into two stages: residual ocean basin subduction stage followed by right-lateral strike-slip stage. The development of Carboniferous-Triassic stratigraphic traps in this region may be attributed to thrust faults and folds forming fault noses, fault blocks, and aligned anticlines. These associated structural traps serve as key factors for hydrocarbon accumulation at the northwest margin of Junggar Basin.
[1] | Ablimiti I, Zha M, Ding X J, et al. 2020. Identification of a Permian foreland basin in the western Junggar Basin(NW China) and its impact on hydrocarbon accumulation[J]. Journal of Petroleum Science and Engineering, 187: 920−4105. |
[2] | Carroll A R, Liang Y, Graham S A, et al. 1990. Junggar basin, northwest China: Trapped Late Paleozoic ocean[J]. Tectonophysics, 181(1/4): 1−14. doi: 10.1016/0040-1951(90)90004-R |
[3] | Deng B, Jiang L, Zhao G, et al. 2017. Insights into the velocity−dependent geometry and internal strain in accretionary wedges from analogue models[J]. Geological Magazine, 155(5): 1089−1104. |
[4] | Ding X J, Gao C H, Zha M, et al. 2017. Depositional environment and factors controlling β−carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 833−842. |
[5] | Ding X J, Qu J H, Ablimit I, et al. 2019. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar Sag[J]. Journal of Petroleum Science and Engineering, 179: 696−706. doi: 10.1016/j.petrol.2019.05.004 |
[6] | Hoshino K. 1972. Mechanical properties of Japanese Tertiary sedimentary rocks under high confining pressures[R]. Geological Survey of Japan. |
[7] | Konstantinovskaya E, Malavieille J. 2011. Thrust wedges with decollement levels and syntectonic erosion: A view from analog models[J]. Tectonophysics, 502(3/4): 336−350. |
[8] | Liang Y Y, Zhang Y Y, Chen S, et al. 2020. Controls of a strike−slip fault system on the tectonic inversion of the Mahu depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 198: 104229. doi: 10.1016/j.jseaes.2020.104229 |
[9] | Meng J, Guo Z, Fang S. 2009. A new insight into the thrust structures at the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 16(3): 171−180. |
[10] | Oncken A O. 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges[J]. Journal of Structural Geology, 25(10): 1691−1711. doi: 10.1016/S0191-8141(03)00005-1 |
[11] | Souloumiac P, Maillot B, Leroy Y M. 2012. Bias due to side wall friction in sand box experiments[J]. Journal of Structural Geology, 35(2): 90−101. |
[12] | Tang W B, Zhang W W, Pe−Piper G, et al. 2021. Permian to early Triassic tectono−sedimentary evolution of the Mahu sag, Junggar Basin, western China: sedimentological implications of the transition from rifting to tectonic inversion[J]. Marine and Petroleum Geology, 123: 104730. doi: 10.1016/j.marpetgeo.2020.104730 |
[13] | Tao K Y, Cao J, Wang Y, et al. 2016. Geochemistry and origin of natural gas in the petroliferous Mahu sag, northwestern Junggar Basin, NW China: Carboniferous marine and Permian lacustrine gas systems[J]. Organic Geochemistry, 100: 62−79. doi: 10.1016/j.orggeochem.2016.08.004 |
[14] | Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth Planet, 263: 288−308. doi: 10.1016/j.jpgl.2007.08.037 |
[15] | Weijermars R, Schmeling H. 1986. Scaling of Newtonian and non−Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth & Planetary Interiors, 43(4): 316−330. |
[16] | Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022 |
[17] | Xu Q Q, Ji J Q, Zhao L, et al. 2013. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant ocean model[J]. Earth−Science Reviews, 126: 178−205. doi: 10.1016/j.earscirev.2013.08.005 |
[18] | Yh A, Gza B. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean−ScienceDirect[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012 |
[19] | Yi Z, Huang B C, Xiao W J, et al. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 27(2): 862−877. doi: 10.1016/j.gr.2013.11.006 |
[20] | Zhao S, Li S, Xin L, et al. 2014. Intracontinental orogenic transition: Insights from structures of the eastern Junggar Basin between the Altay and Tianshan orogens[J]. Journal of Asian Earth Sciences, 88(6): 137−1484. |
[21] | Zhou Y C, Chen Q H, Wu K Y, et al. 2019. The basin and range systems and their evolution of the northwestern margin of Junggar Basin, China: Implications for the hydrocarbon accumulation[J]. Energy Exploration & Exploitation, 37(5): 1577−1598. |
[22] | 陈石, 郭召杰, 漆家福, 等. 2016. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油与天然气地质, 37(3): 322−331. doi: 10.11743/ogg20160304 |
[23] | 邓洪菱, 张长厚, 李海龙, 等. 2009. 褶皱相关断裂构造及其地质意义[J]. 自然科学进展, 19(3): 285−296. doi: 10.3321/j.issn:1002-008X.2009.03.007 |
[24] | 管树巍, 李本亮;侯连华, 等. 2008. 准噶尔盆地西北缘下盘掩伏构造油气勘探新领域[J]. 石油勘探与开发, 35(1): 17−22. doi: 10.3321/j.issn:1000-0747.2008.01.004 |
[25] | 韩宝福, 季建清, 宋彪, 等. 2006. 新疆准噶尔晚古生代陆壳垂向生长—后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077−1086. doi: 10.3321/j.issn:1000-0569.2006.05.003 |
[26] | 况军, 张越迁, 侯连华. 2008. 准噶尔盆地西北缘克百掩伏带勘探领域分析[J]. 新疆石油地质, 29(4): 431−434. |
[27] | 杨庚, 王晓波, 李本亮, 等. 2011. 准噶尔盆地西北缘斜向挤压构造与走滑断裂[J]. 地质科学, 46(3): 696−708. doi: 10.3969/j.issn.0563-5020.2011.03.007 |
[28] | 谭开俊, 张帆, 吴晓智, 等. 2008. 准噶尔盆地西北缘盆山耦合与油气成藏[J]. 天然气工业, 28(5): 10−13. doi: 10.3787/j.issn.1000-0976.2008.05.003 |
[29] | 王鹤华, 吴孔友, 裴仰文, 等. 2015. 扎伊尔山冲断-走滑构造演化特征与物理模拟[J]. 地质力学学报, 21(1): 56−65. doi: 10.3969/j.issn.1006-6616.2015.01.007 |
[30] | 蔚远江, 何登发, 雷振宇, 等. 2004. 准噶尔盆地西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应[J]. 地质学报, 78(5): 612−625. doi: 10.3321/j.issn:0001-5717.2004.05.005 |
[31] | 张元元, 曾宇轲, 唐文斌. 2021. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 6(3): 333−343. doi: 10.3969/j.issn.2096-1693.2021.03.027 |
[32] | 孙自明, 洪太元, 张涛. 2008. 新疆北部哈拉阿拉特山走滑-冲断复合构造特征与油气勘探方向[J]. 地质科学, 43(2): 309−320. doi: 10.3321/j.issn:0563-5020.2008.02.007 |
[33] | 张越迁, 张年富. 2006. 准噶尔大型叠合盆地油气富集规律[J]. 中国石油勘探, 11(1): 59−64. doi: 10.3969/j.issn.1672-7703.2006.01.009 |
[34] | 张越迁, 汪新, 刘继山, 等. 2011. 准噶尔盆地西北缘乌夏走滑构造及油气勘探意义[J]. 新疆石油地质, 32(5): 447−450. |
[35] | 支东明, 唐勇, 郑孟林, 等. 2018. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质, 39(1): 1−1. doi: 10.7657/XJPG20180101 |
The digital elevation model of northern Xinjiang showing the major faults and structural units (a), the simplified structure diagram of the fault system in the northwest margin (b), the stratigraphic structure diagram of A-A 'section (c), and the stratigraphic structure diagram of B-B' section (d)
Schematic diagrams of experimental model
Top view of experimental results
Physical simulation results of arc compression-torsion boundary(A-A’,B-B’,C-C’,D-D’) and physical simulation results of straight-line compression-torsion boundary(E-E’,F-F’,G-G’)
Tectonic evolution diagram of Early Carboniferous to Late Carboniferous(~310 Ma) and Early Permian-Late Triassic(~250 Ma) in Junggar area