2024 Vol. 43, No. 1
Article Contents

FENG Yunlei, ZHANG Wanyi, YU Weiman, CHEN Ji, FANG Yuan, WANG Fengxiang. 2024. Thorium: A kind of clean energy resource for “dual carbon” goals. Geological Bulletin of China, 43(1): 101-116. doi: 10.12097/gbc.2022.03.039
Citation: FENG Yunlei, ZHANG Wanyi, YU Weiman, CHEN Ji, FANG Yuan, WANG Fengxiang. 2024. Thorium: A kind of clean energy resource for “dual carbon” goals. Geological Bulletin of China, 43(1): 101-116. doi: 10.12097/gbc.2022.03.039

Thorium: A kind of clean energy resource for “dual carbon” goals

More Information
  • Thorium is a kind of radioactive element of multiple industrial uses. Due to China’s “dual carbon” goals, it attracts lots of attention in recent years because of its cleaner and more effective performance than uranium in nuclear power reactors. However, the distribution of thorium ore resources is uneven, as well as that of thorium (including concentrates, metal, and compounds) production and consumption. As a result, it is necessary to analyzes the state of thorium in detail globally based on the resource-economy-environment system. The method of material flow analysis is applied in this paper in order to unveil the characteristics of Thorium flow in the resource-economy-environment system. The distribution, genetic types, and exploration status of thorium deposits in the world and China are summarized respectively based on the analysis of statistics of thorium deposits exploration, industrial production, and international trade. The conclusions of this paper indicate that the abundant thorium resources, with placer type as the main genetic type, are centralized distributed in India, Brazil, the US, etc. However, carbonite type, alkaline type, and veins type are the main genetic types of thorium in China with an uncertain quantity. In the resource-economy-environment system, global thorium outputs decreased during 2010—2017 followed by a significant increase after 2018, of which the main source is the byproduct of monazite mining and concentrating. Thorium and its compounds are used in the field of energy, material, metallurgy, and medicine, while thorium emission is only associated with the mine and concentration of ores. Based on the analysis of thorium applications, it is supposed that the thorium output may continue increasing in the coming decade as a result of the growing uses of thorium in nuclear power reactors. It is necessary to carry out enough exploration on thorium in order to figure out the thorium resources in China because of the difference in genetic types between China and abroad. In order to achieve the aim of carbon peak and carbon neutralization, the government should carry out a series of policies to encourage the innovation and popularization of new techniques to improve thorium utilization and protect the environment.

  • 加载中
  • [1] Anantharaman K, Shivakumar V, Saha D. 2008. Utilisation of thorium in reactors[J]. Journal of Nuclear Materials. 383 (1): 119−121.

    Google Scholar

    [2] Anderson A K, Larson P B, Clark J G. 2013. Rare earth element zonation and fractionation at the Bear Lodge REE deposit, Wyoming[J]. Geological Society of America Abstracts with Programs, 45(5): 42.

    Google Scholar

    [3] Andreoli M A G, Smith C B, Watkeys M, et al. 1994. The geology of the Steenkampskraal monazite deposit, South Africa—implications for REE-Th-Cu mineralization in charnockite-granulite terranes[J]. Economic Geology, 89(5): 994−1016.

    Google Scholar

    [4] Andreoli M A G, Hart R J, Ashwal L D, et al. 2006. Correlations between U, Th content and metamorphic grade in the Western Namaqualand Belt, South Africa, with implications for radioactive heating of the crust[J]. Journal of Petrology, 47(6): 1095−1118. doi: 10.1093/petrology/egl004

    CrossRef Google Scholar

    [5] Boyle R W. 1982. Geochemical Prospecting for Thorium and Uranium Deposits[M]. Amsterdam: Elsevier: 1−498.

    Google Scholar

    [6] Bray E L. 2012. Thorium[C]//USGS 2010 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [7] Gambogi J. 2013. Thorium[C]//USGS 2011 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [8] Gambogi J, Aquino K C. 2013. Thorium[C]//USGS 2013 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [9] Gambogi J, Aquino K C. 2015. Thorium[C]//USGS 2013 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [10] Gambogi J 2016. Thorium[C]//USGS 2012 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [11] Gambogi J. 2016. Thorium[C]//USGS 2014 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [12] Gambogi J, Ghalayini Z. T. 2020. Thorium[C]//USGS 2017 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [13] Gambogi J. 2018. Thorium[C]//USGS 2015 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [14] Gambogi J. 2019. Thorium[C]//USGS 2016 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [15] Hoatson D M, Jaireth S, Miezitis Y. 2014. The major rare-earth-element deposits of Australia: geological setting, exploration, and resources[J]. Revue De Psychothérapie Psychanalytique De Groupe, 64(3): 167−180.

    Google Scholar

    [16] Hou B H, Frakes L A, Sandiford M, et al. 2008. Cenozoic Eucla basin and associated paleovalleys, southern Australia—Climatic and tectonic influences on landscape evolution, sedimentation and heavy mineral accumulation[J]. Sedimentary Geology, 203(1/2): 112−130. doi: 10.1016/j.sedgeo.2007.11.005

    CrossRef Google Scholar

    [17] Hou B H, Keeling J, Reid A, et al. 2011. Heavy mineral sands in the Eucla basin, southern Australia—Deposition and province-scale prospectivity[J]. Economic Geology, 106(4): 687−712. doi: 10.2113/econgeo.106.4.687

    CrossRef Google Scholar

    [18] IAEA. 2006. Nuclear Technology Review (2006) [R].

    Google Scholar

    [19] IHS Markit Inc. Global trade atlas: London, United Kingdom, IHS Markit Inc. (Accessed March 30, 2018, via https://www.gtis.com/gta/.).

    Google Scholar

    [20] Madan M S. 2022. Thorium[C]//USGS 2018 Minerals Yearbook. U. S. Geological Survey.

    Google Scholar

    [21] Mahur A K, Kumar R, Sonkawade R G, et al. 2008. Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mine and its radiological implications[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 266(8): 1591−1597. doi: 10.1016/j.nimb.2008.01.056

    CrossRef Google Scholar

    [22] Mariano A N. 1989a. Economic geology of rare earth minerals[C]//Lipin B R, Mckay G A. Geochemistry and mineralogy of rare earth elements. Washington D C. Mineralogical Society of America, Reviews in Mineralogy, 21: 309–338.

    Google Scholar

    [23] Mariano A N. 1989b. Nature of economic mineralization in carbonatites and related rocks[C]//Bell K. Carbonatites—Genesis and evolution: Boston, Mass. , Unwin Hyman Ltd: 149−176.

    Google Scholar

    [24] Martin R. 2012. Superfuel—Thorium, the Green Energy Source for the Future[M]. Palgrave Macmillian, New York: 1−262.

    Google Scholar

    [25] Martin R. 2015. China details next-gen nuclear reactor program: MIT Technology Review, October 16. (Accessed April 5, 2018, at https://www.technologyreview.com/s/542526/china-details-next-gen- nuclearreactor-program/.).

    Google Scholar

    [26] Obed R I, Farai I P, Jibiri N N. 2005. Population dose distribution due to soil radioactivity concentration levels in 18 cities across Nigeria[J]. Journal of Radiological Protection, 25(3): 305−312. doi: 10.1088/0952-4746/25/3/007

    CrossRef Google Scholar

    [27] OECD/NEA-IAEA. 2015. Uranium 2014: Resources, Production and Demand[R]. Vienna: IAEA: 1−505.

    Google Scholar

    [28] OECD/NEA-IAEA. 2019. Uranium 2018: Resources, Production and Demand[R]. Vienna: IAEA: 1−458.

    Google Scholar

    [29] OECD/NEA-IAEA. 2021. Uranium 2020: Resources, Production and Demand[R]. Vienna: IAEA: 1−484.

    Google Scholar

    [30] Olson J C, Overstreet W C. 1964. Geologic distribution and resources of thorium[J]. U. S. Geological Survey Bulletin, 1204: 61.

    Google Scholar

    [31] René M. 2017. Nature, Sources, Resources, and Production of Thorium[C]//Descriptive Inorganic Chemistry Researches of Metal Compounds. DOI: 10.5772/intechopen.68304.

    Google Scholar

    [32] Sheard E R, Williams-Jones A E, Heiligmann M, et al. 2012. Controls on the concentration of zirconium, niobium and rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada[J]. Economic Geology, 107(81): 4.

    Google Scholar

    [33] Sidder G B, Day W C, Nuelle L M, et al. 1993. Mineralogic and fluid-inclusion studies of the Pea Ridge iron-rare-earth-element deposit, southeast Missouri, chap. U[C]// Scott R W Jr, Detra P S, Berger B R. Advances 294 Uranium for Nuclear Power Related to United States and International Mineral Resources—Developing Frameworks and Exploration Technologies. U. S. Geological Survey Bulletin, (2039): 205−216.

    Google Scholar

    [34] Sørensen H. 1992. Agpaitic nepheline syenites—A potential source of rare elements[J]. Applied Geochemistry, (7): 417−427.

    Google Scholar

    [35] Staatz M H. 1974. Thorium Veins in the United states[J]. Economic Geology, 69: 494−507. doi: 10.2113/gsecongeo.69.4.494

    CrossRef Google Scholar

    [36] Staatz M H. 1979. Geology and mineral resources of the Lemhi Pass thorium district, Idaho and Montana[J]. U. S. Geological Survey Professional Paper, 1049A: 90.

    Google Scholar

    [37] Traffic W, Rise S. 1962. An Aqueous homogeneous zero-energy suspension reactor- II. Analysis of the neutron flux fluctuations in an aqueous homogeneous subcritical reactor with circulating UO2 particles[J]. Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology, 6.

    Google Scholar

    [38] U. S. Geological Survey. 2017. Mineral commodity summaries 2017[R]. U. S. Geological Survey: 1−202.

    Google Scholar

    [39] U. S. Geological Survey. 2018. Mineral commodity summaries 2018[R]. U. S. Geological Survey: 1−200.

    Google Scholar

    [40] U. S. Geological Survey. 2019. Mineral commodity summaries 2019[R]. U. S. Geological Survey: 1−200.

    Google Scholar

    [41] U. S. Geological Survey. 2020. Mineral commodity summaries 2020[R]. U. S. Geological Survey: 1−200.

    Google Scholar

    [42] U. S. Geological Survey. 2021. Mineral commodity summaries 2021[R]. U. S. Geological Survey: 1−200.

    Google Scholar

    [43] Van Gosen B S, Fey D L, Shah A K, et al. 2014. Deposit model for heavy-mineral sands in coastal environments[R]. U. S. Geological Survey Scientific Investigations Report, 2010–5070–L, 51.

    Google Scholar

    [44] Van Gosen B S, Tulsidas H. 2016. Thorium as a nuclear fuel[C]//Uranium for Nuclear Power. Woodhead Publishing Series in Energy: Number 93, DOI: http://dx. doi.org/10.1016/B978−0-08−100307-7.00010−7.

    Google Scholar

    [45] Verplanck P L, Van Gosen B S, Seal R R, et al. 2014. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits[R]. U. S. Geological Survey Scientific Investigations Report, 2010–5070–J, 58.

    Google Scholar

    [46] Wigeland R, Taiwo T, Ludewig H, et al. 2014. Nuclear fuel cycle evaluation and screening—final report[R]. U. S. Department of Energy Report FCRD-FCO-2014−000106, 51.

    Google Scholar

    [47] World Nuclear Association. 2021. Nuclear Power in Russia[R]. London, United Kingdom, World Nuclear Association.

    Google Scholar

    [48] Xu H J. Status and perspective of TMSR in China[C]//Molten Salt Reactor Workshop: Villigen, Switzerland, 2017, January 23−25, Presentation, 63.

    Google Scholar

    [49] Yang K F, Fan H R, Santosh M, et al. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China— Constraints for the mechanism of super accumulation of rare earth elements[J]. Ore Geology Reviews, 40: 122−131. doi: 10.1016/j.oregeorev.2011.05.008

    CrossRef Google Scholar

    [50] 陈辉, 邵济安. 1987. 白云鄂博地区碳酸岩的形成方式及构造背景[C]//中国北方板块构造论文集. 沈阳地质矿产研究所, 2: 73−79.

    Google Scholar

    [51] 陈肇博, 范军, 郭智添, 等. 1996. 赛马碱性岩与成矿作用[M]. 北京: 原子能出版社: 181−200.

    Google Scholar

    [52] 程建忠, 侯运炳. 2007. 白云鄂博矿钍资源及综合利用[C]//2007年中国稀土资源综合利用与环境保护研讨会论文集: 22−40.

    Google Scholar

    [53] 范洪海, 凌洪飞, 王德滋, 等. 2003. 相山铀矿田成矿机理研究[J]. 铀矿地质, 19(4): 208−213. doi: 10.3969/j.issn.1000-0658.2003.04.003

    CrossRef Google Scholar

    [54] 顾忠茂. 钍资源的核能利用问题探讨[J]. 核科学与工程, 2007, (2): 97−105. doi: 10.3321/j.issn:0258-0918.2007.02.001

    CrossRef Google Scholar

    [55] 郭承基. 1959. 集宁石(Jiningite)——一种新的釷石变种[J]. 科学通报, (6): 206−207.

    Google Scholar

    [56] 贺国珠, 易艳玲, 孔祥忠. 2006. 铀−钍混合燃料反应堆的可行性分析[J]. 原子核物理评论, 23(2): 101−102. doi: 10.3969/j.issn.1007-4627.2006.02.003

    CrossRef Google Scholar

    [57] 江绵恒, 徐洪杰, 戴志敏. 2012. 未来先进核裂变能——TMSR核能系统[J]. 中国科学院院刊, 27(3): 366−374. doi: 10.3969/j.issn.1000-3045.2012.03.016

    CrossRef Google Scholar

    [58] 江文静, 王丹, 姚天月. 2017. 铀及其伴生重金属镉的根茎类富集植物的筛选[J]. 农业环境科学学报, 36(1): 39−47. doi: 10.11654/jaes.2016-0828

    CrossRef Google Scholar

    [59] 江小强. 2020. 江西黄山铌钽矿床成矿岩体地球化学特征及成因分析[D]. 成都理工大学硕士学位论文: 1−64.

    Google Scholar

    [60] 柯昌辉, 孙盛, 赵永岗, 等. 2021. 内蒙古白云鄂博超大型稀土−铌-铁矿床控矿构造特征及深部找矿方向[J]. 地质通报, 40(1): 95−109.

    Google Scholar

    [61] 科特利亚尔, 克里斯塔利内依. 1958. 资本主义国家钍矿床[M]. 北京: 地质出版社: 14−49.

    Google Scholar

    [62] 冷伏海, 刘小平, 李泽霞, 等. 2011. 钍基核燃料循环国际发展态势分析[J]. 科学观察, 6(6): 1−18. doi: 10.15978/j.cnki.1673-5668.2011.06.001

    CrossRef Google Scholar

    [63] 李庆. 2017. 辽宁钍资源开发潜力及经济效益分析[J]. 国土资源, 2: 48−49.

    Google Scholar

    [64] 李若愚, 李强, 陈胜, 等. 2014. 包头白云鄂博采矿区周边表层土壤中232Th的分布特征[J]. 环境科学研究, 27(1): 51−56.

    Google Scholar

    [65] 黎彤. 1984. 大洋地壳和大陆地壳的元素丰度[J]. 大地构造与成矿学, 8(1): 19−27. doi: 10.16539/j.ddgzyckx.1984.01.004

    CrossRef Google Scholar

    [66] 林双幸, 张铁岭. 2016. 加快钍资源开发促进我国核能可持续发展[J]. 中国核工业, (1): 32−36,64.

    Google Scholar

    [67] 刘悦, 丛卫克. 2017. 世界铀资源、生产及需求概况[J]. 世界核地质科学, 34(4): 200−206.

    Google Scholar

    [68] 刘正义, 孟艳宁, 范洪海, 等. 2015. 相山矿田钍成矿特征及其控制因素的初步讨论[J]. 东华理工大学学报(自然科学版), (3): 249−256.

    Google Scholar

    [69] 孟艳宁, 范洪海, 王凤岗, 等. 2013. 中国钍资源特征及分布规律[J]. 铀矿地质, 29(2): 24−30. doi: 10.3969/j.issn.1000-0658.2013.02.004

    CrossRef Google Scholar

    [70] 苗金萍, 李兴明. 1998. 包头地区天然放射性致环境γ辐射水平及居民受照剂量的调查[J]. 中华放射医学与防护杂志, 18(6): 433−435.

    Google Scholar

    [71] 苗金萍, 邢茹, 武恒. 2001. 包头地区稀土产品的放射性水平[J]. 中华放射医学与防护杂志, 21(3): 227. doi: 10.3760/cma.j.issn.0254-5098.2001.03.043

    CrossRef Google Scholar

    [72] 石秀安, 胡永明. 2011. 我国钍燃料循环发展研究[J]. 核科学与工程, 31(3): 281−288.

    Google Scholar

    [73] 史长昊. 2017. 甘肃龙首山地区碱交代型铀钍矿床地质及成矿流体研究[D]. 中国地质大学(北京)硕士学位论文: 1−50.

    Google Scholar

    [74] 苏正夫. 2014. 独居石矿资源的综合利用研究现状[J]. 世界有色金属, (8): 31−33.

    Google Scholar

    [75] 王凤岗, 范洪海, 范存琨. 2016. 马达加斯加南部Tranomaro地区钍矿床成矿特征及其矿化成因探讨[J]. 世界核地质学, (1): 1−7.

    Google Scholar

    [76] 王凯怡, 范宏瑞, 谢奕汉. 2002. 白云鄂博碳酸岩墙的稀土和微量元素地球化学及其成因的启示[J]. 岩石学报, 18(3): 340−348. doi: 10.3969/j.issn.1000-0569.2002.03.008

    CrossRef Google Scholar

    [77] 王兴无. 2003. 全球铀资源、生产和需求[J]. 世界核地质科学, (1): 11−12,19. doi: 10.3969/j.issn.1672-0636.2003.01.003

    CrossRef Google Scholar

    [78] 熊欣, 徐文艺, 贾丽琼, 等. 2013. 安徽庐江砖桥科学深钻内的铀钍赋存状态研究[J]. 矿床地质, 32(6): 1211−1220. doi: 10.16111/j.0258-7106.2013.06.008

    CrossRef Google Scholar

    [79] 徐光宪. 2005. 白云鄂博矿钍资源开发利用迫在眉睫[J]. 稀土信息, (5): 4−5,8.

    Google Scholar

    [80] 徐国凤. 1987. 美国Powderhorn碳酸盐岩型钍、钛、铁、铌、稀土元素矿床[J]. 地质科技情报, (1): 110.

    Google Scholar

    [81] 徐洪杰, 戴志敏, 蔡翔舟, 等. 2018. 钍基熔盐堆和核能综合利用[J]. 现代物理知识, 30(4): 25−34.

    Google Scholar

    [82] 杨敏之, 李永春. 1980. 我国内蒙白云鄂博矿床铀钍石矿物的研究[J]. 科学通报, (12): 558−560.

    Google Scholar

    [83] 于晓燕, 宋宇辰, 魏光普, 等. 2021. 轻稀土矿区土壤和植物中铀和钍核素的分布特征[J]. 有色金属(冶炼部分), 3: 109−115.

    Google Scholar

    [84] 张福良, 李政林. 2015. 我国独居石资源开发利用现状及政策建议[J]. 现代矿业, (11): 1−4. doi: 10.3969/j.issn.1674-6082.2015.11.001

    CrossRef Google Scholar

    [85] 张书成, 刘平, 仉宝聚. 2005. 钍资源及其利用[J]. 世界核地质科学, (2): 98−103. doi: 10.3969/j.issn.1672-0636.2005.02.008

    CrossRef Google Scholar

    [86] 张志强, 陈迪云, 宋刚, 等. 2011. 放射性核素土壤−植物吸收与钍、镭富集植物的发现[J]. 环境科学, 32(4): 1159−1163.

    Google Scholar

    [87] 仉宝聚, 张书成. 钍矿成矿特征与地质勘查[J]. 世界核地质科学, 2005, (4): 203−210.

    Google Scholar

    [88] 赵长有. 2006a. 白云鄂博的钍与铀(一)[J]. 稀土信息, 7: 12−15.

    Google Scholar

    [89] 赵长有. 2006b. 白云鄂博的钍与铀(二)[J]. 稀土信息, 8: 13−14.

    Google Scholar

    [90] 赵长有. 2006c. 白云鄂博的钍与铀(三)[J]. 稀土信息, 9: 21−23.

    Google Scholar

    [91] 郑强, 边雪, 吴文远. 2017. 白云鄂博稀土尾矿的工艺矿物学研究[J]. 东北大学学报:自然科学版, 38(8): 1107−1111.

    Google Scholar

    [92] 周兴泰, 李志军, 陆燕玲, 等. 2019. 钍基熔盐堆材料发展战略[J]. 中国工程科学, 21(1): 29−38.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(1677) PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint