2024 Vol. 43, No. 1
Article Contents

JIANG Junsheng, GUO Xinran, XU Jing, TIAN Liming, XIONG Guangqiang, WANG Liyuan, CHEN Suyu, HUANG Weikun. 2024. Genesis of Rb mineralization of the Dongshang rare metal granite in Jiangxi Province. Geological Bulletin of China, 43(1): 86-100. doi: 10.12097/gbc.2021.12.035
Citation: JIANG Junsheng, GUO Xinran, XU Jing, TIAN Liming, XIONG Guangqiang, WANG Liyuan, CHEN Suyu, HUANG Weikun. 2024. Genesis of Rb mineralization of the Dongshang rare metal granite in Jiangxi Province. Geological Bulletin of China, 43(1): 86-100. doi: 10.12097/gbc.2021.12.035

Genesis of Rb mineralization of the Dongshang rare metal granite in Jiangxi Province

More Information
  • The Ganfang district in the Yifeng County, Jiangxi Province is an important rare metalmetallogenic area. A series of Li-Rb rare metal deposits (mineralization) have been discovered in the Ganfang intrusions, while the mineralization mechanism of rare metals is not clear yet. The detailed mineralogy texture and composition of feldspars and micas from the Dongshang granite have been analyzed by electron microprobe analysis. The results show that micas are the main carriers of Rb (Rb2O <1.07%), and the contents of Rb in feldspars are lower (Rb2O <0.11%), particularly in albite. The Rb-bearing micas are mainly phengite to zinnwaldite from muscovite granite, pegmatite, and granitic aplite. The substituted mechanism of Rb in micas is mainly coupled with Na for interlayer cation of K. The mineral textures record both magma crystallization differentiation and fluid metasomatism for the Dongshang granites, however, the former was the key mechanism of the Rb enrichment, while the later has less role on the accumulation of Rb in granites. Together with previous publications, this paper concluded that the Ganfang intrusions have a good metallogenic potential of rare metals, and the subsequent prospecting should focus on the Li, Rb, and other rare metals related to the Early Cretaceous to Late Jurassic (140~150 Ma) highly differentiated granites.

  • 加载中
  • [1] Alfonso P, Melgarejo J C, Yusta I, et al. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creusfeld, Catalonia, Spain[J]. The Canadian Mineralogist, 41: 103−116. doi: 10.2113/gscanmin.41.1.103

    CrossRef Google Scholar

    [2] Bea F, Pereira M D, Stroh A. 1994. Mineral leucosome trace-element partitioning in a peraluminousmigmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 117(1/4): 291−312. doi: 10.1016/0009-2541(94)90133-3

    CrossRef Google Scholar

    [3] Beus A A, Severon V A, Sitnin A A, et al. 1962. Albitized and greisenized granites (apogranites), Moscow(in Russian) [M]. Academy Science Press.

    Google Scholar

    [4] Breiter K, Durisova J, Hrstka T, et al. 2017. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 292/293: 198−217. doi: 10.1016/j.lithos.2017.08.015

    CrossRef Google Scholar

    [5] Breiter K, Frýda J, Seltmann R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesí stock, Krušnéhory, Czech Republic[J]. Journal of Petrology, 38(12): 1723−1739. doi: 10.1093/petroj/38.12.1723

    CrossRef Google Scholar

    [6] Candela P A, Bouton S L. 1990. The influence of oxygen fugacity on tungsten and molybdenumpartitioning between silicate melts and ilmenite[J]. Economic Geology, 85(3): 633−640. doi: 10.2113/gsecongeo.85.3.633

    CrossRef Google Scholar

    [7] Candela P A. 1992. Controls on ore metal ratios in granite-related ore systems: an experimental andcomputational approach, Transactions of the Royal Society of Edinburgh[J]. Earth Sciences, 83: 317−326.

    Google Scholar

    [8] Černý P, Chapman R, Teertstra D K, et al. 2003. Rubidium-and cesium-dominant micas in granitic pegmatites[J]. American Mineralogist, 88(11/12): 1832−1835. doi: 10.2138/am-2003-11-1226

    CrossRef Google Scholar

    [9] Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005−2026.

    Google Scholar

    [10] Cuney M, Marignac C, Weisbrod A. 1992. The beauvoir topaz-lepidolite albite granite (Massif central, France);the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 87(7): 1766−1794. doi: 10.2113/gsecongeo.87.7.1766

    CrossRef Google Scholar

    [11] Deer W A, Howie R A, Zussuman J. 1992. An introduction to the rock forming minerals[M]. Longman, Landon: 1−621.

    Google Scholar

    [12] Han J S, Chen H Y, Hollings P, et al. 2021. Effcient enrichment of Rb during the magmatic-hydrothermal transition in a highly evolved granitic system: Implications from mica chemistry of the Tiantangshan Rb-Sn-W deposit[J]. Chemical Geology, 560: 120020. doi: 10.1016/j.chemgeo.2020.120020

    CrossRef Google Scholar

    [13] Henry D J. 2005. The Ti-saturation surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 90(2/3): 316−328.

    Google Scholar

    [14] Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O-Hf[J]. Contributions to Mineralogy and Petrology, 109: 139−150. doi: 10.1007/BF00306474

    CrossRef Google Scholar

    [15] Legros H, Marignac C, Mercadier J, et al. 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China)[J]. Lithos, 264: 108−124. doi: 10.1016/j.lithos.2016.08.022

    CrossRef Google Scholar

    [16] Li J, Huang X L, He P L, et al. 2015. In situ analyses of micas in the Yashan granite, south china: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 65: 793−810. doi: 10.1016/j.oregeorev.2014.09.028

    CrossRef Google Scholar

    [17] Linnen R L, Van L M, Černý P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275−280. doi: 10.2113/gselements.8.4.275

    CrossRef Google Scholar

    [18] London D, Morgan G B, Babb H A, et al. 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 Mpa(H2O)[J]. Contributions to Mineralogy and Petrology, 113(4): 450−465. doi: 10.1007/BF00698315

    CrossRef Google Scholar

    [19] London D. 2018. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349−383.

    Google Scholar

    [20] Pekov I V, Kononkova N N, Agakhano A A, et al. 2010. Voloshinite, a new rubidium mica from granitic pegmatite of Voron’i Tundras, Kola Peninsula, Russia[J]. Geology of Ore Deposits, 52(7): 591−598. doi: 10.1134/S1075701510070081

    CrossRef Google Scholar

    [21] Pesquer A, Ruiz J T, Crespo P P G, et al. 1999. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain)[J]. American Mineralogist, 84(1/2): 55−69. doi: 10.2138/am-1999-1-206

    CrossRef Google Scholar

    [22] Plümper O, Putnis A. 2009. The complex hydrothermal history of granitic rocks: multiple feldspar replacement reactions under subsolidus conditions[J]. Journal of Petrology, 50: 967−987. doi: 10.1093/petrology/egp028

    CrossRef Google Scholar

    [23] Roda-Robles E, Keller P, Pesquera A, et al. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia[J]. Mineralogical Magazine, 71(1): 41−62. doi: 10.1180/minmag.2007.071.1.41

    CrossRef Google Scholar

    [24] Rudnick R L, Gao S, 2003. The composition of the continental crust[C]//Rudnick R L. The crust, treatise on geochemistry. Elsevier, Oxford, 2003: 1-64.

    Google Scholar

    [25] Tindle A G, Webb P C. 1990. Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks[J]. Europe Journal of Mineralogy, 2: 595−610. doi: 10.1127/ejm/2/5/0595

    CrossRef Google Scholar

    [26] Tischendorf G, Gottesmann B, Foerster H J, et al. 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineralogical Magazine, 61(6): 809−834.

    Google Scholar

    [27] Van L M, Holtz F, Hanchar J M. 2008. Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts[J]. Contributions to Mineralogy and Petrology, 160(1): 17−32.

    Google Scholar

    [28] Xie L, Wang R C, Groat L A, et al. 2015. A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn-Ti oxideminerals from the Qiguling topaz rhyolite (Qitianling District, China): The role of fluorine in origin of tin mineralization[J]. Ore Geology Reviews, 65: 779−792. doi: 10.1016/j.oregeorev.2014.08.013

    CrossRef Google Scholar

    [29] Xie L, Wang Z, Wang R, et al. 2018. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China)[J]. Ore Geology Reviews, 95: 695−712. doi: 10.1016/j.oregeorev.2018.03.021

    CrossRef Google Scholar

    [30] Yin R, Han L, Huang X L, et al. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China[J]. American Mineralogist, 104: 949−965. doi: 10.2138/am-2019-6796

    CrossRef Google Scholar

    [31] Zhou Z H, Che H, Ma X, et al. 2016. Magmatic evolution and mineralization process of the super-large Shihuiyao Rb-Nb-Ta deposit, Southern Great Xing'an Range, China[J]. Acta Geologica Sinica (English Edition). 90(6): 2275−2276.

    Google Scholar

    [32] 陈骏. 2019. 关键金属超常富集成矿和高效利用[J]. 科技导报, 37(24): 1.

    Google Scholar

    [33] 黄小娥, 徐志华. 2005. 江西雅山花岗岩体交代作用及其与稀有金属的成矿关系[J]. 江西有色金属, 19(1): 1−4.

    Google Scholar

    [34] 李洁, 钟军伟, 于洋, 等. 2013. 赣南西华山花岗岩的云母成分特征及其对岩浆演化与成矿过程的指示[J]. 地球化学, 42(5): 393−404.

    Google Scholar

    [35] 李仁泽, 周正兵, 彭波, 等. 2020. 江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨[J]. 矿床地质, 39(6): 1015−1029.

    Google Scholar

    [36] 刘昌实, 陈小明, 王汝成, 等. 2005. 广东南昆山A型花岗岩定年和环带云母研究[J]. 地质评论, 51(2): 193−201.

    Google Scholar

    [37] 马万伟, 黄小龙, 于洋, 等. 2020. 栗木花岗岩中云母的特征: 对锡成矿热液作用过程的指示[J]. 大地构造与成矿, 44(6): 1143−1159.

    Google Scholar

    [38] 毛景文, 谢桂青, 郭春丽, 等. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 14(4): 510−526.

    Google Scholar

    [39] 秦程. 2018. 江西宜丰狮子岭白云母花岗岩成矿潜力研究[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [40] 邱瑞照. 1998. 湖南香花岭花岗岩含锂云母类演化及找矿意义[J]. 桂林学院学报, 18(2): 145−153.

    Google Scholar

    [41] 司晓博, 冯艳芳, 苏尚国, 等. 2020. 华东南地区花岗岩型铌-钽矿床区域成矿地质背景[J]. 地质通报, 37(7): 1085−1102.

    Google Scholar

    [42] 孙艳, 王登红, 王成辉, 等. 2019. 我国铷矿成矿规律、新进展和找矿方向[J]. 地质学报, 93(6): 1231−1244. doi: 10.3969/j.issn.0001-5717.2019.06.005

    CrossRef Google Scholar

    [43] 孙艳. 2013. 我国铷典型矿床及其成矿构造背景研究[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [44] 唐金荣, 杨宗喜, 周平, 等. 2014. 国外关键矿产战略研究进展及其启示[J]. 地质通报, 33(9): 1445−1453.

    Google Scholar

    [45] 唐攀, 唐菊兴, 郑文宝, 等. 2017. 岩浆黑云母和热液黑云母矿物化学研究进展[J]. 矿床地质, 36(4): 935−950.

    Google Scholar

    [46] 王成辉, 王登红, 陈晨, 等. 2019. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J]. 地质学报, 93(6): 1359−1373.

    Google Scholar

    [47] 王成辉, 杨岳清, 王登红, 等. 2018. 江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物[J]. 岩矿测试, 37(1): 108−110.

    Google Scholar

    [48] 王汝成, 谢磊, 诸泽颖, 等. 2019. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1): 69−75.

    Google Scholar

    [49] 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 47(7): 745−765.

    Google Scholar

    [50] 吴学敏, 周敏娟, 罗喜成, 等. 2016. 江西西北部锂及稀有金属成矿条件及找矿潜力分析[J]. 华东地质, 37(4): 275−283.

    Google Scholar

    [51] 尹蓉. 2015. 一个极端演化花岗伟晶岩的矿物学研究: 以新疆阿尔泰可可托海1号伟晶岩脉为例[D]. 南京大学博士学位论文.

    Google Scholar

    [52] 赵振华, 陈华勇, 韩金生. 2020. 关于铷的独立矿物[J]. 地球化学, 49(6): 1−4.

    Google Scholar

    [53] 周建廷, 王国斌, 何淑芳, 等. 2011. 江西宜丰地区甘坊岩体成岩成矿作用分析[J]. 东华理工大学学报(自然科学版), 34(4): 345−358.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(988) PDF downloads(91) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint