Citation: | WENG Haijiao, ZHANG Shaohua, LIU Xin, ZANG Yahui, HE Hanghang, LU Tianjun. 2024. Study on reservoir structure and mineralization type of the sandstone uranium deposits, southern Songliao Basin. Geological Bulletin of China, 43(1): 117-130. doi: 10.12097/gbc.2022.05.013 |
Exploring the sandstone-type uranium deposits in the DL area, located in the southern Songliao Basin, our research focuses on the sedimentological characterization, structure of the uranium reservoir and processes of uranium mineralization. Through drilling data statistics and systematic sampling analysis, a uranium reservoir heterogeneity map was drawn, which finely depicted the geometric shape and complex structure of the Yaojia Formation uranium reservoir, and fully demonstrated the quantitative heterogeneity of uranium reservoirs. The results show that the gray sand body primarily retains its original color, while the lower oxidation zone underwent modification by strong supergene fluid activity after the deposition, and transforming into an epigenetic oxidation zone. The ore bodies are mainly distributed in the bifurcation of the channel sand body, and along the edge of the channel sand body where the thickness transitions suddenly from no barrier layer to the presence of barrier layer, rather than in the center of the channel. Their plate-like shape is controlled by the redox interface. Comprehensive analysis shows that the mineralization of supergenetic fluids can be divided into two stages: the enrichment of the ore—bearing host rocks of the Yaojia Formation during the Late Cretaceous and the superimposed transformation of supergenetic fluids. By comparing the controlling effect of reservoir structure on uranium mineralization in DL area, three prospecting target areas were optimized in the BL area, providing a theoretical foundation for future exploration work.
[1] | Franz J D. 1993. Uranium ore deposits[M]. Berlin Heidelberg: Springer-Verlag: 250−319. |
[2] | Galloway W E, Hobday D K. 1983. Terrigenous clastic depositionalsystems: Applications to petroleum, coal, and uranium explo-ration[M]. New York: Springer: 1−423. |
[3] | IAEA. 1985. Geological environments of sandstone type uranium de-posits (report of the working group on uranium geology)[R]. IAEA-TECDOC: 1-328. |
[4] | Jiao Y Q, Wu L Q, Wang M F, et al. 2005. Forecasting the occur-rence of sandstone-type uranium deposits by spatial analysis: An example from the northeastern Ordos Basin, China[C]∥Mao J W, Bierlein F P. Mineral deposit research: Meeting the global challenge. Berlin Heidelberg: Springer-Verlag: 273−275. |
[5] | 艾桂根. 2000. 柴达木盆地西北部第三系层序地层特征及可地浸砂岩型铀矿找矿方向[J]. 华东地质学院学报, 23(1): 20−23. |
[6] | 黄世杰. 1994. 层间氧化带砂岩型铀矿的形成条件及找矿判据[J]. 铀矿地质, 10(1): 6−13. |
[7] | 贾立城, 蔡建芳, 黄笑, 等. 2022. 松辽盆地宝龙山铀矿床控矿因素与成矿模式研究[J]. 铀矿地质, 38(4): 582−593. |
[8] | 焦养泉, 李思田, 李祯, 等. 1998. 碎屑岩储层物性非均质性的层次结构[J]. 石油与天然气地质, 19(2): 89−92. |
[9] | 焦养泉, 吕新彪, 王正海, 等. 2004. 从沉积到成岩两种截然不同的地质环境: 吐哈盆地砂岩型铀矿研究实例[J]. 地球科学:中国地质大学学报, 29(5): 615−620. |
[10] | 焦养泉, 陈安平, 王敏芳, 等. 2005a. 鄂尔多斯盆地东北部直罗组底部砂体成因分析: 砂岩型铀矿床预测的空间定位基础[J]. 沉积学报, 23(3): 371−379. |
[11] | 焦养泉, 陈安平, 杨琴, 等. 2005b. 砂体非均质性是铀成矿的关键因素之一: 鄂尔多斯盆地东北部铀成矿规律探讨[J]. 铀矿地质, 21(1): 8−16. |
[12] | 焦养泉, 吴立群, 杨生科, 等. 2006. 铀储层沉积学: 砂岩型铀矿勘查与开发的基础[M]. 北京: 地质出版社. |
[13] | 焦养泉, 吴立群, 杨琴. 2007. 铀储层: 砂岩型铀矿地质学的新概念[J]. 地质科技情报, 26(4): 1−7. |
[14] | 焦养泉, 吴立群, 荣辉, 等. 2012. 铀储层结构与成矿流场研究: 揭示东胜砂岩型铀矿床成矿机理的一把钥匙[J]. 地质科技情报, 31(5): 94−104. |
[15] | 焦养泉, 吴立群, 荣辉. 2018a. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床[J]. 地球科学, 43(2): 459−474. |
[16] | 焦养泉, 吴立群, 荣辉, 等. 2018b. 铀储层地质建模: 揭示成矿机理和应对“剩余铀”的地质基础[J]. 地球科学, 43(10) : 3568−3583. |
[17] | 李胜祥, 韩效忠, 蔡煜琦, 等. 2006. 伊犁盆地南缘西段中下侏罗统水西沟群沉积体系及其对铀成矿的控制作用[J]. 中国地质, 33(3): 582−590. |
[18] | 刘池洋. 2005. 盆地多种能源矿产共生富集成藏(矿)研究进展[M]. 北京: 科学出版社. |
[19] | 刘家铎, 林双幸. 2003. 伊犁盆地南缘侏罗系沉积微相及铀矿控矿条件研究[J]. 矿物岩石, 23(1): 30−36. |
[20] | 刘帅, 巫建华, 管太阳, 等. 2006. 甘肃北山公婆泉盆地沉积体系与铀成矿条件分析[J]. 矿业研究与开发, 26(4): 7−9,29. |
[21] | 罗毅, 马汉峰, 夏毓亮, 等. 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式[J]. 铀矿地质, 23(4): 193−200. |
[22] | 罗毅, 何中波, 马汉峰, 等. 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征[J]. 矿床地质, 31(2): 391−400. |
[23] | 苗爱生, 焦养泉, 常宝成, 等. 2010. 鄂尔多斯盆地东北部东胜铀矿床古层间氧化带精细解剖[J]. 地质科技情报, 29(3): 55−61. |
[24] | 唐国龙, 王殿学, 张亮亮, 等. 2019. 松辽盆地南部宝龙山地区姚家组河流体系高分辨率层序划分在铀矿找矿中的应用[C]//中国核学会. 中国核科学技术进展报告(第六卷)——中国核学会2019年学术年会论文集第1册(铀矿地质分卷(上). 北京: 中国原子能出版社. |
[25] | 翁海蛟, 张韶华, 卢天军, 等. 2021. 宝龙山地区姚家组下段地球化学特征及其古沉积环境意义[C]//中国核学会. 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第1册(铀矿地质分卷、铀矿冶分卷). 北京: 中国原子能出版社. |
[26] | 夏飞勇, 焦养泉, 荣辉, 等. 2019. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义[J]. 地球科学, 44(12): 4235−4251. |
[27] | 夏毓亮, 林锦荣, 刘汉彬, 等. 2003. 中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J]. 铀矿地质, 19(3): 129−136. |
[28] | 谢惠丽, 吴立群, 焦养泉, 等. 2016. 鄂尔多斯盆地罕台庙地区铀储层非均质性定量评价指标体系[J]. 地球科学, 41(2): 279−292. |
[29] | 鄢雨萌, 苏东, 苏小四, 等. 2020. 控制砂岩型铀矿床中铀迁移转化的主要水文地球化学作用实验[J]. 地球科学与环境学报, 42(2): 256−266. |
[30] | 杨明慧, 刘池洋. 2006. 鄂尔多斯中生代陆相盆地层序地层格架及多种能源矿产聚集[J]. 石油与天然气地质, 27(4): 563−570. |
[31] | 于文斌. 2009. 松辽盆地南部白垩系砂岩型铀矿成矿条件研究[D]. 吉林大学博士学位论文. |
[32] | 余中元, 闵伟, 韦庆海, 等. 2015. 松辽盆地北部反转构造的几何特征、变形机制及其地震地质意义[J]. 地震地质, 37(1): 13−32. |
[33] | 张金带, 徐高中, 陈安平, 等. 2005. 我国可地浸砂岩型铀矿成矿模式初步探讨[J]. 铀矿地质, 21(3): 139−145. |
[34] | 张明瑜, 郑纪伟, 田时丰, 等. 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究[J]. 铀矿地质, 21(4): 213−218. |
[35] | 赵宝光, 陈友良, 姚毅峰, 等. 2003. 滇西新生代盆地沉积特征及砂岩型铀矿成矿条件[J]. 矿物岩石, 23(2): 12−15. |
[36] | 赵龙, 陈浩, 蔡春芳, 等. 2022. 松辽盆地西南部钱家店铀矿床富矿砂岩中烃类地球化学特征[J]. 地质通报, 41(2/3): 498−508. doi: 10.12097/j.issn.1671-2552.2022.2-3.026 |
[37] | 赵忠华, 张振强, 于文斌, 等. 2012. 松辽盆地南部砂岩型铀矿成矿主控因素及找矿方向[J]. 世界核地质科学, 29(4): 199−202. |
[38] | 郑纪伟. 2010. 开鲁盆地钱家店铀矿床成矿地质条件及勘探潜力分析[J]. 铀矿地质, 26(4): 193−207. doi: 10.3969/j.issn.1000-0658.2010.04.001 |
[39] | 朱西养, 孙泽轩, 陈洪德, 等. 2004. 滇西龙川江盆地沉积体系特征及与砂岩铀矿成矿[J]. 成都理工大学学报:自然科学版, 31(3): 267−272. |
Schematic diagram of tectonic zoning in southwest Songliao Basin
Sedimentary facies map of Early Yaojia period in southern Songliao Basin
Sand body distribution characteristics of lower Yaojia Formation in DL area
Various barriers in sand bodies of lower Yaojia Formation in DL area
Profile of vertical 0 line in DL region
Contour maps of ratio of barrier layer to stratum thickness (a) and barrier layer thickness (b) of the 1st sublayers of lower Yaojia Formation in DL area
Contour maps of ratio of barrier layer to stratum thickness (a) and barrier layer thickness (b) of the 2nd sublayers of Yaojia Formation in DL area
Contour maps of gray sand body thickness (a) and gray sand body thickness (b) of the 1st and 2nd sublayers in the lower Yaojia Formation in DL area
Contour maps of oxidized sand body Fe2+/Fe3+ (a) and gray sand body Fe2+/Fe3+ (b) in the 1st sublayer of lower Yaojia Formation in DL area
Contour maps of oxidized sand body trace U (a) and gray sand body trace U (b) contents in the 1st sublayer of lower Yaojia Formation in DL area
Discriminant map of trace element ratio of lower Yaojia Formation in DL area
Development of epigenetic oxidation of lower Yaojia Formation in DL area
Borehole section of DL lot L8 line
Comparison of ore body morphology
Zoning model of supergene fluid mineralization in Yaojia Formation, southern Songliao Basin
Mineral prediction map of the 1st sublayer of lower Yaojia Formation in BL area