Citation: | YANG Fengchao, SONG Yunhong, XU Jia, GU Yuchao, YANG Hongzhi. 2024. Zircon U–Pb age, Hf isotope composition, and their constraints on tectonic setting of the Saima alkaling complex in the eastern Liaoning Province. Geological Bulletin of China, 43(1): 76-85. doi: 10.12097/gbc.2021.12.042 |
The light-red aegirine nepheline syenite in Liaoning Saima area has a LA-ICP-MS U-Pb age of 225.8 ± 1.9 Ma, and the emplacement age of the Saima alkaline complex is the Late Triassic. Aegirine nepheline syenite shows SiO2 of 55.87%~60.88%, Na2O of 0.41%~5.32%, Al2O3 of 17.81%~19.53%, K2O of 9.46%~11.91%, MgO of 0.46%~1.36%, σ43 of 7.54~17.01.The total amount of rare earth elements is higher than 300×10−6, and it is strongly enriched with light rare earth elements. Depletion of high field strength elements such as Nb, Ta, P, and enrichment of large ion lithophilic elements such as Rb, Th, shows the characteristics of alkaline rich rocks. The zircon εHf (t) value is −13.37 ~ −9.30, the corresponding two-stage Hf model age TDM2 is 2102~1855 Ma. The Saima alkaline complex may be formed by the partial melting of the lower crust (or upper mantle) under the dynamic background of subduction-squeezing to inland extension and extension conversion. The age of emplacement (225.8 ± 1.9 Ma) may represent the time when the lithosphere began to stretch and thin on the northern margin of the North China Craton, and also the time when the Tanlu fault was formed.
[1] | Belousova E, Griffin W, O'Reilly S Y, et al. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602−622. doi: 10.1007/s00410-002-0364-7 |
[2] | Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3/4): 347−359. |
[3] | Huang X L, Wang R C, Chen X M, et al. 2002. Vertical variations in the mineralogy of the Yichun topaz lepidolite granite, Jiangxi Province, southern China[J]. Can. Miner., 40: 1047−1068. doi: 10.2113/gscanmin.40.4.1047 |
[4] | Kaeter D, Barros R, Menuge J F, et al. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscoviteand columbite-tantalite[J]. Geochimet Cosmochim Acta, 240: 98−130. doi: 10.1016/j.gca.2018.08.024 |
[5] | Linnen R L. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits[C]//Holland H D, Turekian K K. Treatise on geochemistry. Amsterdam: Elsevier Ltd., 13: 543–568. |
[6] | Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004 |
[7] | Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956 |
[8] | Rollison H R. 1993. Using geochemical data: Evaluation, pre-Sentation, interpretation[M]. London, Longman Group UK: 1–20. |
[9] | Sun S S, McDonough, W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[10] | Wang R C, Hu H, Zhang A C, et al. 2004. Pollucite and the cesiumdominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China[J]. Can. Miner., 42: 883−896. doi: 10.2113/gscanmin.42.3.883 |
[11] | Xie L, Wang R C, Che X D, et al. 2016. Tracking magmatic and hydrothermal Nb-Ta-W -Sn fractionation using mineral textures and composition: A case study from the late Cretaceous Jiepailing ore district in the Nanling Range in South China[J]. Ore Geol. Rev., 78: 300−321. doi: 10.1016/j.oregeorev.2016.04.003 |
[12] | Xie L, Wang Z, Wang R, et al. 2018. Mineral ogical constraints onthe genesis of W-Nb-T a mineralization in the Laiziling granite (Xianghua ling District, South China)[J]. Ore Geol. Rev., 95: 695−712. doi: 10.1016/j.oregeorev.2018.03.021 |
[13] | Yang J, Wu F, Shao J, et al. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 246(3/4): 336−352. |
[14] | Zhu Z Y, Wang R C, Che X D, et al. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals[J]. Ore Geol. Rev., 65: 749−760. doi: 10.1016/j.oregeorev.2014.07.021 |
[15] | Zhu Z Y, Wang R C, Marignac C, et al. 2018. The Early Cretaceous Huangshan rare metalgranite complex, northeast Jiangxi Province, southeast China: A new style of Nb-rich rare metalgranite[J]. Am. Mineral, 65: 1−11. |
[16] | 常翔, 孙景贵, 陈旭, 等. 2023. 吉林省南部集安大石湖-大台子铜矿化区中生代中酸性杂岩岩石成因与地球动力学背景[J]. 吉林大学学报(地球科学版), 53(3): 920−945. |
[17] | 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665. |
[18] | 景立珍, 郭裕嘉, 丁彩霞. 1995. 辽宁赛马碱性岩的年代学及碱性岩桨的形成[J]. 辽宁地质, 4: 257−271. |
[19] | 鞠楠, 张森, 毕中伟, 等. 2019. 辽宁凤城赛马铌矿床成矿岩体地球化学特征及其地质意义[J]. 世界地质, 38(1): 130−153. doi: 10.3969/j.issn.1004-5589.2019.01.012 |
[20] | 李建康, 李鹏, 王登红, 等. 2019. 中国铌钽矿成矿规律[J]. 科学通报, 64: 1545−1566. |
[21] | 李梦玲, 孙珍军, 于赫楠, 等. 2022. 秦皇岛茹各庄火山碎屑岩地球化学、锆石U-Pb定年、Hf同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 52(5): 1688−1706. |
[22] | 李石. 1992. 论碱性岩的定义和碱性花岗岩的分标[J]. 湖北地质, 6(1): 70−78. |
[23] | 罗晨皓, 周晔, 沈阳. 2019. 云南姚安Au-Pb-Ag矿床含矿富碱岩浆岩地球化学特征及岩石成因[J]. 地球科学, 44(6): 2063−2083. |
[24] | 邱家骧. 1993. 秦巴碱性岩[M]. 北京: 地质出版社: 139–141. |
[25] | 任康绪. 2003. 碱性岩研究进展述评[J]. 化工矿产地质, 25(3): 151−163. |
[26] | 宋运红, 郝立波, 杨凤超, 等. 2015. 辽东三叠纪弟兄山岩体SHRIMP U-Pb年龄、地球化学特征及其地质意义[J]. 地质与资源, 24(5): 444−452. doi: 10.3969/j.issn.1671-1947.2015.05.009 |
[27] | 孙雷, 曾振, 崔维龙, 等. 2021. 黑龙江省东部晚三叠世—中侏罗世硅质岩地球化学特征及形成环境[J]. 地质与资源, 30(6): 637−645. doi: 10.13686/j.cnki.dzyzy.2021.06.001 |
[28] | 涂光炽. 1989. 关于富碱侵入岩[J]. 矿产与地质, 13: 1−4. |
[29] | 邬斌, 王汝成, 郭国林, 等. 2020. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义[J]. 地球科学, 45(2): 467−478. |
[30] | 吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 11(3): 305−317. doi: 10.3969/j.issn.1006-7493.2005.03.003 |
[31] | 阎国翰, 牟保磊, 许保良, 等. 2002. 中国北方显生宙富碱侵入岩年代学和Nd、Pb、Sr同位素特征及其意义[J]. 地质论评, 48(增刊): 69−76. |
[32] | 杨凤超, 孙景贵, 宋运红, 等. 2016. 辽东连山关地区新太古代花岗杂岩SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 地球科学, 41(12): 2008−2018. |
[33] | 于喜洹, 李新鹏, 陈旭峰, 等. 2022. 大兴安岭潮满林场地区新元古代花岗质片麻岩——锆石U-Pb测年、地球化学特征及构造环境探讨[J]. 地质与资源, 31(2): 123−130. doi: 10.13686/j.cnki.dzyzy.2022.02.001 |
[34] | 赵振华. 1994. 富碱侵入岩-窥探地慢成分的窗口[C]//欧阳自远. 中国矿物岩石地球化学研究进展. 兰州: 兰州大学出版社: 113–114. |
[35] | 钟军, 范洪海, 陈金勇, 等. 2020. 辽宁赛马霓霞正长岩黑云母地球化学特征、40Ar−39Ar 年龄及其地质意义[J]. 地球科学, 45(1): 131−144. |
[36] | 周玲棣, 赵振华. 1994. 我国富碱侵入岩的岩石学和岩石化学特征[J]. 中国科学(B辑), 20(10): 1093−1101. |
Simplified geological map of eastern China, showing major tectonic units(a) and geological map of alkaline complex sampled from Saima area in the eastern Liaoning Province (b)
The original (a) and microscope (b,c) images of flesh red aegirine nepheline syenite from Saima area in the eastern Liaoning Province
Zircon CL images and ages(TW04) of aegirine nepheline syenite from Saima area in the eastern Liaoning Province
Zircon U-Pb concordia diagram (a) and weighted mean agegraph (b) of aegirine nepheline syenite from Saima area in the eastern Liaoning Province
Rare earth element distribution curves (a) and trace element spider diagrams (b) for alkaline complex sampled from Saima area in the eastern Liaoning Province
Zircon Lu-Hf isotope characteristics diagram of aegirine nepheline syenite from Saima area in the eastern Liaoning Province
Structure environment diagram of alkaline complex from Saima area in the eastern Liaoning Province