2024 Vol. 43, No. 2~3
Article Contents

YAN Songtao, WU Qingsong, DAI Xuejian, LI Hu, XIN Chongyang, ZHU Lidong. 2024. Geochronology and geochemistry of intermediate−acid intrusive rocks in Xinlong area, Sichuan Province and its constraints on the evolution of Ganzi−Litang Ocean. Geological Bulletin of China, 43(2~3): 401-415. doi: 10.12097/gbc.2021.11.019
Citation: YAN Songtao, WU Qingsong, DAI Xuejian, LI Hu, XIN Chongyang, ZHU Lidong. 2024. Geochronology and geochemistry of intermediate−acid intrusive rocks in Xinlong area, Sichuan Province and its constraints on the evolution of Ganzi−Litang Ocean. Geological Bulletin of China, 43(2~3): 401-415. doi: 10.12097/gbc.2021.11.019

Geochronology and geochemistry of intermediate−acid intrusive rocks in Xinlong area, Sichuan Province and its constraints on the evolution of Ganzi−Litang Ocean

More Information
  • The Yajiang residual basin is located on the southeastern margin of Tibetan Plateau and is an important part of the Yulong−Bayankala foreland basin in the Qiangtang−Sanjiang orogenic system. Based on detailed field investigations, we carried out petrology, geochemistry and zircon U−Pb isotope dating of different types of intrusive rocks in the Xinlong area of Sichuan Province, to discuss their petrogenesis and tectonic background. The results indicate that both the Gulongba granodiorite and the Riguo diorite belong to the metaluminous granites, with low silica, low alkaline, high Fe−Mg characteristics, intermediate REE total contents, and obvious Nb and Ta negative anomalies. They belong to the I−type granites, which are products of subduction magmatic activity. The Riguo diorite was formed at the Late Triassic with zircon U−Pb age of 217.1 ± 0.8 Ma. The Rililongba granodiorite and granite are the peraluminous rocks, with high silica, high alkaline, low Fe−Mg and weak Nb and Ta negative anomalies. Both of them belong to S−type granite, but the latter experienced higher differentiation degree. They were the products of collisional and post−collisional magmatic activity. The zircon U−Pb age of the Rilongba granodiorite is 203.6 ± 0.5 Ma, and its formation period is the end of the Late Triassic. It is believed that the Ganzi−Litang paleo−ocean basin was subducted westward in the Late Triassic, and a small amount of arc intrusions were located in the Yajiang residual basin on the passive continental margin. At the end of the Late Triassic, the arc−land collision occurred due to the extinction of oceanic plates, which caused partial melting of the crust to form strong peraluminous granites.

  • 加载中
  • [1] Burchfiel B C, Zhen Z L, Liu Y P, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 663−735.

    Google Scholar

    [2] Butler R W H, Harris N B W, Whittington A G. 1997. Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: A field example from Nanga Parbat, Pakistan Himalayas[J]. Mineralogical Magazine, 61(1): 37−52.

    Google Scholar

    [3] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geological Society, London, Special Publications, 19: 67−81.

    Google Scholar

    [4] Hsü K J, Pan G T, Sengör A M C. 1995. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the Archipelago model of orogenesis[J]. International Geology Review, 37(6): 473−508. doi: 10.1080/00206819509465414

    CrossRef Google Scholar

    [5] Küster D, Harms U. 1998. Post−collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review[J]. Lithos, 45(1/4): 177−195.

    Google Scholar

    [6] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [7] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 215−224.

    Google Scholar

    [8] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [9] Pearce J A. 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120−125. doi: 10.18814/epiiugs/1996/v19i4/005

    CrossRef Google Scholar

    [10] Patino D A E, Mccarthy T C. 1998. Melting of crustal rocks during continental collision and subduction[C]// Hacker B R, Liu J G. When continents collide: geodynamics and geochemistry of ultrahigh pressure rocks. Netherlands: Kluwer, Dordrecht, Academic Publishers, 27−55.

    Google Scholar

    [11] Richter F M. 1989. Simple models for trace element fractionation during melt segregation[J]. Earth and Planetary Science Letters, 77(3/4): 333−344.

    Google Scholar

    [12] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]// Turekian K K, Holland H D. Treatise on geochemistry. Oxford: Pergamon: 1−64.

    Google Scholar

    [13] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the ocean basins. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [14] Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29−44.

    Google Scholar

    [15] Taylor S R, McLennan S M. 1986. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4): 632−633. doi: 10.1086/629067

    CrossRef Google Scholar

    [16] Tischendorf G, Paelchen W. 1985. Zur Klassfication von granitoiden/classification of granitoids[J]. Zeit Schrift fuer Geologische Wissenschaften, 13(5): 615−627.

    Google Scholar

    [17] Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan−Tibetan Orogen[J]. Ann. Rev. Earth Planet., 28(1): 211−280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [18] Yang L Q, Deng J, Yildirim D, et al. 2015. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling orogen, China[J]. Geological Society of America Bulletin, 127(11/12): 1831−1854.

    Google Scholar

    [19] Zhang H F, Zhang L, Harris N, et al. 2006. U−Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan−Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement[J]. Contrib. Mineral. Petrol., 152(1): 75−88. doi: 10.1007/s00410-006-0095-2

    CrossRef Google Scholar

    [20] Zhang H F, Harris N, Zhang L. 2007. A−type adakitic magmatism association in Songpan−Garze Fold Belt, eastern granite and Tibetan Plateau: implication for lithospheric delamination[J]. Lithos, 97(3/4): 323−335.

    Google Scholar

    [21] Zhang C Z, Li B, Cai J X, et al. 2007. A−type granite and adakitic magmatism association in Songpan−Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 103(3): 562−564.

    Google Scholar

    [22] 邓红, 唐渊, 骆志红, 等. 2021. 松潘−甘孜造山带东缘塔公岩体岩石学、同位素年代学特征及其构造意义[J]. 地球科学, 46(2): 527−539.

    Google Scholar

    [23] 段志明, 张玉修, 祝向平, 等. 2013. 松潘−甘孜南部玛孜措石英闪长岩的地球化学特征、同位素年龄及其构造意义[J]. 地质学报, 87(12): 1874−1886.

    Google Scholar

    [24] 段志明, 李勇, 张毅, 等. 2005. 青藏高原唐古拉山中新生代花岗岩锆石U−Pb 年龄、地球化学特征及其大陆动力学意义[J], 地质学报, 79(1): 88−98.

    Google Scholar

    [25] 费光春, 李佑国, 温春齐. 2009. 四川乡城—稻城地区花岗岩地球化学特征及构造背景探讨[J]. 矿物岩石, 29(2): 88−95.

    Google Scholar

    [26] 侯增谦, 曲晓明, 周继荣, 等. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录[J]. 地质学报, 75(4): 484−497.

    Google Scholar

    [27] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质, 28(4): 481−492.

    Google Scholar

    [28] 李平, 陈隽璐, 张越, 等. 2023. 商丹俯冲增生带南缘土地沟—池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 56(2): 10−27.

    Google Scholar

    [29] 梁信之, 谭庆鹄, 师常庆, 等. 1984. 1∶ 20万新龙幅、禾尼乡幅、康定幅区域调查报告[R]. 四川省地矿局区调队: 46−57.

    Google Scholar

    [30] 潘桂棠, 王立全, 张万平, 等. 2013. 青藏高原及邻区大地构造图及说明书[M]. 北京: 地质出版社: 7−80.

    Google Scholar

    [31] 秦蒙, 严松涛, 文浪, 等. 2019. 甘孜−理塘蛇绿混杂岩带晚三叠世构造演化——来自理塘地区勇杰岩体地球化学、年代学的制约[J]. 地质通报, 38(10): 1615−1625.

    Google Scholar

    [32] 时章亮, 张宏飞, 蔡宏明. 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学−中国地质大学学报, 34(4): 569−584.

    Google Scholar

    [33] 王全伟, 王康明. 2004. 四川1∶25万石渠县幅区域地质调查报告[R]. 四川省地质调查院: 45−137.

    Google Scholar

    [34] 王全伟. 2008. 川西地区花岗岩及其成矿系列[M]. 北京: 地质出版社: 1−305.

    Google Scholar

    [35] 许志琴, 侯立玮, 王宗秀. 1992. 中国松潘−甘孜造山带的造山过程[M]. 北京: 地质出版社: 1−190.

    Google Scholar

    [36] 严松涛, 秦蒙, 段阳海, 等. 2019a. 四川理塘地区二叠纪洋岛型岩石组合的识别及其构造意义: 来自岩石学、地球化学和年代学证据[J]. 地质学报, 93(2): 381−393.

    Google Scholar

    [37] 严松涛, 段阳海, 谭昌海, 等. 2019b. 甘孜−理塘蛇绿混杂岩带中三叠世洋岛型岩石组合的识别及其构造意义——来自岩石学、地球化学和年代学证据[J]. 地球学报, 40(6): 816−826.

    Google Scholar

    [38] 严松涛, 谭昌海, 秦蒙, 等. 2020a. 四川理塘地区二叠—三叠纪硅质岩的地球化学特征及地质意义[J]. 地球学报, 41(4): 504−514.

    Google Scholar

    [39] 严松涛, 谭昌海, 段阳海, 等. 2020b. 甘孜−理塘蛇绿混杂岩带中段洋岛型岩石组合的发现及其对构造演化的指示意义[J]. 地质学报, 94(2): 439−449.

    Google Scholar

    [40] 严松涛, 吴青松, 李虎, 等. 2021. 甘孜−理塘蛇绿混杂岩带中段理塘地区混杂岩物质组成及其洋盆演化史[J]. 中国地质, 48(6): 1875−1895.

    Google Scholar

    [41] 严松涛, 吴青松, 谭昌海, 等. 2022. 四川理塘地区花岗闪长岩特征及其增生楔弧岩浆活动[J]. 中国地质, 49(4): 1295−1308.

    Google Scholar

    [42] 严松涛, 吴青松, 朱利东, 等. 2023. 甘孜-理塘蛇绿混杂岩带晚三叠世洋岛型岩石组合识别及其对甘孜-理塘洋盆构造演化的制约[J]. 地质通报, 42(10): 1684−1695.

    Google Scholar

    [43] 喻光明, 毛世东, 周振菊, 等. 2024. 西南三江甘孜-理塘洋晚古生代构造演化: 来自理塘蛇绿混杂岩堆晶辉长岩U−Pb年龄的约束[J]. 地质通报, 43(1): 61−75.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(619) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint