Citation: | YANG Yuanjiang, ZHANG Lidong, YANG Wenpeng, LI Chenglu, GUO Fenglei, ZHAO Handong, DENG Changzhou, SHEN Long, SHEN Liang. 2024. Genesis and tectonic setting of Cuiluan plutonic complex in the south section of the Xiaoxing'an Mountains: Evidences of geochemical and zircon Hf isotope. Geological Bulletin of China, 43(2~3): 416-428. doi: 10.12097/gbc.2022.09.019 |
This paper studies the chronology, rock geochemistry and zircon Hf isotopic characteristics of the Middle Ordovician Cuiluan plutonic complex in the south section of the Xiaoxing'an Mountains in Heilongjiang Province, focusing on the formation age, petrogenesis, magmatic material source and tectonic background of the rock mass. Using laser ablation plasma mass spectrometer (LA−ICP-MS) zircon U−Pb dating method, the ages of granodiorite and granite porphyry samples are dated to be 463±2 Ma and 462±2 Ma, i.e., Middle Ordovician. The study of rock geochemistry shows that both samples are characterized by high Si and K, rich alkali, and poor Ti, Mg, Fe, P, etc. It is enriched in LILE (e.g., Rb, K ), depleted in HFSE (e.g., Ti, Nb, Ta, P and HREE) with significant negative Eu anomalies(δ Eu= 0.38~0.64), which show the crust source characteristics of magma. Zircon εHf (t)=2.4~3.4, the values are concentrated and distributed above the chondrite line, indicating that the magma source area is the partial melting of the new continental crust material. TDMc = 1128~1070 Ma, confirming the existence of Mesoproterozoic crustal accretion events in this area. This study suggests that the Cuiluan complex was formed in the tectonic environment of subduction of oceanic and continental plates.
[1] | Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 38(1): 1−25. doi: 10.1016/0012-821X(78)90123-1 |
[2] | Amelin Y, Lee D C, Halliday A N. 2000. Early−middle archaean crustal evolution deduced from Lu−Hf and U−Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24): 4205−4225. |
[3] | Belousova E A, Griffin W L, O’ Reilly S Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from eastern Australian granitoids[J]. Journal of Petrology, 47(2): 329−353. doi: 10.1093/petrology/egi077 |
[4] | Boehnke P, Watson E B, Trail D, et al. 2013. Zircon saturation Re−revisited[J]. Chemical Geology, 351: 324−334. doi: 10.1016/j.chemgeo.2013.05.028 |
[5] | Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[C]//Devolopments in Geochemistry, 63−114. |
[6] | Chappell B W. 1999. Aluminium saturation in I and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3 |
[7] | Deng C Z, Sun D Y, Sun G Y, et al. 2018. Age and geochemistry of Early Ordovician A−type granites in the Northeastern Songnen Block, NE China[J]. Acta Geochim., 37(6): 805−819. doi: 10.1007/s11631-018-0294-3 |
[8] | Dong Y, Ge W C, Yang H, et al. 2017. Permian tectonic evolution of the Mudanjiang Ocean: evidence from zircon U−Pb−Hf isotopes and geochemistry of a NS trending granitoid belt in the Jiamusi Massif, NE China[J]. Gondwana Research, 49(9): 147−163. |
[9] | Gibbs A K. 1986. The continental crust: its composition and evolution[J]. Journal of Geology, 94(4): 632−633. doi: 10.1086/629067 |
[10] | Jahn B M, Wu F Y, Chen B, et al. 2000. Granitoids of the central asian orogenic belt and continental growth in the phanerozoic[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91(1/2): 181−193. |
[11] | Janousek V, Finger F, Roberts M, et al. 2004. Deciphering the petrogenesis of deeply buried granites: whole−rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1/2): 141−159. |
[12] | Li Z X, Li X H. 2007. Formation of the 1300 km−wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat−slab subduction model[J]. Geology, 35(2): 179−182. doi: 10.1130/G23193A.1 |
[13] | Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. |
[14] | McDonough W F, Sun S S, Ringswood A E, et al. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 56(3): 1001−1012. doi: 10.1016/0016-7037(92)90043-I |
[15] | Mcdonough W F, Sun S S. 1995. The composition of the earth[J]. Chemical Geology, 120(3/4): 223−253. |
[16] | Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745 |
[17] | Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust−mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891 |
[18] | Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247−263. doi: 10.1016/0024-4937(89)90028-5 |
[19] | Tang J, Xu W L, Wang F, et al. 2016. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China[J]. Gondwana Research, 31: 218−240. doi: 10.1016/j.gr.2014.12.010 |
[20] | Wang F, Xu W L, Meng E, et al. 2012. Early Paleozoic amalgamation of the Songnen−Zhangguangcai range and Jiamusi massifs in the eastern segment of the central asian orogenic belt: geochronological and geochemical evidence from granitoids and rhyolites[J]. Journal of Asian Earth Sciences, 49(3): 234−248. |
[21] | Wang Z W, Xu W L, Pei F P, et al. 2016. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing’ an Range, NE China: implications for the tectonic evolution of the eastern Central Asian Orogenic Belt[J]. Lithos, 261: 144−163. doi: 10.1016/j.lithos.2015.11.006 |
[22] | Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202 |
[23] | Windley B F, Allen M B, Zhang C, et al. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 18(2): 128−131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2 |
[24] | Wu F Y, Jahn B M, Wilder S A, et al. 2003. Highly fractionated I− type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241−273. |
[25] | Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Asian Earth Sciences, 41: 1−30. doi: 10.1016/j.jseaes.2010.11.014 |
[26] | Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 22(6): 1069−1084. |
[27] | Xu W L, Ji W Q, Pei F P , et al. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 34(3): 392−402. |
[28] | Zhou L M, Wang R, Hou Z Q, et al. 2018. Hot Paleocene−Eocene gangdese arc: Growth of continental crust in southern Tibet[J]. Gondwana Research, 62: 178−197. doi: 10.1016/j.gr.2017.12.011 |
[29] | 崔玉荣, 肖志斌, 涂家润, 等. 2022. 氧化物型含铀矿物微区原位Hf同位素分析技术研究进展[J]. 岩矿测试, 41(5): 691−703. |
[30] | 董磊, 李光明, 黄勇, 等. 2018. 藏南雅鲁藏布江结合带东段琼结杂岩早白垩世变辉绿岩地球化学特征及其地质意义[J]. 沉积与特提斯地质, 38(4): 1−12. |
[31] | 董玉. 2018. 佳木斯地块与松嫩−张广才岭地块拼合历史: 年代学与地球化学证据[D]. 吉林大学博士学位论文: 5−78. |
[32] | 葛文春, 吴福元, 周长勇, 等. 2005. 大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]. 科学通报, 50(12): 1239−1247. |
[33] | 韩振新, 郝正平, 侯敏. 1995. 小兴安岭地区与加里东期花岗岩类有关的矿床成矿系列[J]. 矿床地质, 14(4): 293−302. |
[34] | 颉颃强, 张福勤, 苗来成, 等. 2008. 东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U−Pb定年及其地质学意义[J]. 岩石学报, 24(6): 1237−1250. |
[35] | 李伟民, 刘永江, 赵英利, 等. 2020. 佳木斯地块构造演化[J]. 岩石学报, 36(3): 665−684. |
[36] | 李响, 王令占, 涂兵, 等. 2021. 粤西北印支期太保岩体的锆石U−Pb年代学、地球化学及岩石成因[J]. 地球科学, 46(4): 1199−1216. |
[37] | 刘昌实, 陈小明, 陈培荣, 等. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573−591. |
[38] | 刘建峰, 迟效国, 董春艳, 等. 2008. 小兴安岭东部早古生代花岗岩的发现及其构造意义[J]. 地质通报, 27(4): 534−544. |
[39] | 马鹏飞, 夏小平, 徐健, 等. 2021. 腾冲早白垩世花岗岩的高分异成因及其构造意义[J]. 岩石学报, 37(4): 1177−1195. |
[40] | 任飞, 尹福光, 彭智敏, 等. 2022. 班公湖−怒江俯冲增生杂岩带东段晚古生代辉绿岩锆石U−Pb年龄、Hf同位素特征及其构造意义[J]. 地学前缘, 29(2): 164−179. |
[41] | 谭红艳, 舒广龙, 吕骏超, 等. 2012. 小兴安岭鹿鸣大型钼矿LA−ICP−MS锆石U−Pb和辉钼矿Re−Os年龄及其地质意义[J]. 吉林大学学报(地球科学版), 42(6): 1757−1770. |
[42] | 陶刚, 朱利东, 李智武, 等. 2017. 祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义: 年代学、地球化学及Hf同位素证据[J]. 地球科学, 42(12): 2258−2275. |
[43] | 王枫. 2010. 黑龙江省东部张广才岭群新兴组: 岩石组合、时代及其构造意义[D]. 吉林大学硕士学位论文: 1−90. |
[44] | 王志伟. 2017. 小兴安岭−张广才岭早古生代火成岩的岩石学与地球化学: 对块体拼合历史和地壳属性的制约[D]. 吉林大学博士学位论文: 1−30. |
[45] | 魏庆国, 高昕宇, 赵太平, 等. 2010. 大别北麓汤家坪花岗斑岩锆石LA−ICP−MS U−Pb定年和岩石地球化学特征及其对岩石成因的制约[J]. 岩石学报, 26(5): 1550−1562. |
[46] | 吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 15(2): 22−30. |
[47] | 肖庆辉, 邱瑞照, 邓晋福, 等. 2005. 中国花岗岩与大陆地壳生长方式初步研究[J]. 中国地质, 24(3): 343−352. |
[48] | 徐平, 吴福元, 谢烈文, 等. 2004. U−Pb同位素定年标准锆石的Hf同位素[J]. 科学通报, 49(14): 1403−1410. |
[49] | 许赛华, 任涛, 吕昶良, 等. 2019. 滇东南白垩纪高分异S型花岗岩研究进展[J]. 矿物学报, 39(2): 149−165. |
[50] | 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646. |
[51] | 许文良, 王枫, 孟恩, 等. 2012. 黑龙江省东部古生代—早中生代的构造演化: 火成岩组合与碎屑锆石U−Pb年代学证据[J]. 吉林大学学报(地球科学版), 42(5): 1378−1389. |
[52] | 杨元江, 邓昌州, 李成禄, 等. 2021. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学及岩石成因[J]. 吉林大学学报(地球科学版), 51(4): 1065−1081. |
[53] | 杨元江, 李成禄, 邓昌州, 等. 2020. 大兴安岭大洋山钼矿成矿岩体地球化学、锆石U−Pb年龄及构造背景[J]. 现代地质, 34(5): 1092−1102. |
[54] | 张海驲, 栾慧敏, 陈乐国. 1991. 黑龙江省印支期花岗岩的确定及其意义[J]. 黑龙江地质, 1(1): 25−27. |
[55] | 张兴洲, 曾振, 高锐, 等. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据[J]. 地球物理学报, 58(12): 4415−4424. |
[56] | 赵寒冬. 2009. 东北地区小兴安岭南段−张广才岭北段古生代火成岩组合与构造演化[D]. 中国地质大学(北京)博士学位论文: 1−55. |
[57] | 中国国家标准化管理委员会. 2010a. 硅酸盐岩石化学分析方法第28部分: 16个主次成分量测定: GB/T 14506.28—2010[S]. 北京: 中国标准出版社: 1−7. |
[58] | 中国国家标准化管理委员会. 2010b. 硅酸盐岩石化学分析方法第30部分: 44个元素量测定: GB/T 14506.30—2010[S]. 北京: 中国标准出版社: 1-8. |
[59] | 周若. 1994. 花岗岩混合作用[J]. 地学前缘, 1(1/2): 87−97. |
Structural sketch of Xingmeng orogenic belt (a) and geological map of the study area (b)
Photographs and microscopic images of different rocks in the plutonic complex
U−Pb concordant diagrams (a, b) and weighted average age distribution diagrams (c, d) of zircons
SiO2−K2O diagram(a) and A/CNK−A/NK diagram(b)
Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b)
Diagrams of SiO2-P2O5 (a) and Rb-Th (b)
Discrimination diagrams of mineral crystallization differentiation process
Zircon t-εHf(t) diagram of the granodiorite
(Yb+Ta)−Rb diagram(a) and Y−Nb diagram(b) of the plutonic complex