Citation: | WANG Cunzhi, ZHU Qingbo, JIN Guodong, CHU Pingli, LIU Kai. 2024. Discussion on the evolution of the Southern Anhui Plateau: Evidence from the Yanshanian two-stage granite in the southern Anhui Province and its adjacent areas. Geological Bulletin of China, 43(2~3): 390-400. doi: 10.12097/gbc.2022.05.023 |
In order to study the southern boundary of the eastern plateau in China, the data of Yanshanian granite reported in the literature in the southern Anhui are collected and sorted out in this paper. The results show that, Yanshanian granites in the southern Anhui Province can be divided into early (150 ~ 132 Ma) and late (132 ~ 120 Ma) periods roughly at 132 Ma. The early granites are mainly granodiorite, monzogranite and a small number of two-mica granite, with adakite characteristics, while the late granites are mainly potassium-rich granites, belonging to A-type granite. The study indicates that the southern boundary of the eastern plateau in China is not along the lower reaches of the Yangtze River, but extends to the southern Anhui Province and adjacent areas. The "Southern Anhui Plateau" was formed around 150 ~ 132 Ma and experienced a collapse around 132 Ma, causing the boundary of the plateau to retract northward to the lower reaches of the Yangtze River. The overall collapse of the eastern plateau in China occurred around 125 Ma, but some thickened areas still remain, mainly distributed in the eastern side of the plateau, such as eastern Liaoning Province, eastern Jiaozhou Bay, northern Jiangsu Province, and Nanjing to Zhenjiang City.
[1] | Atherton M P, Petford N. 1993. Generation of sodium−rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416): 144−146. doi: 10.1038/362144a0 |
[2] | Castillo P R. 2006. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 51(3): 257−268. doi: 10.1007/s11434-006-0257-7 |
[3] | Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895 |
[4] | Creaser R A, Price R C, Wormald R J. 1991. A−type granites revisited: Assessment of a residual−source model[J]. Geology, 19(2): 163−166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2 |
[5] | Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 347: 662−665. doi: 10.1038/347662a0 |
[6] | Deng J H, Yang X Y, Sun W D, et al. 2012. Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China[J]. International Geology Review, 54(6): 714−736. doi: 10.1080/00206814.2011.580628 |
[7] | Deng J H, Yang X Y, Li S, et al. 2016. Partial melting of subducted paleo−Pacific plate during the early Cretaceous: constraint from adakitic rocks in the Shaxi porphyry Cu–Au deposit, Lower Yangtze River Belt[J]. Lithos, 262: 651−667. doi: 10.1016/j.lithos.2016.07.039 |
[8] | Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033 |
[9] | Gu H L, Yang X Y, Deng J H, et al. 2017. Geochemical and zircon U–Pb geochronological study of the Yangshan A−type granite: Insights into the geological evolution in south Anhui, eastern Jiangnan Orogen[J]. Lithos, 284/285: 156−170. |
[10] | Gu H L, Yang X Y, Nie Z X, et al. 2018. Study of late−Mesozoic magmatic rocks and their related copper−gold−polymetallic deposits in the Guichi ore−cluster district, Lower Yangtze River Metallogenic Belt, East China[J]. International Geology Review, 60(11/14): 1404−1434. doi: 10.1080/00206814.2017.1422442 |
[11] | Hu Q H, Yu K Z, Liu Y S, et al. 2017. The 131−134 Ma A−type granites from northern Zhejiang Province, South China: implications for partial melting of the Neoproterozoic lower crust[J]. Lithos, 294/295: 39−52. doi: 10.1016/j.lithos.2017.09.016 |
[12] | Jiang X Y, Luo J C, Guo J, et al. 2018. Geochemistry of I− and A−type granites of the Qingyang–Jiuhuashan complex, eastern China: Insights into early cretaceous multistage magmatism[J]. Lithos, 316/317: 278−294. |
[13] | Jiang Y H, Zhao P, Zhou Q, et al. 2011. Petrogenesis and tectonic implications of Early Cretaceous S− and A−type granites in the northwest of the Gan−Hang rift, SE China[J]. Lithos, 121: 55−73. doi: 10.1016/j.lithos.2010.10.001 |
[14] | Li H, Ling M X, Li C Y, et al. 2012. A−type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction[J]. Lithos, 150: 26−36. doi: 10.1016/j.lithos.2011.09.021 |
[15] | Li J W, Zhao X F, Zhou M F, et al. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U−Pb ages, petrogenesis, and geodynamic implications[J]. Contributions to Mineralogy and Petrology, 157(3): 383−409. doi: 10.1007/s00410-008-0341-x |
[16] | Li Z L, Zhou J, Mao J R, et al. 2013. Zircon U−Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition[J]. Lithos, 179: 334−352. doi: 10.1016/j.lithos.2013.07.014 |
[17] | Ma Q, Zheng J P, Xu Y G, et al. 2015. Are continental “adakites” derived from thickened or foundered lower crust?[J]. Earth and Planetary Science Letters, 419: 125−133. |
[18] | Qi H S, Lu S M, Yang X Y, et al. 2020. Genesis of Cretaceous igneous rocks and its related large scale porphyry U−Au mineralization in Chating, the Middle−Lower Yangtze River Metallogenic Belt: The geochemical constrains[J]. Ore Geology Reviews, 127: 103793. doi: 10.1016/j.oregeorev.2020.103793 |
[19] | Qian L, Wang Y, Xie J C, et al. 2019. The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province, China: A perspective from apatite geochemistry[J]. Solid Earth Sciences, 4(2019): 178−189. |
[20] | Sun F J, Xu X S, Zou H B, et al. 2015. Petrogenesis and magmatic evolution of ~130 Ma A−type granites in Southeast China[J]. Journal of Asian Earth Sciences, 98: 20−224. |
[21] | Sun W D, Ding X, Hu Y H, et al. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3/4): 533−542. doi: 10.1016/j.jpgl.2007.08.021 |
[22] | Sun W D, Ling M X, Chung S L, et al. 2012. Geochemical constraints on adakites of different origins and copper mineralization[J]. Journal of Geology, 120(1): 105−120. doi: 10.1086/662736 |
[23] | Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A−type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 28: 151−179. doi: 10.1016/0024-4937(92)90029-X |
[24] | Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization[J]. Lithos, 89: 424−446. doi: 10.1016/j.lithos.2005.12.010 |
[25] | Wang Q, Wyman D A, Xu J F, et al. 2007. Partialmelting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu–Au mineralization[J]. Journal of Geology, 115(2): 149−161. doi: 10.1086/510643 |
[26] | Wang S W, Zhou T F, Yuan F, et al. 2016. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the Middle−Lower Yangtze River Valley metallogenic belt, eastern China[J]. Lithos, 252: 185−199. |
[27] | Wong J, Sun M, Xing G F, et al. 2009. Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A−type granite: extension at 125–100 Ma and its tectonic significance for South China[J]. Lithos, 112(3/4): 289−305. doi: 10.1016/j.lithos.2009.03.009 |
[28] | Wu F Y, Ji W Q, Sun D H, et al. 2012. Zircon U–Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 150: 6−25. doi: 10.1016/j.lithos.2012.03.020 |
[29] | Xiao Q L, Zhou T F, Hollings P, et al. 2021. Mineral and whole−rock chemistry of the Chating porphyry Cu–Au deposit related intrusions in the Middle−Lower Yangtze River Belt, Eastern China: Implications for magma evolution and mineralization[J]. Lithos, 380/381: 105881. |
[30] | Xie J C, Yang X Y, Sun W D, et al. 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China: implications for the tectonic settings[J]. Lithos, 150: 49−61. doi: 10.1016/j.lithos.2012.05.008 |
[31] | Xie J C, Wang Y, Li Q Z, et al. 2018. Petrogenesis and metallogenic implications of Late Mesozoic intrusive rocks in the Tongling region, eastern China: a case study and perspective review[J]. International Geology Review, 60(11/14): 1361−1380. doi: 10.1080/00206814.2017.1386130 |
[32] | Yan J, Liu J M, Li Q Z, et al. 2015. In situ zircon Hf–O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: implications for petrogenesis and geodynamic evolution[J]. Lithos, 227: 57−76. doi: 10.1016/j.lithos.2015.03.013 |
[33] | Yang J H, Wu F Y, Chung S L, et al. 2006. A hybrid origin for the Qianshan A−type granite, northeast China: Geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106. doi: 10.1016/j.lithos.2005.10.002 |
[34] | Yang X Y, Yang X M, Chi Y Y, et al. 2011. A porphyritic copper (gold) ore−formingmodel for the Shaxi–Changpushan district, Lower Yangtze metallogenic belt, China: geological and geochemical constraints[J]. International Geology Review, 53: 580−611. doi: 10.1080/00206810903211906 |
[35] | Yuan F, Zhou T F, Yue S C, et al. 2003. Rare Earths of Magmatic Rocks in Yanshanian Stage in Adjacent Region of Anhui and Jiangxi Provinces, Jiangnan Uplift[J]. Journal of Rare Earth, 21(5): 591−594. |
[36] | Yue Q, Yan J, Liu J M, et al. 2020. Geochronology, petrogenesis and tectonic implications of the early Cretaceous granitoids in the Jingde−Guangde area, Anhui province, South China[J]. Journal of Asian Earth Sciences, 190: 104−150. |
[37] | Zhang Y S, Yan J, Li Q Z, et al. 2018. Pulses of Late Mesozoic magmatism: Zircon ages and Hf−O isotopic composition of the Qingyang−Jiuhuashan granitic complex, southern Anhui province, eastern China[J]. Journal of Asian Earth Sciences, 167: 181−196. doi: 10.1016/j.jseaes.2017.08.003 |
[38] | Zhou J, Jiang Y H, Xing G F, et al. 2013. Geochronology and petrogenesis of Cretaceous A–type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55: 1359−1383. doi: 10.1080/00206814.2013.774199 |
[39] | Zhou T F, Wang S W, Fan Y, et al. 2015. A review of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 65: 433−456. doi: 10.1016/j.oregeorev.2014.10.002 |
[40] | Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3/4): 269−287. doi: 10.1016/S0040-1951(00)00120-7 |
[41] | Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26−33. doi: 10.18814/epiiugs/2006/v29i1/004 |
[42] | 陈芳, 王登红, 杜建国, 等. 2013. 安徽绩溪伏岭花岗岩LA−ICP−MS锆石U−Pb年龄的精确测定及其地质意义[J]. 岩矿测试, 32(6): 970−977. doi: 10.3969/j.issn.0254-5357.2013.06.020 |
[43] | 陈芳, 王登红, 杜建国, 等. 2014. 安徽宁国刘村二长花岗岩地球化学特征、LA–ICP–MS 锆石U–Pb 年龄及其地质意义[J]. 地质学报, 88(5): 869−882. |
[44] | 陈芳, 王登红, 杜建国, 等. 2015. 安徽宁国兰花岭钨钼矿床含矿岩体的地球化学特征、LA−ICP−MS 锆石U−Pb 年代学研究[J]. 大地构造与成矿学, 39(2): 369−377. doi: 10.3969/j.issn.1001-1552.2015.02.017 |
[45] | 陈雪霏, 汪应庚, 孙卫东, 等. 2013. 皖南宁国竹溪岭地区花岗岩锆石U−Pb年代学及地球化学及其成因研究[J]. 地质学报, 87(11): 1662−1678. |
[46] | 陈子微, 余心起, 周翔, 等. 2013. 皖南休宁县里东坑似斑状花岗闪长岩成岩成矿特征分析[J]. 中国地质, 40(6): 1762−1776. |
[47] | 董树文, 吴锡浩, 吴珍汉, 等. 2000. 论东亚大陆的构造翘变——燕山运动的全球意义[J]. 地质论评, 46(1): 8−13. doi: 10.3321/j.issn:0371-5736.2000.01.002 |
[48] | 范裕, 周涛发, 袁峰, 等. 2008. 安徽庐江−枞阳地区A型花岗岩的LA−ICP−MS定年及其地质意义[J]. 岩石学报, 24(8): 1715−1724. |
[49] | 高冉, 闫峻, 李全忠, 等. 2017. 皖南谭山岩体成因: 年代学和地球化学制约[J]. 高校地质学报, 23(2): 227−243. |
[50] | 郭博然, 刘树文, 杨朋涛, 等. 2013. 江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约[J]. 地质通报, 32(7): 1035−1046. doi: 10.3969/j.issn.1671-2552.2013.07.009 |
[51] | 韩效忠, 吴兆剑, 刘蓉蓉, 等. 2018. 浙江新路盆地九华山火山-侵入杂岩年代学、地球化学特征及其地质意义[J]. 地球科学, 43(S1): 192−208. |
[52] | 韩园园, 闫峻, 杨超, 等. 2019. 江南造山带东段桃岭-段莘带花岗岩锆石定年和岩石成因[J]. 矿物岩石, 2: 34−44. |
[53] | 胡庆海. 2017. 扬子板块东缘(浙江北部)晚中生代花岗岩的地球化学特征及其地球动力学意义[D]. 中国地质大学(武汉)博士学位论文. |
[54] | 柯宏飙, 王金泉, 丁勇, 等. 2020. 皖南歙县新溪口岩体锆石U−Pb定年、地球化学特征及找矿前景[J]. 华东地质, 41(2): 116−127. |
[55] | 李鹏举, 余心起, 邱骏挺, 等. 2016. 皖南侏罗—白垩纪两类花岗岩的岩石成因、氧逸度特征及成矿意义[J]. 岩石学报, 32(2): 399−418. |
[56] | 厉子龙, 周静, 毛建仁, 等. 2013. 浙西北木瓜燕山期花岗斑岩的定年、地球化学特征及其地质意义[J]. 岩石学报, 29(10): 3607−3622. |
[57] | 马昌前, 杨坤光, 明厚利, 等. 2003. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学(D辑), 33(9): 817−827. |
[58] | 毛景文, Holly S, 杜安道, 等. 2004. 长江中下游地区铜金(钼)矿Re–Os年龄测定及其对成矿作用的指示[J]. 地质学报, 78(1): 121−131. doi: 10.3321/j.issn:0001-5717.2004.01.014 |
[59] | 彭戈, 闫峻, 初晓强, 等. 2012. 贵池岩体的锆石定年和地球化学: 岩石成因和深部过程[J]. 岩石学报, 28(10): 3271−3286. |
[60] | 任纪舜. 1989. 中国东部及邻区大地构造演化的新见解[J]. 中国区域地质, 4: 1−12. |
[61] | 施珂, 张达玉, 丁宁, 等. 2017. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 47(6): 1746−1762. |
[62] | 孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332−337. doi: 10.3969/j.issn.1671-2552.2006.03.002 |
[63] | 汪海, 赵壮, 杨晓勇, 等. 2020. 安庆-贵池矿集区宝树尖铜多金属矿床成因: 来自岩石地球化学及年代学的约束[J]. 岩石学报, 36(1): 184−204. doi: 10.18654/1000-0569/2020.01.17 |
[64] | 汪雅菲, 袁峰, 杜建国. 2014. 皖南城安岩体锆石U−Pb年代学研究[J]. 矿床地质, 33(增刊): 163−264. |
[65] | 汪雅菲. 2015. 安徽城安岩体地球化学特征及成因研究[D]. 合肥工业大学硕士学位论文. |
[66] | 王存智, 黄志忠, 赵希林, 等. 2018. 长江中下游宣城水东地区早白垩世酸性火山岩年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 37(5): 697−715. doi: 10.3969/j.issn.1000-6524.2018.05.001 |
[67] | 王存智, 黄志忠, 赵希林, 等. 2021. 下扬子地区姚村A 型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质, 48(2): 549−563. |
[68] | 王亮, 王凯, 张翔, 等. 2022. 南祁连扎子沟埃达克岩年代学、地球化学特征及地质意义[J]. 西北地质, 55(1): 39−49. |
[69] | 王继强, 孙维安, 袁峰, 等. 2017. 庐枞盆地大倪庄铜矿床地质特征、成岩时代及成因探讨[J]. 中国地质, 44(1): 86−100. doi: 10.12029/gc20170107 |
[70] | 王孝磊, 周金城, 陈昕, 等. 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 36(5): 714−735. doi: 10.3969/j.issn.1007-2802.2017.05.003 |
[71] | 翁望飞, 支利庚, 蔡连友, 等. 2011. 皖南中生代高钾钙碱性埃达克岩地球化学特征及岩石成因[J]. 地质调查与研究, 35(2): 98−107. doi: 10.3969/j.issn.1672-4135.2011.02.002 |
[72] | 夏国清, 伊海生, 赵西西, 等. 2012. 晚中生代中国东部高原古高程定量研究[J]. 科学通报, 57(23): 2220−2230. |
[73] | 谢建成, 陈思, 荣伟, 等. 2012. 安徽牯牛降 A 型花岗岩的年代学、地球化学和构造意义[J]. 岩石学报, 28(12): 4007−4020. |
[74] | 谢建成, 夏冬梅, 方德, 等. 2016. 皖南晚中生代花岗闪长岩地球化学: 成岩成矿制约[J]. 岩石学报, 32(2): 439−455. |
[75] | 谢兴楠, 马春, 柳建新, 等. 2013. 安徽马头铜钼多金属矿区复式花岗岩体成因及与成矿的关系[J]. 中国有色金属学报, 23(9): 2584−2591. |
[76] | 邢凤鸣, 徐祥. 1994. 安徽两条 A 型花岗岩带[J]. 岩石学报, 10(4): 357−369. doi: 10.3321/j.issn:1000-0569.1994.04.007 |
[77] | 徐晓春, 刘雪, 张赞赞, 等. 2014. 安徽东至兆吉口铅锌矿区岩浆岩锆石U−Pb年龄及其地质意义[J]. 地质科学, 49(2): 431−455. doi: 10.3969/j.issn.0563-5020.2014.02.008 |
[78] | 薛怀民, 汪应庚, 马芳, 等. 2009. 高度演化的黄山A 型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束[J]. 地质学报, 83(2): 247−259. doi: 10.3321/j.issn:0001-5717.2009.02.010 |
[79] | 薛怀民, 马芳, 关海燕, 等. 2013. 怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比[J]. 中国地质, 40(3): 694−714. doi: 10.3969/j.issn.1000-3657.2013.03.004 |
[80] | 薛怀民, 马芳, 曹光跃, 等. 2016. 长江中下游庐枞火山岩盆地南侧钾质侵入岩带的成因[J]. 地质学报, 90(9): 2233−2257. doi: 10.3969/j.issn.0001-5717.2016.09.011 |
[81] | 闫峻, 彭戈, 刘建敏, 等. 2012. 下扬子繁昌地区花岗岩成因: 锆石年代学和Hf–O同位素制约[J]. 岩石学报, 28(10): 3209−3227. |
[82] | 闫峻, 后田结, 王爱国, 等. 2017. 皖南中生代早期成矿和晚期非成矿花岗岩成因对比[J]. 中国科学:地球科学, 47(11): 1269−1291. |
[83] | 赵德奎, 古黄玲, 舒旺杰, 等. 2019. 安徽贵池地区岩浆岩演化特征及其与金银多金属矿的关系[J]. 华东地质, 40(2): 126−134. |
[84] | 张超, 马昌前, Holt F. 2012. 含水大陆下地壳的部分熔融: 大别山C型埃达克岩成因探讨[J]. 高校地质学报, 18(1): 41−51. doi: 10.3969/j.issn.1006-7493.2012.01.004 |
[85] | 张虹, 戴圣潜, 管运财, 等. 2005. 皖南绩溪伏岭岩体岩石地球化学特征[J]. 中国地质, 32(3): 411−416. doi: 10.3969/j.issn.1000-3657.2005.03.009 |
[86] | 张俊杰, 王光杰, 杨晓勇, 等. 2012. 皖南旌德花岗闪长岩与暗色包体的成因: 地球化学、锆石U−Pb年代学与Hf同位素制约[J]. 岩石学报, 28(12): 4047−4063. |
[87] | 张旗, 钱青, 王二七, 等. 2001a. 燕山中晚期的“中国东部高原”: 埃达克岩的启示[J]. 地质科学, 36: 248−255. |
[88] | 张旗, 王焰, 钱青, 等. 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 17(2): 236−244. |
[89] | 张旗, 金惟俊, 王元龙, 等. 2007. 晚中生代中国东部高北界探讨[J]. 岩石学报, 23(4): 689−700. doi: 10.3969/j.issn.1000-0569.2007.04.001 |
[90] | 张旗, 王元龙, 金惟俊, 等. 2008. 晚中生代的中国东部高原: 证据、问题和启示[J]. 地质通报, 27(9): 1404−1430. doi: 10.3969/j.issn.1671-2552.2008.09.004 |
[91] | 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621−626. |
[92] | 张旗. 2014. 大陆花岗岩的地球动力学意义[J]. 矿物岩石学杂志, 33(4): 785−798. |
[93] | 张旗, 焦守涛. 2020. 埃达克理论: 埃达克岩来自高压背景——一个科学的、可靠的、有预见性的科学发现[J]. 岩石学报, 36(6): 1675−1683. doi: 10.18654/1000-0569/2020.06.02 |
[94] | 张智宇, 杜杨松, 张静, 等. 2011. 安徽贵池铜山岩体SHRIMP锆石U−Pb年代学与岩石地球化学特征研究[J]. 地质论评, 57(3): 366−378. |
[95] | 张梓尧, 张义虎, 徐磊, 等. 2023. 西秦岭宕昌—舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J/OL]. 西北地质, 1−16. doi: 10.12401/j.nwg.2023013. |
[96] | 周洁, 姜耀辉, 曾勇, 等. 2013. 江南造山带东段旌德岩体锆石LA–ICPMS 年龄和Nd−Sr−Hf 同位素地球化学[J]. 中国地质, 40(5): 1379−1391. doi: 10.3969/j.issn.1000-3657.2013.05.004 |
[97] | 周静. 2016. 浙西北早白垩世花岗质岩石成因与构造演化[D]. 浙江大学博士学位论文. |
[98] | 周术召. 2016. 皖南白际-长垓北东向花岗岩带特征及其与燕山期断裂带的成因关系[D]. 中国地质大学(北京)硕士学位论文. |
[99] | 周涛发, 袁峰, 侯明金, 等. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景[J]. 矿物岩石, 24(3): 65−71. doi: 10.3969/j.issn.1001-6872.2004.03.008 |
[100] | 周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 24(8): 1665−1678. |
[101] | 周翔, 余心起, 王德恩, 等. 2011. 皖南东源含W-Mo花岗闪长斑岩及成矿年代学研究[J]. 现代地质, 25(2): 201−210. doi: 10.3969/j.issn.1000-8527.2011.02.002 |
[102] | 周翔, 余心起, 杨赫鸣, 等. 2012. 皖南绩溪县靠背尖高Ba−Sr 花岗闪长斑岩年代学及其成因[J]. 岩石学报, 28(10): 3403−3417. |
Distribution map of Yanshanian granites in southern Anhui Pronvince and its adjacent areas
Distribution map of different types of granite in the southern Anhui Pronvince and its adjacent areas
Schematic diagram of the evolution of the Southern Anhui Plateau