2024 Vol. 43, No. 2~3
Article Contents

WANG Cunzhi, ZHU Qingbo, JIN Guodong, CHU Pingli, LIU Kai. 2024. Discussion on the evolution of the Southern Anhui Plateau: Evidence from the Yanshanian two-stage granite in the southern Anhui Province and its adjacent areas. Geological Bulletin of China, 43(2~3): 390-400. doi: 10.12097/gbc.2022.05.023
Citation: WANG Cunzhi, ZHU Qingbo, JIN Guodong, CHU Pingli, LIU Kai. 2024. Discussion on the evolution of the Southern Anhui Plateau: Evidence from the Yanshanian two-stage granite in the southern Anhui Province and its adjacent areas. Geological Bulletin of China, 43(2~3): 390-400. doi: 10.12097/gbc.2022.05.023

Discussion on the evolution of the Southern Anhui Plateau: Evidence from the Yanshanian two-stage granite in the southern Anhui Province and its adjacent areas

More Information
  • In order to study the southern boundary of the eastern plateau in China, the data of Yanshanian granite reported in the literature in the southern Anhui are collected and sorted out in this paper. The results show that, Yanshanian granites in the southern Anhui Province can be divided into early (150 ~ 132 Ma) and late (132 ~ 120 Ma) periods roughly at 132 Ma. The early granites are mainly granodiorite, monzogranite and a small number of two-mica granite, with adakite characteristics, while the late granites are mainly potassium-rich granites, belonging to A-type granite. The study indicates that the southern boundary of the eastern plateau in China is not along the lower reaches of the Yangtze River, but extends to the southern Anhui Province and adjacent areas. The "Southern Anhui Plateau" was formed around 150 ~ 132 Ma and experienced a collapse around 132 Ma, causing the boundary of the plateau to retract northward to the lower reaches of the Yangtze River. The overall collapse of the eastern plateau in China occurred around 125 Ma, but some thickened areas still remain, mainly distributed in the eastern side of the plateau, such as eastern Liaoning Province, eastern Jiaozhou Bay, northern Jiangsu Province, and Nanjing to Zhenjiang City.

  • 加载中
  • [1] Atherton M P, Petford N. 1993. Generation of sodium−rich magmas from newly underplated basaltic crust[J]. Nature, 362(6416): 144−146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [2] Castillo P R. 2006. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 51(3): 257−268. doi: 10.1007/s11434-006-0257-7

    CrossRef Google Scholar

    [3] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [4] Creaser R A, Price R C, Wormald R J. 1991. A−type granites revisited: Assessment of a residual−source model[J]. Geology, 19(2): 163−166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    CrossRef Google Scholar

    [5] Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 347: 662−665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [6] Deng J H, Yang X Y, Sun W D, et al. 2012. Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China[J]. International Geology Review, 54(6): 714−736. doi: 10.1080/00206814.2011.580628

    CrossRef Google Scholar

    [7] Deng J H, Yang X Y, Li S, et al. 2016. Partial melting of subducted paleo−Pacific plate during the early Cretaceous: constraint from adakitic rocks in the Shaxi porphyry Cu–Au deposit, Lower Yangtze River Belt[J]. Lithos, 262: 651−667. doi: 10.1016/j.lithos.2016.07.039

    CrossRef Google Scholar

    [8] Frost B R, Barnes C G, Collins W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [9] Gu H L, Yang X Y, Deng J H, et al. 2017. Geochemical and zircon U–Pb geochronological study of the Yangshan A−type granite: Insights into the geological evolution in south Anhui, eastern Jiangnan Orogen[J]. Lithos, 284/285: 156−170.

    Google Scholar

    [10] Gu H L, Yang X Y, Nie Z X, et al. 2018. Study of late−Mesozoic magmatic rocks and their related copper−gold−polymetallic deposits in the Guichi ore−cluster district, Lower Yangtze River Metallogenic Belt, East China[J]. International Geology Review, 60(11/14): 1404−1434. doi: 10.1080/00206814.2017.1422442

    CrossRef Google Scholar

    [11] Hu Q H, Yu K Z, Liu Y S, et al. 2017. The 131−134 Ma A−type granites from northern Zhejiang Province, South China: implications for partial melting of the Neoproterozoic lower crust[J]. Lithos, 294/295: 39−52. doi: 10.1016/j.lithos.2017.09.016

    CrossRef Google Scholar

    [12] Jiang X Y, Luo J C, Guo J, et al. 2018. Geochemistry of I− and A−type granites of the Qingyang–Jiuhuashan complex, eastern China: Insights into early cretaceous multistage magmatism[J]. Lithos, 316/317: 278−294.

    Google Scholar

    [13] Jiang Y H, Zhao P, Zhou Q, et al. 2011. Petrogenesis and tectonic implications of Early Cretaceous S− and A−type granites in the northwest of the Gan−Hang rift, SE China[J]. Lithos, 121: 55−73. doi: 10.1016/j.lithos.2010.10.001

    CrossRef Google Scholar

    [14] Li H, Ling M X, Li C Y, et al. 2012. A−type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction[J]. Lithos, 150: 26−36. doi: 10.1016/j.lithos.2011.09.021

    CrossRef Google Scholar

    [15] Li J W, Zhao X F, Zhou M F, et al. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U−Pb ages, petrogenesis, and geodynamic implications[J]. Contributions to Mineralogy and Petrology, 157(3): 383−409. doi: 10.1007/s00410-008-0341-x

    CrossRef Google Scholar

    [16] Li Z L, Zhou J, Mao J R, et al. 2013. Zircon U−Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition[J]. Lithos, 179: 334−352. doi: 10.1016/j.lithos.2013.07.014

    CrossRef Google Scholar

    [17] Ma Q, Zheng J P, Xu Y G, et al. 2015. Are continental “adakites” derived from thickened or foundered lower crust?[J]. Earth and Planetary Science Letters, 419: 125−133.

    Google Scholar

    [18] Qi H S, Lu S M, Yang X Y, et al. 2020. Genesis of Cretaceous igneous rocks and its related large scale porphyry U−Au mineralization in Chating, the Middle−Lower Yangtze River Metallogenic Belt: The geochemical constrains[J]. Ore Geology Reviews, 127: 103793. doi: 10.1016/j.oregeorev.2020.103793

    CrossRef Google Scholar

    [19] Qian L, Wang Y, Xie J C, et al. 2019. The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province, China: A perspective from apatite geochemistry[J]. Solid Earth Sciences, 4(2019): 178−189.

    Google Scholar

    [20] Sun F J, Xu X S, Zou H B, et al. 2015. Petrogenesis and magmatic evolution of ~130 Ma A−type granites in Southeast China[J]. Journal of Asian Earth Sciences, 98: 20−224.

    Google Scholar

    [21] Sun W D, Ding X, Hu Y H, et al. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3/4): 533−542. doi: 10.1016/j.jpgl.2007.08.021

    CrossRef Google Scholar

    [22] Sun W D, Ling M X, Chung S L, et al. 2012. Geochemical constraints on adakites of different origins and copper mineralization[J]. Journal of Geology, 120(1): 105−120. doi: 10.1086/662736

    CrossRef Google Scholar

    [23] Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A−type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 28: 151−179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [24] Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization[J]. Lithos, 89: 424−446. doi: 10.1016/j.lithos.2005.12.010

    CrossRef Google Scholar

    [25] Wang Q, Wyman D A, Xu J F, et al. 2007. Partialmelting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu–Au mineralization[J]. Journal of Geology, 115(2): 149−161. doi: 10.1086/510643

    CrossRef Google Scholar

    [26] Wang S W, Zhou T F, Yuan F, et al. 2016. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the Middle−Lower Yangtze River Valley metallogenic belt, eastern China[J]. Lithos, 252: 185−199.

    Google Scholar

    [27] Wong J, Sun M, Xing G F, et al. 2009. Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A−type granite: extension at 125–100 Ma and its tectonic significance for South China[J]. Lithos, 112(3/4): 289−305. doi: 10.1016/j.lithos.2009.03.009

    CrossRef Google Scholar

    [28] Wu F Y, Ji W Q, Sun D H, et al. 2012. Zircon U–Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 150: 6−25. doi: 10.1016/j.lithos.2012.03.020

    CrossRef Google Scholar

    [29] Xiao Q L, Zhou T F, Hollings P, et al. 2021. Mineral and whole−rock chemistry of the Chating porphyry Cu–Au deposit related intrusions in the Middle−Lower Yangtze River Belt, Eastern China: Implications for magma evolution and mineralization[J]. Lithos, 380/381: 105881.

    Google Scholar

    [30] Xie J C, Yang X Y, Sun W D, et al. 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China: implications for the tectonic settings[J]. Lithos, 150: 49−61. doi: 10.1016/j.lithos.2012.05.008

    CrossRef Google Scholar

    [31] Xie J C, Wang Y, Li Q Z, et al. 2018. Petrogenesis and metallogenic implications of Late Mesozoic intrusive rocks in the Tongling region, eastern China: a case study and perspective review[J]. International Geology Review, 60(11/14): 1361−1380. doi: 10.1080/00206814.2017.1386130

    CrossRef Google Scholar

    [32] Yan J, Liu J M, Li Q Z, et al. 2015. In situ zircon Hf–O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: implications for petrogenesis and geodynamic evolution[J]. Lithos, 227: 57−76. doi: 10.1016/j.lithos.2015.03.013

    CrossRef Google Scholar

    [33] Yang J H, Wu F Y, Chung S L, et al. 2006. A hybrid origin for the Qianshan A−type granite, northeast China: Geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    [34] Yang X Y, Yang X M, Chi Y Y, et al. 2011. A porphyritic copper (gold) ore−formingmodel for the Shaxi–Changpushan district, Lower Yangtze metallogenic belt, China: geological and geochemical constraints[J]. International Geology Review, 53: 580−611. doi: 10.1080/00206810903211906

    CrossRef Google Scholar

    [35] Yuan F, Zhou T F, Yue S C, et al. 2003. Rare Earths of Magmatic Rocks in Yanshanian Stage in Adjacent Region of Anhui and Jiangxi Provinces, Jiangnan Uplift[J]. Journal of Rare Earth, 21(5): 591−594.

    Google Scholar

    [36] Yue Q, Yan J, Liu J M, et al. 2020. Geochronology, petrogenesis and tectonic implications of the early Cretaceous granitoids in the Jingde−Guangde area, Anhui province, South China[J]. Journal of Asian Earth Sciences, 190: 104−150.

    Google Scholar

    [37] Zhang Y S, Yan J, Li Q Z, et al. 2018. Pulses of Late Mesozoic magmatism: Zircon ages and Hf−O isotopic composition of the Qingyang−Jiuhuashan granitic complex, southern Anhui province, eastern China[J]. Journal of Asian Earth Sciences, 167: 181−196. doi: 10.1016/j.jseaes.2017.08.003

    CrossRef Google Scholar

    [38] Zhou J, Jiang Y H, Xing G F, et al. 2013. Geochronology and petrogenesis of Cretaceous A–type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55: 1359−1383. doi: 10.1080/00206814.2013.774199

    CrossRef Google Scholar

    [39] Zhou T F, Wang S W, Fan Y, et al. 2015. A review of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 65: 433−456. doi: 10.1016/j.oregeorev.2014.10.002

    CrossRef Google Scholar

    [40] Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3/4): 269−287. doi: 10.1016/S0040-1951(00)00120-7

    CrossRef Google Scholar

    [41] Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26−33. doi: 10.18814/epiiugs/2006/v29i1/004

    CrossRef Google Scholar

    [42] 陈芳, 王登红, 杜建国, 等. 2013. 安徽绩溪伏岭花岗岩LA−ICP−MS锆石U−Pb年龄的精确测定及其地质意义[J]. 岩矿测试, 32(6): 970−977. doi: 10.3969/j.issn.0254-5357.2013.06.020

    CrossRef Google Scholar

    [43] 陈芳, 王登红, 杜建国, 等. 2014. 安徽宁国刘村二长花岗岩地球化学特征、LA–ICP–MS 锆石U–Pb 年龄及其地质意义[J]. 地质学报, 88(5): 869−882.

    Google Scholar

    [44] 陈芳, 王登红, 杜建国, 等. 2015. 安徽宁国兰花岭钨钼矿床含矿岩体的地球化学特征、LA−ICP−MS 锆石U−Pb 年代学研究[J]. 大地构造与成矿学, 39(2): 369−377. doi: 10.3969/j.issn.1001-1552.2015.02.017

    CrossRef Google Scholar

    [45] 陈雪霏, 汪应庚, 孙卫东, 等. 2013. 皖南宁国竹溪岭地区花岗岩锆石U−Pb年代学及地球化学及其成因研究[J]. 地质学报, 87(11): 1662−1678.

    Google Scholar

    [46] 陈子微, 余心起, 周翔, 等. 2013. 皖南休宁县里东坑似斑状花岗闪长岩成岩成矿特征分析[J]. 中国地质, 40(6): 1762−1776.

    Google Scholar

    [47] 董树文, 吴锡浩, 吴珍汉, 等. 2000. 论东亚大陆的构造翘变——燕山运动的全球意义[J]. 地质论评, 46(1): 8−13. doi: 10.3321/j.issn:0371-5736.2000.01.002

    CrossRef Google Scholar

    [48] 范裕, 周涛发, 袁峰, 等. 2008. 安徽庐江−枞阳地区A型花岗岩的LA−ICP−MS定年及其地质意义[J]. 岩石学报, 24(8): 1715−1724.

    Google Scholar

    [49] 高冉, 闫峻, 李全忠, 等. 2017. 皖南谭山岩体成因: 年代学和地球化学制约[J]. 高校地质学报, 23(2): 227−243.

    Google Scholar

    [50] 郭博然, 刘树文, 杨朋涛, 等. 2013. 江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约[J]. 地质通报, 32(7): 1035−1046. doi: 10.3969/j.issn.1671-2552.2013.07.009

    CrossRef Google Scholar

    [51] 韩效忠, 吴兆剑, 刘蓉蓉, 等. 2018. 浙江新路盆地九华山火山-侵入杂岩年代学、地球化学特征及其地质意义[J]. 地球科学, 43(S1): 192−208.

    Google Scholar

    [52] 韩园园, 闫峻, 杨超, 等. 2019. 江南造山带东段桃岭-段莘带花岗岩锆石定年和岩石成因[J]. 矿物岩石, 2: 34−44.

    Google Scholar

    [53] 胡庆海. 2017. 扬子板块东缘(浙江北部)晚中生代花岗岩的地球化学特征及其地球动力学意义[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [54] 柯宏飙, 王金泉, 丁勇, 等. 2020. 皖南歙县新溪口岩体锆石U−Pb定年、地球化学特征及找矿前景[J]. 华东地质, 41(2): 116−127.

    Google Scholar

    [55] 李鹏举, 余心起, 邱骏挺, 等. 2016. 皖南侏罗—白垩纪两类花岗岩的岩石成因、氧逸度特征及成矿意义[J]. 岩石学报, 32(2): 399−418.

    Google Scholar

    [56] 厉子龙, 周静, 毛建仁, 等. 2013. 浙西北木瓜燕山期花岗斑岩的定年、地球化学特征及其地质意义[J]. 岩石学报, 29(10): 3607−3622.

    Google Scholar

    [57] 马昌前, 杨坤光, 明厚利, 等. 2003. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学(D辑), 33(9): 817−827.

    Google Scholar

    [58] 毛景文, Holly S, 杜安道, 等. 2004. 长江中下游地区铜金(钼)矿Re–Os年龄测定及其对成矿作用的指示[J]. 地质学报, 78(1): 121−131. doi: 10.3321/j.issn:0001-5717.2004.01.014

    CrossRef Google Scholar

    [59] 彭戈, 闫峻, 初晓强, 等. 2012. 贵池岩体的锆石定年和地球化学: 岩石成因和深部过程[J]. 岩石学报, 28(10): 3271−3286.

    Google Scholar

    [60] 任纪舜. 1989. 中国东部及邻区大地构造演化的新见解[J]. 中国区域地质, 4: 1−12.

    Google Scholar

    [61] 施珂, 张达玉, 丁宁, 等. 2017. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 47(6): 1746−1762.

    Google Scholar

    [62] 孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332−337. doi: 10.3969/j.issn.1671-2552.2006.03.002

    CrossRef Google Scholar

    [63] 汪海, 赵壮, 杨晓勇, 等. 2020. 安庆-贵池矿集区宝树尖铜多金属矿床成因: 来自岩石地球化学及年代学的约束[J]. 岩石学报, 36(1): 184−204. doi: 10.18654/1000-0569/2020.01.17

    CrossRef Google Scholar

    [64] 汪雅菲, 袁峰, 杜建国. 2014. 皖南城安岩体锆石U−Pb年代学研究[J]. 矿床地质, 33(增刊): 163−264.

    Google Scholar

    [65] 汪雅菲. 2015. 安徽城安岩体地球化学特征及成因研究[D]. 合肥工业大学硕士学位论文.

    Google Scholar

    [66] 王存智, 黄志忠, 赵希林, 等. 2018. 长江中下游宣城水东地区早白垩世酸性火山岩年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 37(5): 697−715. doi: 10.3969/j.issn.1000-6524.2018.05.001

    CrossRef Google Scholar

    [67] 王存智, 黄志忠, 赵希林, 等. 2021. 下扬子地区姚村A 型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质, 48(2): 549−563.

    Google Scholar

    [68] 王亮, 王凯, 张翔, 等. 2022. 南祁连扎子沟埃达克岩年代学、地球化学特征及地质意义[J]. 西北地质, 55(1): 39−49.

    Google Scholar

    [69] 王继强, 孙维安, 袁峰, 等. 2017. 庐枞盆地大倪庄铜矿床地质特征、成岩时代及成因探讨[J]. 中国地质, 44(1): 86−100. doi: 10.12029/gc20170107

    CrossRef Google Scholar

    [70] 王孝磊, 周金城, 陈昕, 等. 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 36(5): 714−735. doi: 10.3969/j.issn.1007-2802.2017.05.003

    CrossRef Google Scholar

    [71] 翁望飞, 支利庚, 蔡连友, 等. 2011. 皖南中生代高钾钙碱性埃达克岩地球化学特征及岩石成因[J]. 地质调查与研究, 35(2): 98−107. doi: 10.3969/j.issn.1672-4135.2011.02.002

    CrossRef Google Scholar

    [72] 夏国清, 伊海生, 赵西西, 等. 2012. 晚中生代中国东部高原古高程定量研究[J]. 科学通报, 57(23): 2220−2230.

    Google Scholar

    [73] 谢建成, 陈思, 荣伟, 等. 2012. 安徽牯牛降 A 型花岗岩的年代学、地球化学和构造意义[J]. 岩石学报, 28(12): 4007−4020.

    Google Scholar

    [74] 谢建成, 夏冬梅, 方德, 等. 2016. 皖南晚中生代花岗闪长岩地球化学: 成岩成矿制约[J]. 岩石学报, 32(2): 439−455.

    Google Scholar

    [75] 谢兴楠, 马春, 柳建新, 等. 2013. 安徽马头铜钼多金属矿区复式花岗岩体成因及与成矿的关系[J]. 中国有色金属学报, 23(9): 2584−2591.

    Google Scholar

    [76] 邢凤鸣, 徐祥. 1994. 安徽两条 A 型花岗岩带[J]. 岩石学报, 10(4): 357−369. doi: 10.3321/j.issn:1000-0569.1994.04.007

    CrossRef Google Scholar

    [77] 徐晓春, 刘雪, 张赞赞, 等. 2014. 安徽东至兆吉口铅锌矿区岩浆岩锆石U−Pb年龄及其地质意义[J]. 地质科学, 49(2): 431−455. doi: 10.3969/j.issn.0563-5020.2014.02.008

    CrossRef Google Scholar

    [78] 薛怀民, 汪应庚, 马芳, 等. 2009. 高度演化的黄山A 型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束[J]. 地质学报, 83(2): 247−259. doi: 10.3321/j.issn:0001-5717.2009.02.010

    CrossRef Google Scholar

    [79] 薛怀民, 马芳, 关海燕, 等. 2013. 怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比[J]. 中国地质, 40(3): 694−714. doi: 10.3969/j.issn.1000-3657.2013.03.004

    CrossRef Google Scholar

    [80] 薛怀民, 马芳, 曹光跃, 等. 2016. 长江中下游庐枞火山岩盆地南侧钾质侵入岩带的成因[J]. 地质学报, 90(9): 2233−2257. doi: 10.3969/j.issn.0001-5717.2016.09.011

    CrossRef Google Scholar

    [81] 闫峻, 彭戈, 刘建敏, 等. 2012. 下扬子繁昌地区花岗岩成因: 锆石年代学和Hf–O同位素制约[J]. 岩石学报, 28(10): 3209−3227.

    Google Scholar

    [82] 闫峻, 后田结, 王爱国, 等. 2017. 皖南中生代早期成矿和晚期非成矿花岗岩成因对比[J]. 中国科学:地球科学, 47(11): 1269−1291.

    Google Scholar

    [83] 赵德奎, 古黄玲, 舒旺杰, 等. 2019. 安徽贵池地区岩浆岩演化特征及其与金银多金属矿的关系[J]. 华东地质, 40(2): 126−134.

    Google Scholar

    [84] 张超, 马昌前, Holt F. 2012. 含水大陆下地壳的部分熔融: 大别山C型埃达克岩成因探讨[J]. 高校地质学报, 18(1): 41−51. doi: 10.3969/j.issn.1006-7493.2012.01.004

    CrossRef Google Scholar

    [85] 张虹, 戴圣潜, 管运财, 等. 2005. 皖南绩溪伏岭岩体岩石地球化学特征[J]. 中国地质, 32(3): 411−416. doi: 10.3969/j.issn.1000-3657.2005.03.009

    CrossRef Google Scholar

    [86] 张俊杰, 王光杰, 杨晓勇, 等. 2012. 皖南旌德花岗闪长岩与暗色包体的成因: 地球化学、锆石U−Pb年代学与Hf同位素制约[J]. 岩石学报, 28(12): 4047−4063.

    Google Scholar

    [87] 张旗, 钱青, 王二七, 等. 2001a. 燕山中晚期的“中国东部高原”: 埃达克岩的启示[J]. 地质科学, 36: 248−255.

    Google Scholar

    [88] 张旗, 王焰, 钱青, 等. 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 17(2): 236−244.

    Google Scholar

    [89] 张旗, 金惟俊, 王元龙, 等. 2007. 晚中生代中国东部高北界探讨[J]. 岩石学报, 23(4): 689−700. doi: 10.3969/j.issn.1000-0569.2007.04.001

    CrossRef Google Scholar

    [90] 张旗, 王元龙, 金惟俊, 等. 2008. 晚中生代的中国东部高原: 证据、问题和启示[J]. 地质通报, 27(9): 1404−1430. doi: 10.3969/j.issn.1671-2552.2008.09.004

    CrossRef Google Scholar

    [91] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621−626.

    Google Scholar

    [92] 张旗. 2014. 大陆花岗岩的地球动力学意义[J]. 矿物岩石学杂志, 33(4): 785−798.

    Google Scholar

    [93] 张旗, 焦守涛. 2020. 埃达克理论: 埃达克岩来自高压背景——一个科学的、可靠的、有预见性的科学发现[J]. 岩石学报, 36(6): 1675−1683. doi: 10.18654/1000-0569/2020.06.02

    CrossRef Google Scholar

    [94] 张智宇, 杜杨松, 张静, 等. 2011. 安徽贵池铜山岩体SHRIMP锆石U−Pb年代学与岩石地球化学特征研究[J]. 地质论评, 57(3): 366−378.

    Google Scholar

    [95] 张梓尧, 张义虎, 徐磊, 等. 2023. 西秦岭宕昌—舟曲地区晚三叠世埃达克质花岗岩年代学、地球化学特征及其构造意义[J/OL]. 西北地质, 1−16. doi: 10.12401/j.nwg.2023013.

    Google Scholar

    [96] 周洁, 姜耀辉, 曾勇, 等. 2013. 江南造山带东段旌德岩体锆石LA–ICPMS 年龄和Nd−Sr−Hf 同位素地球化学[J]. 中国地质, 40(5): 1379−1391. doi: 10.3969/j.issn.1000-3657.2013.05.004

    CrossRef Google Scholar

    [97] 周静. 2016. 浙西北早白垩世花岗质岩石成因与构造演化[D]. 浙江大学博士学位论文.

    Google Scholar

    [98] 周术召. 2016. 皖南白际-长垓北东向花岗岩带特征及其与燕山期断裂带的成因关系[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [99] 周涛发, 袁峰, 侯明金, 等. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景[J]. 矿物岩石, 24(3): 65−71. doi: 10.3969/j.issn.1001-6872.2004.03.008

    CrossRef Google Scholar

    [100] 周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 24(8): 1665−1678.

    Google Scholar

    [101] 周翔, 余心起, 王德恩, 等. 2011. 皖南东源含W-Mo花岗闪长斑岩及成矿年代学研究[J]. 现代地质, 25(2): 201−210. doi: 10.3969/j.issn.1000-8527.2011.02.002

    CrossRef Google Scholar

    [102] 周翔, 余心起, 杨赫鸣, 等. 2012. 皖南绩溪县靠背尖高Ba−Sr 花岗闪长斑岩年代学及其成因[J]. 岩石学报, 28(10): 3403−3417.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1087) PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint