2025 Vol. 31, No. 3
Article Contents

ZHANG Lijun, YUAN Daoyang, LI Hongqiang, SU Qi, SU Ruihuan, CHEN Yanwen, WEN Yameng. 2025. Tectonic geomorphological evidence of late Quaternary segmented activity along the northern margin fault of Lajishan. Journal of Geomechanics, 31(3): 411-426. doi: 10.12090/j.issn.1006-6616.2024125
Citation: ZHANG Lijun, YUAN Daoyang, LI Hongqiang, SU Qi, SU Ruihuan, CHEN Yanwen, WEN Yameng. 2025. Tectonic geomorphological evidence of late Quaternary segmented activity along the northern margin fault of Lajishan. Journal of Geomechanics, 31(3): 411-426. doi: 10.12090/j.issn.1006-6616.2024125

Tectonic geomorphological evidence of late Quaternary segmented activity along the northern margin fault of Lajishan

    Fund Project: This research is financially supported by the Second Xizang Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0901) and the National Natural Science Foundation of China (Grant Nos. 42472267 and 42172227)
More Information
  • Objective

    The Lajishan–Jishishan orogenic belt represents a significant arc-shaped tectonic zone formed by northeastward compressional expansion along the northeastern margin of the Xizang Plateau, jointly controlled by two compressional thrust fault zones: the North Lajishan Fault and the South Lajishan fault. Since the Late Cenozoic, intense tectonic activities in the Lajishan area have created a prominent basin–range coupled geomorphological pattern, making it an ideal region for investigating the geomorphic evolution and the tectonic dynamics through structural geomorphological approaches.

    Methods

    Based on a 30-m-resolution digital elevation model (DEM), this study employs the ArcGIS and MatLab platforms with plugin tools and open-source code packages to extract channel steepness indices (Ksn) from 105 medium- and small-sized rivers on the hanging wall of the North Lajishan Fault (including the East Jishishan Fault), along with hypsometric integrals (HI) from 54 watersheds along the fault zone.

    Results

    The Ksn distribution reveals an overall west-to-east increasing trend in uplift rates along the North Lajishan fault, with a notable low-value anomaly in its central segment. Statistical analysis of Ksn demonstrates clear segmentation characteristics, indicating that the eastern section of northern Lajishan and the Jishishan section exhibit the highest uplift rate and strongest tectonic activity. HI spatial distribution patterns along the North Lajishan fault show multiple high-value zones within piedmont basins. Integrated with geological surveys and petroleum exploration profiles, these findings suggest that during the Late Quaternary, the North Lajishan fault has not only remained active but also propagated northeastward into the Xining–Minhe and Linxia basins, exhibiting thrust fault–fold deformation features.

    Conclusion

    (1) The tectonic geomorphological evolution of the North Lajishan Fault (including the eastern margin of Jishishan) is obviously different, and it tends to gradually become younger from west to east. The geomorphological evolution of the northern margin of Lajishan has discrete differences, which can be attributed to three sections: a western, a middle, and an eastern section, which includes the northern margin of Jishishan. Among them, the tectonic activity of the latter section is the latest and most intense, consistent with the long-term tectonic evolution. This confirms the rationality of the geomorphological parameter extraction results and is also a geomorphological response to the differential tectonic activity in this area. (2) The tectonic activity characteristics of the northern margin of Lajishan (including the eastern margin of Jishishan) adhere to the geomorphological evolution law and also have segmental differences. It is believed that the North Lajishan Fault (including the East Jishishan Fault) has strong tectonic activity from west to east. Specifically, the uplift rate of the western section of the northern margin of Lajishan is stable. The tectonic activity may be superimposed on the strike-slip component of the Riyueshan Fault in addition to the regional extrusion uplift, which was active in the Late Pleistocene and dominated by left-handed strike-slip and thrust. The middle section of the northern margin of Lajishan (NE-trending bulge section) has the lowest tectonic uplift rate, and the fault in this section is dominated by extrusion thrust with a late Pleistocene activity; it is little affected by the Riyueshan fault. The eastern section of the northern margin of the Lajishan-Jishishan section (the fault arc protrudes to the south-east turning section) has strong tectonic activity with Holocene fault activity; its nature is mainly thrust with dextral components. Significance In addition to its late Quaternary activity, the North Lajishan Fault (including the East Jishishan Fault) tends to expand and develop into the piedmont basin. Combined with the comprehensive interpretation of field geological surveys and oil exploration sections, it is believed that the fault extends to the interior of the Xining–Minhe Basin to form a reverse fault–fold belt. Its latest tectonic activity may have triggered more than 10 moderate–strong earthquakes. Attention should be paid to this tectonic activity and the related seismicity in those basin.

  • 加载中
  • [1] BURBANK, PINTER, 1999. Landscape evolution: the interactions of tectonics and surface processes[J]. Basin Research, 11(1): 1-6. doi: 10.1046/j.1365-2117.1999.00089.x

    CrossRef Google Scholar

    [2] CHANG Z Y, WANG J, BAI S B, et al. , 2014. Research on landform classification based on DEM data: taking West Qinling as an example[J]. Soil and Water Conservation in China(4): 56-59. (in Chinese)

    Google Scholar

    [3] CHANG Z Y, WANG J, BAI S B, et al., 2015. Comparison of hypsometric integral methods[J]. Journal of Arid Land Resources and Environment, 29(3): 171-175. (in Chinese with English abstract

    Google Scholar

    [4] CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al., 2004. Surface uplift, tectonics, and erosion of eastern Xizang from large-scale drainage patterns[J]. Tectonics, 23(1): TC1006.

    Google Scholar

    [5] DUVALL A, KIRBY E, BURBANK D, 2004. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California[J]. Journal of Geophysical Research: Earth Surface, 109(F3): F03002.

    Google Scholar

    [6] GONG Q M, XU H Y, LI L M, 2021. Discussions on the rock abrasivity index classification[J]. Chinese Journal of Underground Space and Engineering, 17(3): 748-758 . (in Chinese with English abstract

    Google Scholar

    [7] HSIEH M L, KNUEPFER P L K, 2001. Middle-late Holocene river terraces in the Erhjen River Basin, southwestern Taiwan: implications of river response to climate change and active tectonic uplift[J]. Geomorphology, 38(3-4): 337-372. doi: 10.1016/S0169-555X(00)00105-7

    CrossRef Google Scholar

    [8] HU X F, PAN B T, KIRBY E, et al., 2010. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Xizang Plateau[J]. Chinese Science Bulletin, 55(27-28): 3205-3214. doi: 10.1007/s11434-010-4024-4

    CrossRef Google Scholar

    [9] HU X F, PAN B T, LI Q, 2014. Principles of the stream power erosion model and its latest progress in research[J]. Journal of Lanzhou University (Natural Sciences), 50(6): 824-831. (in Chinese with English abstract

    Google Scholar

    [10] KE S Y, ZHANG D L, WANG W T, et al., 2021. Progress of environmental change in the northeastern Xizang Plateau since late Pleistocene[J]. Advances in Earth Science, 36(7): 727-739. (in Chinese with English abstract

    Google Scholar

    [11] KIRBY E, WHIPPLE K, 2001. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 29(5): 415-418. doi: 10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2

    CrossRef Google Scholar

    [12] KIRBY E, WHIPPLE K X, TANG W Q, et al., 2003. Distribution of active rock uplift along the eastern margin of the Xizang Plateau: inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B4): 2217.

    Google Scholar

    [13] LEASE, RICHARD O, BURBANK, et al., 2011. Middle Miocene reorganization of deformation along the northeastern Xizang Plateau[J]. Geology, 39(4): 359-362. doi: 10.1130/G31356.1

    CrossRef Google Scholar

    [14] LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English abstract

    Google Scholar

    [15] LI J Z, LI L J, ZHANG T, et al., 2023. Effect of DEM data sources and resolutions on watershed flood simulations[J]. Journal of Hydroelectric Engineering, 42(3): 26-40. (in Chinese with English abstract

    Google Scholar

    [16] LI Z M, TIAN Q J, TU H W, 2009. Remote sensing characteristics of Lajishan fault[J]. Plateau Earthquake Research, 21(1): 26-31. (in Chinese with English abstract

    Google Scholar

    [17] LI Z Y, ZHANG S, YUAN X M, et al., 2024. Characteristics of disasters caused by the Jishishan MS6.2 earthquake in Gansu Province in 2023[J]. Journal of Institute of Disaster Prevention, 26(2): 43-52. (in Chinese with English abstract

    Google Scholar

    [18] LIANG M J, ZHOU R J, YAN L, et al., 2014. The relationships between Neotectonic activity of the middle segment of Dari fault and its geomorphological response, Qinghai Province, China[J]. Seismology and Geology, 36(1): 28-38. (in Chinese with English abstract

    Google Scholar

    [19] LIFTON N A, CHASE C G, 1992. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California[J]. Geomorphology, 5(1-2): 77-114. doi: 10.1016/0169-555X(92)90059-W

    CrossRef Google Scholar

    [20] LIU J, ZENG L S, DING L, et al., 2009. Tectonic geomorphology, active tectonics and lower crustal channel flow hypothesis of the southeastern Xizang Plateau[J]. Chinese Journal of Geology, 44(4): 1227-1255. (in Chinese with English abstract

    Google Scholar

    [21] MASEK J G, ISACKS B L, GUBBELS T L, et al., 1994. Erosion and tectonics at the margins of continental plateaus[J]. Journal of Geophysical Research: Solid Earth, 99(B7): 13941-13956. doi: 10.1029/94JB00461

    CrossRef Google Scholar

    [22] PIKE R J, WILSON S E, 1971. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis[J]. Geological Society of America Bulletin, 82(4): 1079-1084. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2

    CrossRef Google Scholar

    [23] SHI X M, DU Z C, 2006. Review and prospect of tectonic geomorphology in China[J]. Northwestern Seismological Journal, 28(3): 280-284. (in Chinese with English abstract

    Google Scholar

    [24] SNYDER N P, WHIPPLE K X, TUCKER G E, et al., 2000. Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 112(8): 1250-1263. doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2

    CrossRef Google Scholar

    [25] STOCK J D, MONTGOMERY D R, 1999. Geologic constraints on bedrock river incision using the stream power law[J]. Journal of Geophysical Research: Solid Earth, 104(B3): 4983-4993. doi: 10.1029/98JB02139

    CrossRef Google Scholar

    [26] STRAHLER A N, 1952. Hypsometric (area-altitude) analysis of erosional topography[J]. GSA Bulletin, 63(11): 1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    CrossRef Google Scholar

    [27] SU R H, YUAN D Y, ZHENG W J, et al., 2024. Surface rupture and damage characteristics of the 2023 MS6.2 Jishishan earthquake, Gansu[J]. Chinese Journal of Geophysics, 67(9): 3454-3471. (in Chinese with English abstract

    Google Scholar

    [28] SUN Y Q, QIU X P, CHEN C Y, et al., 2024. GNSS and InSAR derived coseismic slip distribution of the 2023 Jishishan MS6.2 earthquake[J]. China Earthquake Engineering Journal, 46(4): 867-879. (in Chinese with English abstract

    Google Scholar

    [29] WANG A, WANG G C, 2005. Review on morphotectonic and its analytical methods[J]. Geological Science and Technology Information, 24(4): 7-12, 20. (in Chinese with English abstract

    Google Scholar

    [30] WANG E Q, ZHANG Q, BURCHFIEL C B, 2000. The Lajishan fault belt in Qinghai Province: a multi-staged uplifting structural window[J]. Scientia Geologica Sinica, 35(4): 493-500. (in Chinese with English abstract

    Google Scholar

    [31] WANG Z C, ZHANG P Z, ZHANG G L, et al., 2006. Tertiary tectonic activities of the north frontal fault zone of the west Qinling mountains: implications for the growth of the northeastern margin of the Qinghai-Xizang Plateau[J]. Earth Science Frontiers, 13(4): 119-135. (in Chinese with English abstract

    Google Scholar

    [32] WHIPPLE K, TUCKER G E, 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120

    CrossRef Google Scholar

    [33] WOBUS C, HEIMSATH A, WHIPPLE K, et al., 2005. Active out-of-sequence thrust faulting in the central Nepalese Himalaya[J]. Nature, 434(7036): 1008-1011. doi: 10.1038/nature03499

    CrossRef Google Scholar

    [34] XIE H, LEI Z S, YUAN D Y, et al., 2014. Research on historical data of Qutan Temple earthquake in 1944 in Qinghai Province[J]. Inland Earthquake, 28(4): 305-311. (in Chinese with English abstract

    Google Scholar

    [35] YANG Z, 2014. The hydrological characteristics and rainfall landslides stability analysis of Menyuan Basin, Qinghai Province[D]. Xi’an: Chang’an University. (in Chinese with English abstract

    Google Scholar

    [36] YANG Z X, 1993. On the overthrust zone in the north margin of the Lajishan, the southern Qilian Mountains[J]. Experimental Petroleum Geology, 15(2): 138-145. (in Chinese with English abstract

    Google Scholar

    [37] YUAN D Y, SHI Y C, LIU B C, 1999. Study on the time scale of late quaternary hydrogenic sediments along the northeastern margin of Qinghai Xizang Plateau[J]. Seismology and Geology, 21(1): 1-8. (in Chinese with English abstract

    Google Scholar

    [38] YUAN D Y, 2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Xizang Plateau since the Late Cenozoic time[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract

    Google Scholar

    [39] YUAN D Y, ZHANG P Z, LIU B C, et al., 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 78(2): 270-278. (in Chinese with English abstract

    Google Scholar

    [40] YUAN D Y. ZHANG P Z, LEI Z S, et al., 2005. A preliminary study on the new activity features of the Lajishan Mountain fault zone in Qinghai Province[J]. Earthquake Research in China, 21(1): 93-102. (in Chinese with English abstract

    Google Scholar

    [41] ZHANG B, 2012. The study of new activities on western segment of northern margin of western Qinling fault and Laji Shan fault[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract

    Google Scholar

    [42] ZHANG H P, YANG N, ZHANG Y Q, et al., 2006. Geomorphology of the Minjiang drainage system (Sichuan, China) and its structural implications[J]. Quaternary Sciences, 26(1): 126-135. (in Chinese with English abstract

    Google Scholar

    [43] ZHANG T Q, WANG Z, ZHANG X M, et al., 2015. Hypsometric integral analysis of the Urumqi river drainage basin and its implications for topographic evolution[J]. Quaternary Sciences, 35(1): 60-70. (in Chinese with English abstract

    Google Scholar

    [44] ZHANG W S, FENG G S, GAO S, et al., 2003. Metamorphic core complex structure and uplifting mechanism in Lajishan-Hualong area[J]. Earth Science: Journal of China University of Geosciences, 28(4): 407-413. (in Chinese with English abstract

    Google Scholar

    [45] ZHAO H Z, LI Y L, YANG J C, et al., 2010. Influence of area and space dependence for hypsometric integral and its geological implications[J]. Geographical Research, 29(2): 271-282. (in Chinese with English abstract

    Google Scholar

    [46] ZHENG D W, ZHANG P Z, WAN J L, et al., 2006. Tectonic events, climate and conglomerate: example from Jishishan Mountain and Linxia Basin[J]. Quaternary Sciences, 26(1): 63-69. (in Chinese with English abstract

    Google Scholar

    [47] ZHENG G Y, 2002. Study on the Tectonic Significance of Hypsometric Integral in the Frontal Basins of the Western Foothills Belt, Taiwan [D]. Kaohsiung: National Kaohsiung Normal University: 37. (in Chinese with English abstract

    Google Scholar

    [48] ZHU Y L, BAI D, ZHANG C, et al., 2024. Comparative analysis study of SRTM and ASTER GDEM data in Shaanxi Province based on ICESat-2[J]. Mineral Exploration, 15(5): 845-852. (in Chinese with English abstract

    Google Scholar

    [49] ZHUANG W Q, CUI D X, HAO M, et al., 2023. Geodetic constraints on contemporary three-dimensional crustal deformation in the Laji Shan–Jishi Shan tectonic belt[J]. Geodesy and Geodynamics, 14(6): 589-596. doi: 10.1016/j.geog.2023.03.006

    CrossRef Google Scholar

    [50] 常直杨,王建,白世彪,等,2014. 基于DEM数据的地貌分类研究:以西秦岭为例[J]. 中国水土保持(4):56-59.

    Google Scholar

    [51] 常直杨,王建,白世彪,等,2015. 面积高程积分值计算方法的比较[J]. 干旱区资源与环境,29(3):171-175.

    Google Scholar

    [52] 龚秋明,许弘毅,李立民,2021. 岩石磨蚀性指数分级讨论[J]. 地下空间与工程学报,17(3):748-758.

    Google Scholar

    [53] 胡小飞,潘保田,KIRBY E,等,2010. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报,55(23):2329-2338.

    Google Scholar

    [54] 胡小飞,潘保田,李琼,2014. 基岩河道水力侵蚀模型原理及其最新研究进展[J]. 兰州大学学报(自然科学版),50(6):824-831.

    Google Scholar

    [55] 柯思茵,张冬丽,王伟涛,等,2021. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展,36(7):727-739. doi: 10.11867/j.issn.1001-8166.2021.056

    CrossRef Google Scholar

    [56] 李红强,袁道阳,苏琦,等,2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报,29(6):824-841. doi: 10.12090/j.issn.1006-6616.2023123

    CrossRef Google Scholar

    [57] 李建柱,李磊菁,张婷,等,2023. DEM数据源及分辨率对流域洪水模拟影响研究[J]. 水力发电学报,42(3):26-40. doi: 10.11660/slfdxb.20230303

    CrossRef Google Scholar

    [58] 李兆焱,张升,袁晓铭,等,2024. 2023年甘肃积石山6.2级地震灾害特征[J]. 防灾科技学院学报,26(2):43-52. doi: 10.3969/j.issn.1673-8047.2024.02.005

    CrossRef Google Scholar

    [59] 李智敏,田勤俭,屠泓为,2009. 拉脊山断裂带遥感特征研究[J]. 高原地震,21(1):26-31. doi: 10.3969/j.issn.1005-586X.2009.01.004

    CrossRef Google Scholar

    [60] 梁明剑,周荣军,闫亮,等,2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质,36(1):28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003

    CrossRef Google Scholar

    [61] 刘静,曾令森,丁林,等,2009. 青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J]. 地质科学,44(4):1227-1255. doi: 10.3321/j.issn:0563-5020.2009.04.014

    CrossRef Google Scholar

    [62] 史兴民,杜忠潮,2006. 中国构造地貌学的回顾与展望[J]. 西北地震学报,28(3):280-284.

    Google Scholar

    [63] 苏瑞欢,袁道阳,郑文俊,等,2024. 2023年甘肃积石山MS6.2地震地表破裂及震害特征分析[J]. 地球物理学报,67(9):3454-3471. doi: 10.6038/cjg2024S0090

    CrossRef Google Scholar

    [64] 孙云强,邱鑫鹏,陈常勇,等,2024. GNSS和InSAR约束的2023积石山MS6.2地震同震滑动分布[J]. 地震工程学报,46(4):867-879.

    Google Scholar

    [65] 王岸,王国灿,2005. 构造地貌及其分析方法述评[J]. 地质科技情报,24(4):7-12,20.

    Google Scholar

    [66] 王二七,张旗,BURCHFIEL C B,2000. 青海拉鸡山:一个多阶段抬升的构造窗[J]. 地质科学,35(4):493-500. doi: 10.3321/j.issn:0563-5020.2000.04.013

    CrossRef Google Scholar

    [67] 王志才,张培震,张广良,等,2006. 西秦岭北缘构造带的新生代构造活动:兼论对青藏高原东北缘形成过程的指示意义[J]. 地学前缘,13(4):119-135. doi: 10.3321/j.issn:1005-2321.2006.04.010

    CrossRef Google Scholar

    [68] 谢虹,雷中生,袁道阳,等,2014. 1944年青海乐都瞿昙寺地震考证[J]. 内陆地震,28(4):305-311. doi: 10.3969/j.issn.1001-8956.2014.04.003

    CrossRef Google Scholar

    [69] 杨珍,2014. 青海省门源盆地水文特征与降雨型滑坡稳定性分析[D]. 西安:长安大学.

    Google Scholar

    [70] 杨中轩,1993. 南祁连拉脊山北缘逆冲推覆构造带[J]. 石油实验地质,15(2):138-145. doi: 10.11781/sysydz199302138

    CrossRef Google Scholar

    [71] 袁道阳,石玉成,刘百篪,1999. 青藏高原东北缘地区晚第四纪水系沉积物年代标尺的初步研究[J]. 地震地质,21(1):1-8. doi: 10.3969/j.issn.0253-4967.1999.01.001

    CrossRef Google Scholar

    [72] 袁道阳,2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京:中国地震局地质研究所.

    Google Scholar

    [73] 袁道阳,张培震,刘百篪,等,2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    CrossRef Google Scholar

    [74] 袁道阳,张培震,雷中生,等,2005. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震,21(1):93-102. doi: 10.3969/j.issn.1001-4683.2005.01.010

    CrossRef Google Scholar

    [75] 张波,2012. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州:中国地震局兰州地震研究所.

    Google Scholar

    [76] 张会平,杨农,张岳桥,等,2006. 岷江水系流域地貌特征及其构造指示意义[J]. 第四纪研究,26(1):126-135. doi: 10.3321/j.issn:1001-7410.2006.01.016

    CrossRef Google Scholar

    [77] 张天琪,王振,张晓明,等,2015. 北天山乌鲁木齐河流域面积-高程积分及其地貌意义[J]. 第四纪研究,35(1):60-70.

    Google Scholar

    [78] 张旺生,冯光胜,高山,等,2003. 拉脊山-化隆变质核杂岩构造及其隆升机制探讨[J]. 地球科学:中国地质大学学报,28(4):407-413.

    Google Scholar

    [79] 赵洪壮,李有利,杨景春,等,2010. 面积高度积分的面积依赖与空间分布特征[J]. 地理研究,29(2):271-282.

    Google Scholar

    [80] 郑德文,张培震,万景林,等,2006. 构造、气候与砾岩:以积石山和临夏盆地为例[J]. 第四纪研究,26(1):63-69. doi: 10.3321/j.issn:1001-7410.2006.01.008

    CrossRef Google Scholar

    [81] 郑光佑,2002.台湾西部麓山带前缘流域面积高度积分之构造意义研究[D]. 高雄: 国立高雄师范大学.

    Google Scholar

    [82] 朱一龙,白栋,张春,等,2024. 基于ICESat-2的陕西省SRTM和ASTER GDEM数据对比分析研究[J]. 矿产勘查,(5):845-852.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(210) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint