2025 Vol. 31, No. 3
Article Contents

YU Kecheng, SUN Shengsi, DONG Yunpeng, HUI Bo, CHENG Chao, ZHANG Bin, ZHANG Yining, LI Xinyu. 2025. Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling. Journal of Geomechanics, 31(3): 386-410. doi: 10.12090/j.issn.1006-6616.2025008
Citation: YU Kecheng, SUN Shengsi, DONG Yunpeng, HUI Bo, CHENG Chao, ZHANG Bin, ZHANG Yining, LI Xinyu. 2025. Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling. Journal of Geomechanics, 31(3): 386-410. doi: 10.12090/j.issn.1006-6616.2025008

Structural deformation and geochronology of the ductile shear zone along the southern margin of the Foping dome, South Qinling

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 42330310 and 42372257)
More Information
  • Objective

    A typical granulite–migmatite–gneiss dome developed in the Foping area of the central Qinling orogenic belt. This area is key to studying the metamorphic deformation of continental crust and the Mesozoic tectonic evolution of Qinling. The Yangtianba–Shimudi ductile shear zone along the dome's southern margin records information on middle–deep structural deformation during the late Triassic compressional–extensional transition, offering crucial constraints on the exhumation mechanism of the Foping dome.

    Methods

    A detailed investigation of representative metamorphic and deformed rock samples from the shear zone was conducted using structural analysis, mineral geochemistry, crystallographic preferred orientation (CPO), and geochronology. Field observations and kinematic vorticity analysis show that this shear zone developed under right-lateral ductile shear deformation controlled by pure shear.

    Results

    In the felsic mylonite, quartz primarily shows prism <a> and prism <c> slip systems, suggesting deformation occurred under amphibolite facies conditions at approximately 550–650 °C. The characteristics of the metamorphic mineral assemblages and the results of garnet–biotite–plagioclase thermobarometry indicate a clockwise P–T path, with peak metamorphic conditions of 568–611 °C/5.2–5.3 kbar and 630–654 °C/7.1–7.9 kbar. The isothermal decompression stage M2 recorded conditions of 590–616 °C/3.5–4.5 kbar. Zircon U–Pb dating of the leucosomes in the migmatites within the shear zone yielded an age of 180.8 ± 3.8 Ma, representing the lower limit of the ductile shear deformation.

    Conclusion

    Integrated with regional geological data, the metamorphic and deformational evolution of the study area can be reconstructed as follows: Prior to ~210 Ma, the central segment of the South Qinling tectonic belt was dominated by collisional orogenesis, leading to crustal thickening and the development of progressive metamorphism (M1) in the Foping area. During 210–200 Ma, the Foping region transitioned into post-collisional extension. This transitional phase was characterized by a bidirectional stress regime combining horizontal shortening and vertical collapse, which triggered ductile shear deformation (D1) in the Yangtianba-Shimudi area and initiated the isothermal decompression metamorphic event (M2). The region entered a phase of post-collisional extension at about 180 million years. Continued extension resulted in the formation of partial melts in the northern part of the study area. During the subsequent exhumation of the ductile shear zone, the mylonitic foliation was reformed by late fold deformation. [Significance] The findings provide a reference for discussing the detailed process of metamorphic deformation response in the process of Late Triassic–Early Jurassic tectonic transformation in the south of Foping dome.

  • 加载中
  • [1] BROWNLEE S J, HACKER B R, SALISBURY M, et al., 2011. Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh‐pressure terrane[J]. Journal of Geophysical Research: Solid Earth, 116(B8): B08206.

    Google Scholar

    [2] CHENG C, SUN S S, DONG Y P, et al., 2022. Exhumation of plutons controlled by boundary faults: insights from the kinematics, microfabric, and geochronology of the Taibai shear zone, Qinling Orogen, China[J]. Geological Society of America Bulletin, 134(11-12): 2723-2744. doi: 10.1130/B36073.1

    CrossRef Google Scholar

    [3] CHEN H, HU J M, WU G L, et al., 2010. Study on the intracontinental deformation of the Mian–Lue suture belt, western Qiling[J]. Acta Petrologica Sinica, 26(4): 1277-1288. (in Chinese with English abstract

    Google Scholar

    [4] CHEN L Y, LIU Z H, LIU X C, et al., 2019. Metamorphism and its relation of Magmatism of the Foping gneiss dome in the South Qinling tectonic belt[J]. Earth Science, 44(12): 4178-4185. (in Chinese with English abstract

    Google Scholar

    [5] CHEN S Y, ZHANG B, ZHANG J J, et al., 2022. Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the North Himalayan Gneiss Domes: evidence from a structural, kinematic, and geochronological investigation of the Ramba gneiss dome[J]. Journal of Structural Geology, 155: 104527. doi: 10.1016/j.jsg.2022.104527

    CrossRef Google Scholar

    [6] DAS J P, BHATTACHARYYA K, MOOKERJEE M, et al., 2016. Kinematic analyses of orogen–parallel L–tectonites from Pelling–Munsiari thrust of Sikkim Himalayan fold thrust belt: insights from multiple, incremental strain markers[J]. Journal of Structural Geology, 90: 61-75. doi: 10.1016/j.jsg.2016.07.005

    CrossRef Google Scholar

    [7] DAS J P, BHATTACHARYYA K, MAMTANI M A, 2021. A kinematic approach for investigating magnetic and strain fabrics from constrictional and flattening domains of shear zones in Sikkim Himalayan fold thrust belt[J]. Journal of Structural Geology, 149: 104388. doi: 10.1016/j.jsg.2021.104388

    CrossRef Google Scholar

    [8] DEWEY J F, HOLDSWORTH R E, STRACHAN R A, 1998. Transpression and transtension zones[M]//HOLDSWORTH R E, STRACHAN R A, DEWEY J F. Continental transpressional and transtensional tectonics. London: Geological Society, London, Special Publications, 135(1): 1-14.

    Google Scholar

    [9] DONG Y P, ZHANG G W, NEUBAUER F, et al., 2011. Tectonic evolution of the Qinling Orogen, China: review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

    CrossRef Google Scholar

    [10] DONG Y P, LIU X M, ZHANG G W, et al., 2012. Triassic diorites and granitoids in the Foping area: constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 47: 123-142. doi: 10.1016/j.jseaes.2011.06.005

    CrossRef Google Scholar

    [11] DONG Y P, SANTOSH M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009

    CrossRef Google Scholar

    [12] DONG Y P, ZHANG G W, SUN S S, et al., 2019. The “cross–tectonics” in China continent: formation, evolution, and its significance for continental dynamics[J]. Journal of Geomechanics, 25(5): 769-797. (in Chinese with English abstract

    Google Scholar

    [13] DONG Y P, SUN S S, SANTOSH M, et al., 2021. Central China Orogenic Belt and amalgamation of East Asian continents[J]. Gondwana Research, 100: 131-194. doi: 10.1016/j.gr.2021.03.006

    CrossRef Google Scholar

    [14] FLINN D, 1962. On folding during three–dimensional progressive deformation[J]. Quarterly Journal of the Geological Society, 188(1-4): 385-428.

    Google Scholar

    [15] FOSSEN H, TIKOFF B, 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics[J]. Journal of Structural Geology, 15(3-5): 413-422. doi: 10.1016/0191-8141(93)90137-Y

    CrossRef Google Scholar

    [16] FOSSEN H, 2016. Structural geology[M]. Cambridge: Cambridge University Press.

    Google Scholar

    [17] FOSSEN H, CAVALCANTE G C G, 2017. Shear zones–a review[J]. Earth-Science Reviews, 171: 434-455. doi: 10.1016/j.earscirev.2017.05.002

    CrossRef Google Scholar

    [18] FOSTER M D, 1960. Interpretation of the composition of trioctahedral micas[R]. Washington: United States Government Printing Office.

    Google Scholar

    [19] FRY N, 1979. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 60(1-2): 89-105. doi: 10.1016/0040-1951(79)90135-5

    CrossRef Google Scholar

    [20] HAN Y G, YAN D P, LI Z L, 2015. A new solution for finite strain measurement by fry method in the CorelDRAW platform[J]. Geoscience, 29(3): 494-500. (in Chinese with English abstract

    Google Scholar

    [21] HE Z J, NIU B G, REN J S, 2005. Tectonic discriminations of sandstones geochemistry from the middlelate devonian liuling group in Shanyang area, southern Shaanxi[J]. Chinese Journal of Geology, 40(4): 594-607. (in Chinese with English abstract

    Google Scholar

    [22] HOLDAWAY M J, 2000. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer[J]. American Mineralogist, 85(7-8): 881-892. doi: 10.2138/am-2000-0701

    CrossRef Google Scholar

    [23] HU F Y, LIU S W, DUCEA M N, et al., 2020. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: implications for oblique continental collision[J]. Gondwana Research, 88: 296-332. doi: 10.1016/j.gr.2020.07.006

    CrossRef Google Scholar

    [24] HU L, LIU J L, JI M, et al. , 2009. Deformation microstructure identification manual[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    [25] JI S C, SHAO T B, MICHIBAYASHI K, et al., 2015. Magnitude and symmetry of seismic anisotropy in mica– and amphibole–bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Xizang Plateau[J]. Journal of Geophysical Research: Solid Earth, 120(9): 6404-6430. doi: 10.1002/2015JB012209

    CrossRef Google Scholar

    [26] JIANG Y H, JIN G D, LIAO S Y, et al., 2010. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014

    CrossRef Google Scholar

    [27] LAW R D, SEARLE M P, SIMPSON R L, 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Xizang[J]. Journal of the Geological Society, 161(2): 305-320. doi: 10.1144/0016-764903-047

    CrossRef Google Scholar

    [28] LAW R D, 2014. Deformation thermometry based on quartz c–axis fabrics and recrystallization microstructures: a review[J]. Journal of structural Geology, 66: 129-161. doi: 10.1016/j.jsg.2014.05.023

    CrossRef Google Scholar

    [29] LI J Y, WANG Z Q, ZHAO M, 1999. 40Ar/39Ar thermochronological constraints on the timing of collisional orogeny in the Mian–Lüe collision belt, southern Qinling Mountains[J]. Acta Geologica Sinica (English Edition), 73(2): 208-215. doi: 10.1111/j.1755-6724.1999.tb00828.x

    CrossRef Google Scholar

    [30] LI J Y, ZHANG J, LIU J F, et al., 2019. Crustal tectonic framework of China and its formation processes: constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract

    Google Scholar

    [31] LI S K, ZHANG Y Q, JI J Q, et al., 2022. Orogen–parallel mid–lower crustal ductile flow during the late Triassic Qinling orogeny: structural geology and geochronology[J]. International Geology Review, 64(11): 1611-1634. doi: 10.1080/00206814.2021.1949639

    CrossRef Google Scholar

    [32] LI Z Q, ZHANG B, GUO L, et al., 2024. Slab tear of subducted Indian lithosphere beneath the eastern Himalayan Syntaxis region[J]. Tectonics, 43(7): e2024TC008248. doi: 10.1029/2024TC008248

    CrossRef Google Scholar

    [33] LIU S W, YANG P T, LI Q G, et al., 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling Orogen, China[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1928-1943. (in Chinese with English abstract

    Google Scholar

    [34] LIU Z H, LUO M, CHEN L Y, et al., 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: constraints from LA–ICP–MS U–Pb dating of detrital zircons from the metasedimentary rocks[J]. Acta Petrologica Sinica, 34(5): 1484-1502. (in Chinese with English abstract

    Google Scholar

    [35] LIU Z H, CHEN L Y, QU W, et al., 2019. Early Mesozoic metamorphism, Anataxis and deformation of Foping area in South Qinling belt: constrains from U–Pb Zircon dating[J]. Acta Geoscientica Sinica, 40(4): 545-562. (in Chinese with English abstract

    Google Scholar

    [36] LIU Z H, LIU X C, CHEN L Y, et al., 2024. Zircon U–Pb dating of the Dizhuanggou Formation, Changjiaoba Group in the South Qinling Belt and its tectonic significance[J]. Journal of Geomechanics, 30(6): 1012-1027. (in Chinese with English abstract

    Google Scholar

    [37] LIU Z H, CHEN L Y, LIU X C, et al., 2025. Petrological and geochronological constraints on the genesis of the Foping gneiss dome, South Qinling Belt, central China[J]. Journal of Asian Earth Sciences, 277: 106406. doi: 10.1016/j.jseaes.2024.106406

    CrossRef Google Scholar

    [38] LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center: 1-70.

    Google Scholar

    [39] NACHIT H, IBHI A, ABIA E H, et al., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 337(16): 1415-1420. doi: 10.1016/j.crte.2005.09.002

    CrossRef Google Scholar

    [40] O’BRIEN P J, 1999. Asymmetric zoning profiles in garnet from HP–HT granulite and implications for volume and grain–boundary diffusion[J]. Mineralogical Magazine, 63(2): 227-238. doi: 10.1180/002646199548457

    CrossRef Google Scholar

    [41] PASSCHIER C W, TROUW R A J, 2005. Microtectonics[M]. 2nd ed. Berlin Heidelberg: Springer.

    Google Scholar

    [42] QIN J F, LAI S C, LI Y J, 2008a. Slab breakoff model for the Triassic post–collisional adakitic granitoids in the Qinling Orogen, Central China: zircon U–Pb ages, geochemistry, and Sr–Nd–Pb isotopic constraints[J]. International Geology Review, 50(12): 1080-1104. doi: 10.2747/0020-6814.50.12.1080

    CrossRef Google Scholar

    [43] QIN J F, LAI S C, WANG J, et al., 2008b. Zircon LA–ICP–MS U–Pb age, Sr–Nd–Pb isotopic compositions and geochemistry of the Triassic post–collisional Wulong adakitic granodiorite in the South Qinling, central China, and its petrogenesis[J]. Acta Geologica Sinica (English Edition), 82(2): 425-437. doi: 10.1111/j.1755-6724.2008.tb00593.x

    CrossRef Google Scholar

    [44] QIN J F, LAI S C, LI Y F, 2013. Multi–stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, South Qinling[J]. Gondwana Research, 24(3-4): 1108-1126. doi: 10.1016/j.gr.2013.02.005

    CrossRef Google Scholar

    [45] QIU K F, DENG J, HE D Y, et al., 2023. Evidence of vertical slab tearing in the Late Triassic Qinling Orogen (central China) from multiproxy geochemical and isotopic imaging[J]. Journal of Geophysical Research: Solid Earth, 128(4): e2022JB025514. doi: 10.1029/2022JB025514

    CrossRef Google Scholar

    [46] REY P, VANDERHAEGHE O, TEYSSIER C, 2001. Gravitational collapse of the continental crust: Definition, regimes and modes[J]. Tectonophysics, 342(3-4): 435-449. doi: 10.1016/S0040-1951(01)00174-3

    CrossRef Google Scholar

    [47] RUBATTO D, 2017. Zircon: the metamorphic mineral[J]. Reviews in Mineralogy and Geochemistry, 83(1): 261-295. doi: 10.2138/rmg.2017.83.9

    CrossRef Google Scholar

    [48] Shaanxi Provincial Bureau of Geology and Mineral Resources, 1989. Regional geology of Shaanxi province[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    [49] SIMONETTI M, CAROSI R, MONTOMOLI C, et al., 2020a. Transpressive deformation in the southern European variscan belt: new insights from the aiguilles rouges massif (western alps)[J]. Tectonics, 39(6): e2020TC006153. doi: 10.1029/2020TC006153

    CrossRef Google Scholar

    [50] SIMONETTI M, CAROSI R, MONTOMOLI C, et al., 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (southern France)[J]. International Journal of Earth Sciences, 109(7): 2261-2285. doi: 10.1007/s00531-020-01898-6

    CrossRef Google Scholar

    [51] STIPP M, STÜNITZ H, HEILBRONNER R, et al., 2002a. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C[J]. Journal of Structural Geology, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4

    CrossRef Google Scholar

    [52] STIPP M, STÜNITZ H, HEILBRONNER R, et al. , 2002b. Dynamic recrystallization of quartz: correlation between natural and experimental conditions[M]//DE MEER S, DRURY M R, DE BRESSERJ H P, et al. Deformation mechanisms, rheology and tectonics: current status and future perspectives. London: Geological Society, London, Special Publications, 200(1): 171-190.

    Google Scholar

    [53] SUN S S, DONG Y P, HE D F, et al., 2019a. Thickening and partial melting of the northern Qinling Orogen, China: insights from zircon U–Pb geochronology and Hf isotopic composition of migmatites[J]. Journal of the Geological Society, 176: 1218-1231. doi: 10.1144/jgs2019-030

    CrossRef Google Scholar

    [54] SUN S S, DONG Y P, SUN Y L, et al., 2019b. Re–Os geochronology, O isotopes and mineral geochemistry of the Neoproterozoic Songshugou ultramafic massif in the Qinling Orogenic Belt, China[J]. Gondwana Research, 70: 71-87. doi: 10.1016/j.gr.2018.12.016

    CrossRef Google Scholar

    [55] SUN S S, DONG Y P, CHENG C, et al., 2022. Mesozoic intracontinental ductile shearing along the Paleozoic Shangdan suture in the Qinling Orogen: Constraints from deformation fabrics and geochronology[J]. Geological Society of America Bulletin, 134(9-10): 2649-2666. doi: 10.1130/B36293.1

    CrossRef Google Scholar

    [56] SUN S S, DONG Y P, 2023. High temperature ductile deformation, lithological and geochemical differentiation along the Shagou shear zone, Qinling Orogen, China[J]. Journal of Structural Geology, 167: 104791. doi: 10.1016/j.jsg.2023.104791

    CrossRef Google Scholar

    [57] SUN S S, DONG Y P, LI Y X, et al., 2024. Rheology of continental lithosphere and seismic anisotropy[J]. Science China Earth Sciences, 67(1): 31-60. doi: 10.1007/s11430-022-1171-3

    CrossRef Google Scholar

    [58] TIWARI S K, BENIEST A, BISWAL T K, 2020. Variation in vorticity of flow during exhumation of lower crustal rocks (Neoproterozoic Ambaji granulite, NW India)[J]. Journal of Structural Geology, 130: 103912. doi: 10.1016/j.jsg.2019.103912

    CrossRef Google Scholar

    [59] WANG D S, 2015. Deformation and metamorphism characteristics of rocks in South Qinling Acctionary Complex belt[D]. Beijing: Beijing: China University of Geosciences (Beijing): 1-167. (in Chinese with English abstract

    Google Scholar

    [60] WANG G B, LI S Z, 1998. Preliminary discussion on uplift bedding-delamination structures in Foping area, Qinling[J]. Journal of Changchun University of Science and Technology, 28(1): 23-29. (in Chinese with English abstract

    Google Scholar

    [61] WANG X H, GUO T, LI X Z, et al., 2022. A study on the geochemical characteristics and metallogenesis of the Lanmugou gold deposit in the South Qinling Belt, Shaanxi, China[J]. Journal of Geomechanics, 28(3): 464-479. (in Chinese with English abstract

    Google Scholar

    [62] WEI C J, YANG C H, ZHANG S G, et al., 1998. Discovery of granulite from the Fuping area in southern Qinling Mountains and its geological significance[J]. Chinese Science Bulletin, 43(16): 1358-1362. doi: 10.1007/BF02883682

    CrossRef Google Scholar

    [63] WEI C J, ZHANG C G, 2002. pT path of medium–pressure metamorphism of continental collision orogenic belt: exemplified by the southern Qinling orogenic belt[J]. Acta Petorlogica et Mineralogica, 21(4): 356-362. (in Chinese with English abstract

    Google Scholar

    [64] WEI C J, 2011. Approaches and advancement of the study of metamorphic p-T-t paths[J]. Earth Science Frontiers, 18(2): 1-16. (in Chinese with English abstract

    Google Scholar

    [65] WU C M, ZHANG J, REN L D, 2004. Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium–to high–grade metapelites[J]. Journal of Petrology, 45(9): 1907-1921. doi: 10.1093/petrology/egh038

    CrossRef Google Scholar

    [66] WU Y B, 2021. Metamorphic zircon[M]//ALDERTON D, ELIAS S A. Encyclopedia of geology. 2nd ed. London: Academic Press: 584-596.

    Google Scholar

    [67] WU Y W, ZHANG J X, ZHANG B, et al., 2024. Early Paleozoic oblique convergence from subduction to collision: Insights from timing and structural style of the transpressional dextral shear zone in the Qilian orogen, northern Xizang of China[J]. Geological Society of America Bulletin, 136(5-6): 1889-1915.

    Google Scholar

    [68] XIANG B W, ZHANG Z K, XU D R, et al., 2024. The genesis of L–tectonics and its rheological significance[J]. Chinese Journal of Geology, 59(6): 1562-1574. (in Chinese with English abstract

    Google Scholar

    [69] XYPOLIAS P, 2010. Vorticity analysis in shear zones: A review of methods and applications[J]. Journal of structural Geology, 32(12): 2072-2092. doi: 10.1016/j.jsg.2010.08.009

    CrossRef Google Scholar

    [70] YANG C H, WEI C J, ZHANG S G, et al., 1999. U–Pb zircon dating of granulite facies rocks from the Foping area in the southern Qinling Mountains[J]. Geological Review, 45(2): 173-179. (in Chinese with English abstract

    Google Scholar

    [71] YANG X X, WANG Y J, LI Z H, et al., 2018. Zircon U-Pb dating and Lu-Hf isotopic study of hornblende biotite schist from the Foping area in South Qinling[J]. Chinese Journal of Geology, 53(3): 1100-1118. (in Chinese with English abstract

    Google Scholar

    [72] YOU J L, YANG Z, GOU L L, et al., 2024. Metamorphism and geochronology of the Foping gneiss dome: insights into Early Triassic collision of the Qinling Orogen, Central China[J]. Lithos, 488-489: 107827. doi: 10.1016/j.lithos.2024.107827

    CrossRef Google Scholar

    [73] ZHA X F, 2010. Discussion on the genesis of Foping dome in southern Qinling: evidence form structural analysis[D]. Xi’an: Northwest University. (in Chinese with English abstract

    Google Scholar

    [74] ZHA X F, DONG Y P, LI W, et al., 2010. Uplifting process of foping dome in southern Qinling: constrained by structural analysis[J]. Geotectonica et Metallogeni, 34(3): 331-339. (in Chinese with English Abstract

    Google Scholar

    [75] ZHAI G Y, 2000. Analysis of metamorphism and tectonic dynamics of domes in Foping county of East Qinling[J]. Journal of Mineralogy and Petrology, 20(2): 86-90. (in Chinese with English abstract

    Google Scholar

    [76] ZHANG B, ZHANG J, ZHONG D L, et al., 2012. Polystage deformation of the Gaoligong metamorphic zone: structures, 40Ar/39Ar mica ages, and tectonic implications[J]. Journal of Structural Geology, 37: 1-18. doi: 10.1016/j.jsg.2012.02.007

    CrossRef Google Scholar

    [77] ZHANG B, YIN C Y, ZHANG J J, et al., 2017a. Midcrustal shearing and doming in a Cenozoic compressive setting along the Ailao Shan-Red River shear zone[J]. Geochemistry Geophysics Geosystems, 18(1): 400-433. doi: 10.1002/2016GC006520

    CrossRef Google Scholar

    [78] ZHANG B, CHAI Z, YIN C Y, et al., 2017b. Intra-continental transpression and gneiss doming in an obliquely convergent regime in SE Asia[J]. Journal of Structural Geology, 97: 48-70. doi: 10.1016/j.jsg.2017.02.010

    CrossRef Google Scholar

    [79] ZHANG B, CHEN S Y, WANG Y, et al., 2022b. Crustal deformation and exhumation within the India-Eurasia oblique convergence zone: New insights from the Ailao Shan-Red River shear zone[J]. Geological Scoiety of America Bulletin, 134(5-6): 1443-1467. doi: 10.1130/B35975.1

    CrossRef Google Scholar

    [80] ZHANG C L, WANG T, WANG X X, 2008. Origin and tectonic setting of the early Mesozoic granitoids in qinling orogenic belt[J]. Geological Journal of China Universities, 14(3): 304-316. (in Chinese with English abstract

    Google Scholar

    [81] ZHANG G W, ZHANG Z Q, DONG Y P, 1995. Nature of main tectono–lithostratigraphic units of the Qinling Orogen: implications for the tectonic evolution[J]. Acta Petrologica Sinica, 11(2): 101-114. (in Chinese with English abstract

    Google Scholar

    [82] ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract

    Google Scholar

    [83] ZHANG H, YE R S, LIU B X, et al., 2016. Partial melting of the South Qinling orogenic crust, China: Evidence from Triassic migmatites and diorites of the Foping dome[J]. Lithos, 260: 44-57. doi: 10.1016/j.lithos.2016.05.007

    CrossRef Google Scholar

    [84] ZHANG H, LI S Q, FANG B W, et al., 2018. Zircon U–Pb ages and geochemistry of migmatites and granites in the Foping dome: evidence for Late Triassic crustal evolution in South Qinling, China[J]. Lithos, 296-299: 129-141. doi: 10.1016/j.lithos.2017.10.024

    CrossRef Google Scholar

    [85] ZHANG H, WU G H, CHENG H, et al., 2019. Late Triassic high Mg diorites of the Wulong pluton in the South Qinling Belt, China: petrogenesis and implications for crust–mantle interaction[J]. Lithos, 332-333: 135-146. doi: 10.1016/j.lithos.2019.01.038

    CrossRef Google Scholar

    [86] ZHANG H, CHENG H, WU G H, et al., 2021. Fluid–fluxed melting of orogenic crust in the south qinling belt, central China: implications from migmatites of the foping dome[J]. Journal of Asian Earth Sciences, 206(5): 104606.

    Google Scholar

    [87] ZHANG K, YANG X K, YU H B, et al., 2020. Analysis of ore-controlling structure in the Changgou gold deposit of the northern Hanyin gold orefield, southern Qinling Mountains[J]. Journal of Geomechanics, 26(3): 363-375. (in Chinese with English Abstract

    Google Scholar

    [88] ZHANG L, ZHANG B, ZHANG J J, et al., 2022a. The rheology and deformation of the South Xizang detachment system as exposed at Zherger La, east-central Himalaya: implications for exhumation of the Himalayan metamorphic core[J]. Journal of Structural Geology, 157: 104559. doi: 10.1016/j.jsg.2022.104559

    CrossRef Google Scholar

    [89] ZHANG Y P, ZHENG W J, YUAN D Y, et al., 2021. Geometrical imagery and kinematic dissipation of the late Cenozoic active faults in the West Qinling Belt: implications for the growth of the Xizang Plateau[J]. Journal of Geomechanics, 27(2): 159-177. (in Chinese with English Abstract

    Google Scholar

    [90] ZHANG Z Q, SONG B, TANG S H, et al., 2004. Age and material composition of the Foping metamorphic crystalline complex in the Qinling Mountains: SHRIMP zircon U–Pb and whole–rock Sm–Nd geochronology[J]. Geology in China, 31(2): 161-168. (in Chinese with English Abstract

    Google Scholar

    [91] 陈虹,胡健民,武国利,等,2010. 西秦岭勉略带陆内构造变形研究[J]. 岩石学报,26(04):1277-1288.

    Google Scholar

    [92] 陈龙耀,刘志慧,刘晓春,等,2019. 南秦岭佛坪片麻岩穹隆变质作用及与岩浆作用的关系[J]. 地球科学,44(12):4178-4185.

    Google Scholar

    [93] 董云鹏,张国伟,孙圣思,等,2019. 中国大陆“十字构造”形成演化及其大陆动力学意义[J]. 地质力学学报,25(5):769-797. doi: 10.12090/j.issn.1006-6616.2019.25.05.065

    CrossRef Google Scholar

    [94] 韩阳光,颜丹平,李政林,2015. 在CorelDRAW平台上进行Fry法有限应变测量的新技术[J]. 现代地质,29(3):494-500. doi: 10.3969/j.issn.1000-8527.2015.03.002

    CrossRef Google Scholar

    [95] 和政军,牛宝贵,任纪舜,2005. 陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析[J]. 地质科学,40(4):594-607. doi: 10.3321/j.issn:0563-5020.2005.04.015

    CrossRef Google Scholar

    [96] 胡玲,刘俊来,纪沫,等,2009. 变形显微构造识别手册[M]. 北京:地质出版社.

    Google Scholar

    [97] 李锦轶,张进,刘建峰,等,2019. 中国地壳结构构造与形成过程:来自构造变形的约束[J]. 地质力学学报,25(5):678-698. doi: 10.12090/j.issn.1006-6616.2019.25.05.061

    CrossRef Google Scholar

    [98] 刘守偈,李江海,SANTOSH M,2008. 内蒙古土贵乌拉孔兹岩带超高温变质作用:变质反应结构及P-T指示[J]. 岩石学报,24(6):1185-1192.

    Google Scholar

    [99] 刘树文,杨朋涛,李秋根,等,2011. 秦岭中段印支期花岗质岩浆作用与造山过程[J]. 吉林大学学报(地球科学版),41(6):1928-1943.

    Google Scholar

    [100] 刘志慧,罗敏,陈龙耀,等,2018. 南秦岭佛坪地区地层格架与物源分析:变质沉积岩中碎屑锆石LA–ICP–MS U–Pb定年提供的制约[J]. 岩石学报,34(5):1484-1502.

    Google Scholar

    [101] 刘志慧,陈龙耀,曲玮,等,2019. 南秦岭佛坪地区早中生代变质–深熔–变形作用的锆石U–Pb年代学制约[J]. 地球学报,40(4):545-562. doi: 10.3975/cagsb.2019.011102

    CrossRef Google Scholar

    [102] 刘志慧,刘晓春,陈龙耀,等,2024. 南秦岭长角坝群低庄沟组的锆石U–Pb年龄及其构造意义[J]. 地质力学学报,30(6):1012-1027.

    Google Scholar

    [103] 陕西省地质矿产局,1989. 陕西省区域地质志[M]. 北京:地质出版社.

    Google Scholar

    [104] 孙圣思,董云鹏,黎乙希,等,2024. 大陆岩石圈流变与地震波速各向异性[J]. 中国科学:地球科学,54(1):31-63.

    Google Scholar

    [105] 王东升,2015. 南秦岭增生杂岩带内岩石变质变形作用研究[D]. 北京:中国地质大学(北京):1-167.

    Google Scholar

    [106] 王根宝,李三忠,1998. 论秦岭佛坪地区隆–滑构造[J]. 长春科技大学学报,28(1):23-39.

    Google Scholar

    [107] 王晓虎,郭涛,李效壮,等,2022. 南秦岭烂木沟金矿床地球化学特征与矿床成因研究[J]. 地质力学学报,28(3):464-479. doi: 10.12090/j.issn.1006-6616.2021002

    CrossRef Google Scholar

    [108] 魏春景,杨崇辉,张寿广,等,1998. 南秦岭佛坪地区麻粒岩的发现及其地质意义[J]. 科学通报,43(9):982-985. doi: 10.3321/j.issn:0023-074X.1998.09.020

    CrossRef Google Scholar

    [109] 魏春景,2011. 变质作用p-T-t轨迹的研究方法与进展[J]. 地学前缘,18(2):1-16.

    Google Scholar

    [110] 向必伟,张子康,许德如,等,2024. L构造岩成因及其岩石流变学意义[J]. 地质科学,59(6):1562-1574. doi: 10.12017/dzkx.2024.108

    CrossRef Google Scholar

    [111] 杨崇辉,魏春景,张寿广,等,1999. 南秦岭佛坪地区麻粒岩相岩石锆石U–Pb年龄[J]. 地质论评,45(2):173-179. doi: 10.3321/j.issn:0371-5736.1999.02.010

    CrossRef Google Scholar

    [112] 查显锋,2010. 南秦岭佛坪隆起的构造过程及成因机制[D]. 西安:西北大学.

    Google Scholar

    [113] 查显锋,董云鹏,李玮,等,2010. 南秦岭佛坪隆起的成因探讨–构造解析的证据[J]. 大地构造与成矿学,34(3):331-339. doi: 10.3969/j.issn.1001-1552.2010.03.004

    CrossRef Google Scholar

    [114] 翟刚毅,2000. 东秦岭佛坪穹隆变质作用与构造动力学分析[J]. 矿物岩石,20(2):86-90. doi: 10.3969/j.issn.1001-6872.2000.02.018

    CrossRef Google Scholar

    [115] 张成立,王涛,王晓霞,2008. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报,14(3):304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    CrossRef Google Scholar

    [116] 张国伟,郭安林,董云鹏,等,2019. 关于秦岭造山带[J]. 地质力学学报,25(5):746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064

    CrossRef Google Scholar

    [117] 张康,杨兴科,于恒彬,等,2020. 南秦岭汉阴北部金矿田长沟金矿区控矿构造解析[J]. 地质力学学报,26(3):363-375. doi: 10.12090/j.issn.1006-6616.2020.26.03.032

    CrossRef Google Scholar

    [118] 张逸鹏,郑文俊,袁道阳,等,2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制[J]. 地质力学学报,27(2):159-177. doi: 10.12090/j.issn.1006-6616.2021.27.02.017

    CrossRef Google Scholar

    [119] 张宗清,宋彪,唐索寒,等,2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征:SHRIMP锆英石U–Pb年代学和全岩Sm–Nd年代学数据[J]. 中国地质,31(2):161-168. doi: 10.3969/j.issn.1000-3657.2004.02.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(303) PDF downloads(38) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint