2025 Vol. 31, No. 3
Article Contents

CHEN Zebang, YUN Long, WANG Ju, TIAN Xiao. 2025. Fault damage zone and its unmanned aerial vehicle identification technology. Journal of Geomechanics, 31(3): 427-443. doi: 10.12090/j.issn.1006-6616.2024089
Citation: CHEN Zebang, YUN Long, WANG Ju, TIAN Xiao. 2025. Fault damage zone and its unmanned aerial vehicle identification technology. Journal of Geomechanics, 31(3): 427-443. doi: 10.12090/j.issn.1006-6616.2024089

Fault damage zone and its unmanned aerial vehicle identification technology

    Fund Project: This research is financially supported by the Radioactive Waste Disposal Project of the State Administration of Science, Technology and Industry for National Defense (Grant No. FZ2101-6) and the National Natural Science Foundation of China (Grant Nos. U2344215, 4171101029, and 41761144071)
More Information
  • Objective

    In structural geology, faults and their damage zones are fundamental structural units that hold significant research and engineering value. They can be usde to reveal the evolution laws of regional structures and the evolution characteristics of fault structures, to indicate the migration paths of underground fluids, and to evaluate the stability of major engineering rock masses. However, traditional research methods often rely on manual recording to obtain information on fractures and surrounding joint structures, which suffer from inefficiency and susceptibility to limitations imposed by complex terrain. The emerging unmanned aerial vehicle (UAV) aerial survey technology in recent years has effectively addresses the limitations of traditional methods. This method integrates data acquisition, terrain mapping, and dynamic monitoring. It generates high-resolution digital models and images that can more effectively reduce field workload, more intuitively display terrain features, and more conveniently extract structural information. This method can be applied more broadly to the field of structural geology and geological engineering, especially when studying faults and damage zones.

    Methods

    Based on an extensive literature review, we categorized and compared existing research in relation to different application scenarios.

    Results

    This study provides a detailed explanation of the basic principles of UAV aerial survey technology and the definition of fault damage zones and associated structures. It also enumerates widely used methods for identifying the extent of fault damage zones and characterizing structural features. Additionally, application scenarios of UAV aerial survey technology within fault damage zones are summarized.

    Conclusion

    Overall, UAV aerial survey technology has been widely applied in the study of faults and their damage zones, meeting various research needs. However, challenges remain in both the front-end (structural information acquisition) and back-end (structural information interpretation) processes, leaving ample room for future applications and advancements.

  • 加载中
  • [1] AI M, BI H Y, ZHENG W J, et al., 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics[J]. Seismology and Geology, 40(6): 1276-1293. (in Chinese with English abstract

    Google Scholar

    [2] AYDIN A, 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 17(7): 797-814. doi: 10.1016/S0264-8172(00)00020-9

    CrossRef Google Scholar

    [3] BERG S S, SKAR T, 2005. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah[J]. Journal of Structural Geology, 27(10): 1803-1822. doi: 10.1016/j.jsg.2005.04.012

    CrossRef Google Scholar

    [4] BI H Y, SHI L, ZHANG D L, et al., 2022. Constraining paleoseismicity of the Wulashan piedmont fault on the northern margin of the ordos block from fault scarp morphology[J]. Frontiers in Earth Science, 10: 911173. doi: 10.3389/feart.2022.911173

    CrossRef Google Scholar

    [5] BROGI A, 2011. Bowl-shaped basin related to low-angle detachment during continental extension: the case of the controversial Neogene Siena Basin (central Italy, northern Apennines)[J]. Tectonophysics, 499(1-4): 54-76. doi: 10.1016/j.tecto.2010.12.005

    CrossRef Google Scholar

    [6] CHEN G H, XU X W, WEN X Z, et al., 2006. Application of digital aerophotogrammetry in active tectonics[J]. Earth Science: Journal of China University of Geosciences, 31(3): 405-410. (in Chinese with English abstract

    Google Scholar

    [7] CHEN S P, TIAN Z J, XU S D, et al., 2024. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 43(1): 13-19. (in Chinese with English abstract

    Google Scholar

    [8] CHINNERY M A, 1966. Secondary faulting: I. Theoretical aspects[J]. Canadian Journal of Earth Sciences, 3(2): 163-174. doi: 10.1139/e66-013

    CrossRef Google Scholar

    [9] CHOI J H, JIN K, ENKHBAYAR D, et al., 2012. Rupture propagation inferred from damage patterns, slip distribution, and segmentation of the 1957 MW8.1 Gobi‐Altay earthquake rupture along the Bogd fault, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 117(B12): B12401.

    Google Scholar

    [10] CHOI J H, EDWARDS P, KO K, et al., 2016. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006

    CrossRef Google Scholar

    [11] CUNNINGHAM D, GREBBY S, TANSEY K, et al., 2006. Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia[J]. Geophysical Research Letters, 33(20): L20308.

    Google Scholar

    [12] DARYONO M R, NATAWIDJAJA D H, PUJI A R, et al. , 2021. Fault rupture in Baribis Fault possibly related to the 1847 major earthquake event in the Cirebon area[C]//Proceedings of the 3rd Southeast Asian conference on geophysics. Bandung, Indonesia: IOP Publishing: 012052.

    Google Scholar

    [13] DELL’ACQUA F, GAMBA P, 2012. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives[J]. Proceedings of the IEEE, 100(10): 2876-2890. doi: 10.1109/JPROC.2012.2196404

    CrossRef Google Scholar

    [14] ENGELDER T, 1989. Analysis of pinnate joints in the Mount Desert Island granite: Implications for postintrusion kinematics in the coastal volcanic belt, Maine[J]. Geology, 17(6): 564-567. doi: 10.1130/0091-7613(1989)017<0564:AOPJIT>2.3.CO;2

    CrossRef Google Scholar

    [15] FERNÁNDEZ-LOZANO J, GONZÁLEZ-DÍEZ A, GUTIÉRREZ-ALONSO G, et al., 2018. New perspectives for UAV-based modelling the Roman gold mining infrastructure in NW Spain[J]. Minerals, 8(11): 518. doi: 10.3390/min8110518

    CrossRef Google Scholar

    [16] FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.

    Google Scholar

    [17] FU B, LI Z Q, CHEN J, et al., 2018. The application of miniature unmanned aerial vehicle in 25 November 2016 Arketao MW6.6 earthquake[J]. Seismology and Geology, 40(3): 672-684. (in Chinese with English abstract

    Google Scholar

    [18] GAO S P, 2017. A quantitative parameters extraction study of active tectonics based on UAV photogrammetry technology[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract

    Google Scholar

    [19] GAO S P, RAN Y K, WU F Y, et al., 2017. Using UAV photogrammetry technology to extract information of tectonic activity of complex alluvial fan: a case study of an alluvial fan in the southern margin of Barkol basin[J]. Seismology and Geology, 39(4): 793-804. (in Chinese with English abstract

    Google Scholar

    [20] HAN L F, LIU J, YAO W Q, et al., 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 Madoi MW7.4 earthquake and discussion on distributed rupture in the step-over[J]. Seismology and Geology, 44(2): 484-505. (in Chinese with English abstract

    Google Scholar

    [21] HAO R, WANG J P, CHEN D Y, et al., 2024. Routing optimization of ultra violet light communication unmanned aerial vehicle formation based on JAYA algorithm[J]. Journal of Electronics & Information Technology, 46(3): 848-857. (in Chinese with English abstract

    Google Scholar

    [22] HOU E K, SHOU Z G, XU Y N, et al., 2017. Application of UAV remote sensing technology in monitoring of coal mining-induced subsidence[J]. Coal Geology & Exploration, 45(6): 102-110. (in Chinese with English abstract

    Google Scholar

    [23] HU C Y, ZHANG G C, LI X L, 2019. Application of UAV remote sensing in high altitude collapsed geological hazards investigation[J]. Yangtze River, 50(1): 136-140. (in Chinese with English abstract

    Google Scholar

    [24] HUANG H Z, CHEN J P, ZHENG Y W, 2017. Interpretation of mine geological hazards based on UAV remote sensing technology[J]. Journal of Geology, 41(3): 499-503. (in Chinese with English abstract

    Google Scholar

    [25] JAMES M R, ROBSON S, 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks[J]. Earth Surface Processes and Landforms, 39(10): 1413-1420. doi: 10.1002/esp.3609

    CrossRef Google Scholar

    [26] JIANG C Y, PAN J W, ZHANG L J, et al., 2024. Application of UAV SfM technology in active tectonic research: a case study of the Longmu Co Fault, Northwestern Qinghai-Xizang Plateau[J]. Journal of Geomechanics, 30(2): 332-347. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2023192

    CrossRef Google Scholar

    [27] JIN B H, LIAO Z Q, LIU A X, 2024. Research overview of unmanned aerial vehicle logistics and its visual analysis based on CiteSpace[J]. Journal of Chengdu Technological University, 27(1): 69-74, 81. (in Chinese with English abstract

    Google Scholar

    [28] JING H D, LI Y H, ZHANG Z H, et al., 2015. Extraction of joint information of rock masses based on 3D laser scanning technology[J]. Journal of Northeastern University (Natural Science), 36(2): 280-283. (in Chinese with English abstract

    Google Scholar

    [29] JOHNSON K, NISSEN E, SARIPALLI S, et al., 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 10(5): 969-986. doi: 10.1130/GES01017.1

    CrossRef Google Scholar

    [30] KATZ Y, WEINBERGER R, AYDIN A, 2004. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah[J]. Journal of Structural Geology, 26(3): 491-501. doi: 10.1016/j.jsg.2003.08.003

    CrossRef Google Scholar

    [31] KIM Y S, ANDREWS J R, SANDERSON D J, 2000. Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England[J]. Geosciences Journal, 4(2): 53-72. doi: 10.1007/BF02910127

    CrossRef Google Scholar

    [32] KIM Y S, ANDREWS J R, SANDERSON D J, 2001. Reactivated strike–slip faults: examples from north Cornwall, UK[J]. Tectonophysics, 340(3-4): 173-194. doi: 10.1016/S0040-1951(01)00146-9

    CrossRef Google Scholar

    [33] KIM Y S, PEACOCK D C P, SANDERSON D J, 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta[J]. Journal of Structural Geology, 25(5): 793-812 doi: 10.1016/S0191-8141(02)00200-6

    CrossRef Google Scholar

    [34] KIM Y S, PEACOCK D C P, SANDERSON D J, 2004. Fault damage zones[J]. Journal of structural geology, 26(3): 503-517. doi: 10.1016/j.jsg.2003.08.002

    CrossRef Google Scholar

    [35] KOVANIČ Ľ, TOPITZER B, PEŤOVSKÝ P, et al., 2023. Review of photogrammetric and lidar applications of UAV[J]. Applied Sciences, 13(11): 6732. doi: 10.3390/app13116732

    CrossRef Google Scholar

    [36] KUANG J, ZHANG Y S, 2017. Automatic detection of rock mass discontinuity trace based on digital image processing[J]. Geotechnical Engineering Technique, 31(1): 5-8, 13. (in Chinese with English abstract

    Google Scholar

    [37] KUANG J, 2018. Research on automatic detection of structural surface traces and rock mass quality evaluation method based on image processing[D]. Nanjing: Nanjing University of Science & Technology. (in Chinese with English abstract

    Google Scholar

    [38] KUANG J, ZHANG Y S, ZHAO J B, 2018. Automatic detection of rock mass fissure based on image processing of phase congruency[J]. Computer Engineering and Applications, 54(24): 193-197. (in Chinese with English abstract

    Google Scholar

    [39] LEI G W, YANG C H, WANG G B, et al., 2016. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241. (in Chinese with English abstract

    Google Scholar

    [40] LI D C, REN J J, ZHANG Z W, et al., 2022. Research on semi-automatic extraction method of seismic surface ruptures based on high-resolution UAV image: taking the 2021 MS7.4 Maduo earthquake in Qinghai Province as an example[J]. Seismology and Geology, 44(6): 1484-1502. (in Chinese with English abstract

    Google Scholar

    [41] LI G, 2021. Status and trend of UAV development[J]. Modern Industrial Economy and Informationization, 11(3): 12-13, 16. (in Chinese with English abstract

    Google Scholar

    [42] LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English abstract

    Google Scholar

    [43] LI J X, LI Y F, LI S, et al., 2017. Application of remote sensing technology of UAV in the acquisition of earthquake disaster in Pishan, Xinjiang[J]. Technology for Earthquake Disaster Prevention, 12(3): 690-699. (in Chinese with English abstract

    Google Scholar

    [44] LI K, TAPPONNIER P, XU X W, et al., 2023. The 2022, MS6.9 Menyuan earthquake: surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Xizang[J]. Earth and Planetary Science Letters, 622: 118412. doi: 10.1016/j.jpgl.2023.118412

    CrossRef Google Scholar

    [45] LI L W, YU Z Y, CHEN B X, et al., 2022. Co-seismic surface deformation characteristics and seismic geological enlightenment of the Luding, Sichuan MS6.8 earthquake in 2022[J]. Journal of Institute of Disaster Prevention, 24(4): 75-87. (in Chinese with English abstract

    Google Scholar

    [46] LI S J, XIE Y L, ZHU X M, 2013. Research on countermeasure of water gushing with collapse in process of Wushaoling highway tunnel crossing F4 fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3602-3609. (in Chinese with English abstract

    Google Scholar

    [47] LI X Z, ZHANG G Y, LUO G Y, 2003. Barrier effects caused by fault on excavating-induced stress & edformation and mechanism of resulting groundwater inrush[J]. Rock and Soil Mechanics, 24(2): 220-224. (in Chinese with English abstract

    Google Scholar

    [48] LI Y G, ELLSWORTH W L, THURBER C H, et al., 1997. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California[J]. Bulletin of the Seismological Society of America, 87(1): 210-221. doi: 10.1785/BSSA0870010210

    CrossRef Google Scholar

    [49] LI Y P, XU J D, YU H M, 2006. Geometrical characteristics of fractures and rock quality assessment in granite in the Beishan area, Gansu province[J]. Seismology and Geology, 28(1): 129-138. (in Chinese with English abstract

    Google Scholar

    [50] LI Z, FU B H, 2022. Quantitative analyses of geomorphologic features in response to Late Quaternary tectonic activities along the Maqin-Maqu segment, East Kunlun fault zone[J]. Seismology and Geology, 44(6): 1421-1447. (in Chinese with English abstract

    Google Scholar

    [51] LIU D M, LI D W, YANG W R, et al., 2005. Evidence from fission track ages for the tectonic uplift of the Himalayan Orogen during Late Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 30(2): 147-152. (in Chinese with English abstract

    Google Scholar

    [52]