2021 Vol. 27, No. 6
Article Contents

SONG Chunhua, SHI Gang, WU Hong, ZHANG Hao, YU Fei. 2021. Application of seismic detection by spark source for concealed faults in Shanghai urban water network area. Journal of Geomechanics, 27(6): 938-948. doi: 10.12090/j.issn.1006-6616.2021.27.06.076
Citation: SONG Chunhua, SHI Gang, WU Hong, ZHANG Hao, YU Fei. 2021. Application of seismic detection by spark source for concealed faults in Shanghai urban water network area. Journal of Geomechanics, 27(6): 938-948. doi: 10.12090/j.issn.1006-6616.2021.27.06.076

Application of seismic detection by spark source for concealed faults in Shanghai urban water network area

    Fund Project: This research is financially supported by the Key Financial Project of Shanghai(Grant No.20-45064)
More Information
  • Nowadays artificial seismic exploration is recognized as one of the most effective means to detect hidden faults in urban areas. However, good seismic exploration data in highly urbanized areas is often unavailable limited by the excitation source and strong interference. In this paper, a seismic detection of excitation mode of high-power spark source was carried out in the Dazhi River area, in view of the developed urban water network in Shanghai. We did comparison tests on elements such as energy excitation of spark source, water depth of discharge and seismic imaging effects of different sources, and obtained the best excitation parameters for seismic exploration in inland river areas (east section of Dazhi River) in Shanghai. The validity of seismic exploration by spark source in urban water network is confirmed. Compared with other conventional excitation methods, EDM seismic exploration data has higher signal-to-noise ratio and can reach a deeper exploration depth, which helps to get good results from the detection of hidden faults in urban areas.

  • 加载中
  • DENG Q D, LU Z X, YANG Z. 2007. Remarks on urban active faults exploration and assocoated activity assessment[J]. Seismology and Geology, 29(2): 189-200. (in Chinese with English abstract)

    Google Scholar

    DENG Q D, XU X W, ZHANG X K, et al., 2003. Methods and techniques for surverying and prospecting active faults in urban areas[J]. Earth Science Frontiers, 10(1): 93-104. (in Chinese with English abstract)

    Google Scholar

    DONG M R, FU L Y, XING C, et al., 2018. Research on the Underwater Energy radiation Characteristics of the Airgun Seismic Source[J]. Earthquake Research In China, 34(1): 25-34. (in Chinese with English abstract)

    Google Scholar

    FU D, LI W T, WANG C, et al., 2014. Application of TD sparker series high power electric spark source in seismic exploration[C]//Proceedings of symposium on engineering geophysical exploration and testing and urban engineering and environmental geophysical exploration technology. Qingdao: Special Committee of Engineering Geophysics of China Geophysical Society. (in Chinese)

    Google Scholar

    GONG T, WANG Z L, GU X D, et al., 2016. Broadband seismic data matching processing[J]. Oil Geophysical Prospecting, 51(3): 457-466. (in Chinese with English abstract)

    Google Scholar

    GU P T, 1987. A Summary Account of the Regional Geology of Shanghai Municipality[J]. Regional Geology of China, (4): 309-321. (in Chinese with English abstract)

    Google Scholar

    GU P T, WANG Y S, 1988. The characteristic of geologic structure in Shanghai[J]. Shanghai Geology(2): 1-14. (in Chinese with English abstract)

    Google Scholar

    GU Q P, XU H G, ZHAO Q G, 2015. The seismic exploration method for buried active faults in thick sediment area: A case study of Qiaobei-Suqian fault[J]. Geophysical & Geochemical Exploration, 39(2): 408-415. (in Chinese with English abstract)

    Google Scholar

    HUO E J, LIU C S, ZHANG Z Q, et al., 2004. Study on the hidden faults and their activity in Shanghai[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    JIANG H, LI H J, GAO B, et al., 2018. The application of sparker source forseismic exploration[J]. Equipment for Geophysical Prospecting, 28(1): 42-44, 56. (in Chinese with English abstract)

    Google Scholar

    JIANG L, LUO Y, CHENG Z G, et al., 2015. Research and application of surface-consistent relative Q calculation and compensation[C]. Xinjiang Geology, (3): 415-420. (in Chinese with English abstract)

    Google Scholar

    LI J Y, ZHANG J, LIU J F, et al., 2019. Crustal Tectinic Framework Of CHINA And Its Formation Processes: Constraints From Stuctural Deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract)

    Google Scholar

    LIU C S, JIANG D Q, WANG X Z., 1980. An overview of historical earthquakes in Shanghai[J]. Shanghai Geology, (1): 83-85. (in Chinese)

    Google Scholar

    NIE B B, ZHAO J M, LI Y G, et al., 2015. The Comprehensive Application of Shallow Seismic Prospecting Method to Urban Active Fault Detection[J]. Chinese Journal of Engineering Geophysics, 12(1): 15-21. (in Chinese with English abstract)

    Google Scholar

    QI B, WANG X C, ZHAO Q X., 2020. Research on the progress of marine sparker seismic exploration[J]. Geophysical and Geochemical Exploration, 44(1): 107-111. (in Chinese with English abstract)

    Google Scholar

    QIU J B, LI X, 2007. Quaternary strata and sedimentary environment in Shanghai[M]. Shanghai: Shanghai Scientific & Technical Publishers. (in Chinese)

    Google Scholar

    REN L G, YANG D K, 2018. Application and effect analysis of sparker in seismic acquisition in plain water area[J]. Progress in Geophysics, 33(6): 2581-2587. (in Chinese with English abstract)

    Google Scholar

    Shanghai Bureau of Geology and mineral resources. Regional Geology of Shanghai[M], Beijing: Geological Publishing House, 1988. (in Chinese)

    Google Scholar

    SU G S, DING C Z, 2014. Random noise attenuation on prestack seismic data and its application skills[J]. Oil Geophysical Prospecting, 49(S1): 87-92. (in Chinese with English abstract)

    Google Scholar

    WANG H N, WU Z H, LI H M, 2016 Basic Characteristics of The Main Active Faults and Seismic Activites in Pan Yangtze River Delta Region[J]. Journal of Geomechanics, 22(3): 500-516. (in Chinese with English abstract)

    Google Scholar

    XIE J L, 2018. Seismic activity characteristics and seismotectonic province division of Shanghai and nearby regions[J]. Shanghai Land & Resources, 39(4): 1-6. (in Chinese with English abstract)

    Google Scholar

    YANG Z, 2008. Application of exploring methods on urban active faults and some common key technical problems[J]. Resources Survey & Environment, 29(3): 157-161. (in Chinese with English abstract)

    Google Scholar

    YU F W, JIANG H, YANG D K, 2018. Study on application effect of electric spark source in GH reservoir in HK area[C]//Proceedings of. CPS/SEG Beijing 2018 International Geophysical conference and Exhibition. Beijing: China Academic Journal (CD Version) Electronic Magazine. (in Chinese)

    Google Scholar

    ZHANG H L, 1999. Geological and mineral records of Shanghai[M]. Shanghai: Shanghai Academy of Social Sciences Press. (in Chinese)

    Google Scholar

    ZHANG P, ZHANG Y Y, MA Z J, et al., 2018. Characteristic of Quaternary Activities of Fuyang-Jiande Segment of Xiaoshan-Qiuchuan Fault[J]. Technology for Earthquake Disaster Prevention, 13(4): 959-967. (in Chinese with English abstract)

    Google Scholar

    ZHANG Z Q, LIU C S, WANG F, 2004. Preliminary Study on Relation of Fault Activity and Seismicity in the Shanghai Region[J]. EARTHQUAKE RESEARCH IN CHINA, 20(2): 143-151. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019 Basic Characteristics Of Active Tectonics And Associated Geodynamic Processes In Continental CHINA[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract)

    Google Scholar

    ZHOU C J, WU Z H, MA X X, et al., 2016. The Major Active Faults And Regional Crustal Stability Assessment In The Area of City Group In Central Yunnan[J]. Journal of Geomechanics, 22(3): 454-477. (in Chinese with English abstract)

    Google Scholar

    邓起东, 徐锡伟, 张先康, 等, 2003. 城市活动断裂探测的方法和技术[J]. 地学前缘, 10(1): 93-104. doi: 10.3321/j.issn:1005-2321.2003.01.012

    CrossRef Google Scholar

    邓起东, 卢造勋, 杨主恩, 2007. 城市活动断层探测和断层活动性评价问题[J]. 地震地质, 29(2): 189-200. doi: 10.3969/j.issn.0253-4967.2007.02.001

    CrossRef Google Scholar

    董明荣, 符力耘, 邢超, 等, 2018. 气枪震源水中能量辐射特性研究[J]. 中国地震, 34(1): 25-34. doi: 10.3969/j.issn.1001-4683.2018.01.003

    CrossRef Google Scholar

    付东, 李闻天, 王成, 等, 2014. TD-Sparker系列大功率电火花震源在地震勘探中的应用[C]//第七届工程物探与检测疑难问题暨城市工程与环境物探技术研讨会论文集. 青岛: 中国地球物理学会工程地球物理专委会.

    Google Scholar

    公亭, 王兆磊, 顾小弟, 等, 2016. 宽频地震资料处理配套技术[J]. 石油地球物理勘探, 51(3): 457-466.

    Google Scholar

    顾澎涛, 1987. 上海市区域地质概要[J]. 中国区域地质(4): 309-321.

    Google Scholar

    顾澎涛, 王尧舜, 1988. 上海地区地质构造特征[J]. 上海地质(2): 1-14.

    Google Scholar

    顾勤平, 许汉刚, 赵启光, 2015. 厚覆盖层地区隐伏活断层探测的地震方法技术: 以桥北镇-宿迁断层为例[J]. 物探与化探, 39(2): 408-415.

    Google Scholar

    火恩杰, 刘昌森, 章振铨, 等, 2004. 上海市隐伏断裂及其活动性研究[M]. 北京: 地震出版社.

    Google Scholar

    蒋辉, 李海军, 高斌, 等, 2018. 电火花震源在石油地震勘探中的应用[J]. 物探装备, 28(1): 42-44, 56. doi: 10.3969/j.issn.1671-0657.2018.01.011

    CrossRef Google Scholar

    蒋立, 罗勇, 程志国, 等, 2015. 地表一致性表层相对Q计算及补偿方法研究与应用[J]. 新疆地质, 33(3): 415-420. doi: 10.3969/j.issn.1000-8845.2015.03.027

    CrossRef Google Scholar

    李锦轶, 张进, 刘建峰, 等, 2019. 中国地壳结构构造与形成过程: 来自构造变形的约束[J]. 地质力学学报, 25(5): 678-698.

    Google Scholar

    刘昌森, 蒋德乾, 王先铸, 1980. 上海地区历史地震概述[J]. 上海地质(1): 83-85.

    Google Scholar

    聂碧波, 赵建明, 郦逸根, 等, 2015. 浅层地震勘探在城市活断层探测中的应用[J]. 工程地球物理学报, 12(1): 15-21. doi: 10.3969/j.issn.1672-7940.2015.01.004

    CrossRef Google Scholar

    戚宾, 王祥春, 赵庆献, 2020. 海洋电火花震源地震勘探研究进展[J]. 物探与化探, 44(1): 107-111.

    Google Scholar

    邱金波, 李晓, 2007. 上海市第四纪地层与沉积环境[M]. 上海: 上海科学技术出版社.

    Google Scholar

    任立刚, 杨德宽, 2018. 电火花震源在平原水域区地震采集中的应用及效果分析[J]. 地球物理学进展, 33(6): 2581-2587.

    Google Scholar

    上海地质矿产局, 1988. 上海市区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    苏贵仕, 丁成震, 2014. 叠前随机噪声衰减及其应用技巧[J]. 石油地球物理勘探, 49(S1): 87-92.

    Google Scholar

    王浩男, 吴中海, 李浩民, 2016. 泛长三角地区主要活动断裂及地震活动基本特征[J]. 地质力学学报, 22(3): 500-516. doi: 10.3969/j.issn.1006-6616.2016.03.008

    CrossRef Google Scholar

    谢建磊, 2018. 上海及邻区地震活动特征及地震构造区划[J]. 上海国土资源, 39(4): 1-6. doi: 10.3969/j.issn.2095-1329.2018.04.001

    CrossRef Google Scholar

    杨主恩, 2008. 城市活动断层探测的实施和常见技术问题[J]. 资源调查与环境, 29(3): 157-161. doi: 10.3969/j.issn.1671-4814.2008.03.001

    CrossRef Google Scholar

    于富文, 蒋辉, 杨德宽, 2018. HK地区GH水库电火花震源应用效果研究[C]//CPS/SEG北京2018国际地球物理会议暨展览电子论文集. 北京: 《中国学术期刊(光盘版)》电子杂志社.

    Google Scholar

    张宏良, 1999. 上海地质矿产志[M]. 上海: 上海社会科学院出版社.

    Google Scholar

    张鹏, 张媛媛, 马志江, 等, 2018. 萧山-球川断裂富阳-建德段第四纪活动性研究[J]. 震灾防御技术, 13(4): 959-967.

    Google Scholar

    章振铨, 刘昌森, 王锋, 2004. 上海地区断裂活动性与地震关系初析[J]. 中国地震, 20(2): 143-151. doi: 10.3969/j.issn.1001-4683.2004.02.004

    CrossRef Google Scholar

    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721.

    Google Scholar

    周春景, 吴中海, 马晓雪, 等, 2016. 滇中城市群重要活动断裂与区域地壳稳定性评价[J]. 地质力学学报, 22(3): 454-477. doi: 10.3969/j.issn.1006-6616.2016.03.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(1243) PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint