2021 Vol. 27, No. 6
Article Contents

CHEN Qing, YUAN Bingqiang, HUANG Xiaoyu, LI Junmei, CHEN Hao, DING Chengyi, SUN Shuai, QIN Wen. 2021. The gravity field and tectonic features in the southeast of the Anza Basin, Kenya. Journal of Geomechanics, 27(6): 928-937. doi: 10.12090/j.issn.1006-6616.2021.27.06.075
Citation: CHEN Qing, YUAN Bingqiang, HUANG Xiaoyu, LI Junmei, CHEN Hao, DING Chengyi, SUN Shuai, QIN Wen. 2021. The gravity field and tectonic features in the southeast of the Anza Basin, Kenya. Journal of Geomechanics, 27(6): 928-937. doi: 10.12090/j.issn.1006-6616.2021.27.06.075

The gravity field and tectonic features in the southeast of the Anza Basin, Kenya

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No.41702210), the Natural Science Foundation of Chongqing (Grant No.cstc2021jcyj-msxmX1070), and the Science and Technology Research Program of the Chongqing Municipal Education Commission (Grant No.KJQN201901535)
  • The southeast of the Anza Basin in Kenya, located in the East African Rift System, has developed a very thick Mesozoic and Cenozoic sedimentary cover. However, the low level of exploration in this area restricts us from understanding its structural system and evaluating its oil-gas exploration potential. In this study, we processed and interpreted the gravity anomaly data obtained from the study area based on our understanding of its structural characteristics, and the conclusions drawn from the results are as follows. Under the influence of dextral shear stress of the central Africa shear zone, large-scale NW-oriented basement faults and small-scale NE-oriented caprock faults developed in the study area with the latter cutting off the former. The basement depth of the study area varies greatly and is characterized by "one uplift between two depressions". The very thick Mesozoic and Cenozoic cover layer was deposited in depressions. Controlled by the NW-tensional fault as well as the NE-fault developed along the structural weak zone, the study area is divided into four tectonic units: the eastern depression, the central uplift, the southern uplift and the western depression, showing the structural pattern of the "east-west zone and north-south block".

  • 加载中
  • BENOIT M H, NYBLADE A A, PASYANOS M E, 2006. Crustal thinning between the Ethiopian and East African plateaus from modeling Rayleigh wave dispersion[J]. Geophysical Research Letters, 33(13): L13301. doi: 10.1029/2006GL025687

    CrossRef Google Scholar

    BOONE S C, KOHN B P, GLEADOW A J W, et al., 2018. Tectono-thermal evolution of a long-lived segment of the East African Rift System: thermochronological insights from the North Lokichar Basin, Turkana, Kenya[J]. Tectonophysics, 744: 23-46. doi: 10.1016/j.tecto.2018.06.010

    CrossRef Google Scholar

    BOSWORTH W, MORLEY C K, 1994. Structural and stratigraphic evolution of the Anza rift, Kenya[J]. Tectonophysics, 236(1-4): 93-115. doi: 10.1016/0040-1951(94)90171-6

    CrossRef Google Scholar

    BRUNE S, CORTI G, RANALLI G, 2017. Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression[J]. Tectonics, 36(9): 1767-1786. doi: 10.1002/2017TC004739

    CrossRef Google Scholar

    CHEN Q, YUAN B Q, DONG Y P, et al., 2013. The new methods to study fault structure by gravity data and applications to TANA sag in Kenya[J]. Journal of Northwest University (Natural Science Edition), 43(4): 599-605. (in Chinese with English abstract)

    Google Scholar

    COOPER G R J, COWAN D R, 2006. Enhancing potential field data using filters based on the local phase[J]. Computers & Geosciences, 32(10): 1585-1591.

    Google Scholar

    CORTI G, 2009. Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa[J]. Earth-Science Reviews, 96(1-2): 1-53. doi: 10.1016/j.earscirev.2009.06.005

    CrossRef Google Scholar

    DINDI E W, 1994. Crustal structure of the Anza graben from gravity and magnetic investigations[J]. Tectonophysics, 236(1-4): 359-371. doi: 10.1016/0040-1951(94)90184-8

    CrossRef Google Scholar

    EBINGER C J, YEMANE T, HARDING D J, et al., 2000. Rift deflection, migration, and propagation: Linkage of the Ethiopian and Eastern rifts, Africa[J]. GSA Bulletin, 112(2): 163-176. doi: 10.1130/0016-7606(2000)112<163:RDMAPL>2.0.CO;2

    CrossRef Google Scholar

    FERREIRA F J F, DE SOUZA J, DE B. E S. BONGIOLO A, et al., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle[J]. Geophysics, 78(3): J33-J41. doi: 10.1190/geo2011-0441.1

    CrossRef Google Scholar

    FOSTER D A, GLEADOW A J W, 1996. Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa[J]. Tectonics, 15(2): 258-271. doi: 10.1029/95TC02744

    CrossRef Google Scholar

    GREENE L C, RICHARDS D R, JOHNSON R A, 1991. Crustal structure and tectonic evolution of the Anza rift, northern Kenya[J]. Tectonophysics, 197(2-4): 203-211. doi: 10.1016/0040-1951(91)90041-P

    CrossRef Google Scholar

    GUIRAUD R, BOSWORTH W, 1997. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics[J]. Tectonophysics, 282(1-4): 39-82. doi: 10.1016/S0040-1951(97)00212-6

    CrossRef Google Scholar

    HACKMAN B D, CHARSLEY T J, KEY R M, et al., 1990. The development of the East African Rift System in north-central Kenya[J]. Tectonophysics, 184(2): 189-211. doi: 10.1016/0040-1951(90)90053-B

    CrossRef Google Scholar

    LIU G H, CHEN Q H, 2014. Structure and sedimentary-filling evolution of Anza Basin of East Africa[J]. Journal of Xi'an University of Science and Technology, 34(3): 326-330. (in Chinese with English abstract)

    Google Scholar

    MA J, WANG W Y, JI X L, 2019. Tectonic characteristics of Cesar basin and its adjacent areas according to gravity field[J]. Geological Science and Technology Information, 38(1): 285-294. (in Chinese with English abstract)

    Google Scholar

    MILLER H G, SINGH V, 1994. Potential field tilt-a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 32(2-3): 213-217. doi: 10.1016/0926-9851(94)90022-1

    CrossRef Google Scholar

    MORLEY C K, BOSWORTH W, DAY R A, et al., 1999. Geology and geophysics of the Anza Graben[M]//MORLEY C K. Geoscience of Rift Systems-Evolution of East Africa. America: AAPG Studies in Geology: 67-90.

    Google Scholar

    MORLEY C K, WESCOTT W A, STONE D M, et al., 1992. Tectonic evolution of the northern Kenyan Rift[J]. Journal of the Geological Society, 149(3): 333-348. doi: 10.1144/gsjgs.149.3.0333

    CrossRef Google Scholar

    SHERIFF R E, 1973. Encyclopedic dictionary of exploration geophysics[M]. Tulsa: Society of Exploration Geophysicists: 266.

    Google Scholar

    SWAIN C J, 1979. Gravity and Seismic Measurements in Kenya[D]. Leicester: University of Leicester.

    Google Scholar

    VERDUZCO B, FAIRHEAD J D, GREEN C M, et al., 2004. New insights into magnetic derivatives for structural mapping[J]. The Leading Edge, 23(2): 116-119. doi: 10.1190/1.1651454

    CrossRef Google Scholar

    VETEL W, LE GALL B, WALSH J J, 2005. Geometry and growth of an inner rift fault pattern: the Kino Sogo Fault Belt, Turkana Rift (North Kenya)[J]. Journal of Structural Geology, 27(12): 2204-2222. doi: 10.1016/j.jsg.2005.07.003

    CrossRef Google Scholar

    VETEL W, LE GALL B, 2006. Dynamics of prolonged continental extension in magmatic rifts: the Turkana Rift case study (North Kenya)[J]. Geological Society, London, Special Publications, 259(1): 209-233. doi: 10.1144/GSL.SP.2006.259.01.17

    CrossRef Google Scholar

    WANG W Y, PAN Y, QIU Z Y, 2009. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 6(3): 226-233. doi: 10.1007/s11770-009-0026-x

    CrossRef Google Scholar

    WANG W Y, QIU Z Y, YANG Y, et al., 2010. Some advances in the edge recognition of the potential field[J]. Progress in Geophysics, 25(1): 196-210. (in Chinese with English abstract)

    Google Scholar

    WANG X, LI T L, 2004. Locating the boundaries of magnetic or gravity sources with Tdr and Tdr_Thdr methods[J]. Progress in Geophysics, 19(3): 625-630. (in Chinese with English abstract)

    Google Scholar

    WEN Z X, TONG X G, ZHANG G Y, et al., 2012. Petroleum geology features and exploration potential of basin group in East African Rift system[J]. China Petroleum Exploration, 17(4): 60-65. (in Chinese with English abstract)

    Google Scholar

    WINN R D JR, STEINMETZ J C, KEREKGYARTO W L, 1993. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya[J]. AAPG Bulletin, 77(11): 1989-2005.

    Google Scholar

    Xi'an Shiyou University, 2007. The research of integrated interpretation of gravity, aeromagnetics and seismic data of block 9 and 10A of ANZA basin in Kenya_Atlas contents[R]. (in Chinese)

    Google Scholar

    XU W Q, YUAN B Q, LIU B L, et al., 2020. Multiple gravity and magnetic potential field edge detection methods and their application to the boundary of fault structures in northern South Yellow Sea[J]. Geophysical and Geochemical Exploration, 44(4): 962-974. (in Chinese with English abstract)

    Google Scholar

    YANG J S, ZHU X M, 2008. Lower Cretaceous sequence stratigraphy of Fula depression, Muglad basin, Sudan[J]. Acta Sedimentologica Sinica, 26(6): 994-1004. (in Chinese with English abstract)

    Google Scholar

    YUAN B Q, XIE W S, LIU G H, et al., 2012. Gravity field and tectonic features of Block L2 in the Lamu basin, Kenya[J]. Geophysical Prospecting, 60(1): 161-178. doi: 10.1111/j.1365-2478.2011.00961.x

    CrossRef Google Scholar

    ZHOU D, WANG W Y, WANG J L, et al., 2006. Mesozoic subduction-accretion zone in northeastern south China sea inferred from geophysical interpretations[J]. Science in China Series D: Earth Sciences, 49(5): 471-482. doi: 10.1007/s11430-006-0471-9

    CrossRef Google Scholar

    陈青, 袁炳强, 董云鹏, 等, 2013. 断裂识别新方法及其在肯尼亚Tana凹陷中的应用[J]. 西北大学学报(自然科学版), 43(4): 599-605.

    Google Scholar

    刘桂和, 陈全红, 2014. 东非Anza盆地结构及沉积充填演化[J]. 西安科技大学学报, 34(3): 326-330. doi: 10.3969/j.issn.1672-9315.2014.03.014

    CrossRef Google Scholar

    马杰, 王万银, 纪晓琳, 2019. 利用重力场研究塞萨尔盆地及邻区构造特征[J]. 地质科技情报, 38(1): 285-294.

    Google Scholar

    王万银, 邱之云, 杨永, 等, 2010. 位场边缘识别方法研究进展[J]. 地球物理学进展, 25(1): 196-210.

    Google Scholar

    王想, 李桐林, 2004. Tilt梯度及其水平导数提取重磁源边界位置[J]. 地球物理学进展, 19(3): 625-630. doi: 10.3969/j.issn.1004-2903.2004.03.022

    CrossRef Google Scholar

    温志新, 童晓光, 张光亚, 等, 2012. 东非裂谷系盆地群石油地质特征及勘探潜力[J]. 中国石油勘探, 17(4): 60-65.

    Google Scholar

    西安石油大学, 2007. 肯尼亚ANZA盆地9、10A区块重磁震联合解释研究报告[R].

    Google Scholar

    许文强, 袁炳强, 刘必良, 等, 2020. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 44(4): 962-974.

    Google Scholar

    杨俊生, 朱筱敏, 2008. 苏丹Muglad盆地Fula坳陷白垩系Abu Gabra组层序地层及沉积体系[J]. 沉积学报, 26(6): 994-1004.

    Google Scholar

    周蒂, 王万银, 庞雄, 等, 2006. 地球物理资料所揭示的南海东北部中生代俯冲增生带[J]. 中国科学D辑: 地球科学, 36(3): 209-218.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(414) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint