2021 Vol. 27, No. 6
Article Contents

CAO Pengju, CHENG Sanyou, LIN Haixing, WANG Xi, LI Manqi, CHEN Jing. 2021. DEM in quantitative analysis of structural geomorphology: application and prospect. Journal of Geomechanics, 27(6): 949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077
Citation: CAO Pengju, CHENG Sanyou, LIN Haixing, WANG Xi, LI Manqi, CHEN Jing. 2021. DEM in quantitative analysis of structural geomorphology: application and prospect. Journal of Geomechanics, 27(6): 949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077

DEM in quantitative analysis of structural geomorphology: application and prospect

    Fund Project: This research is financially supported by the Geological Survey Project of China Geological Survey (Grant No. DD20190069) and the Fundamental Research Funds for Central Universities of Chang' an University (Grant No. 300102279105)
More Information
  • Digital elevation model (DEM) is used to realize the digital simulation of terrain surface (i.e. the digital representation of terrain surface shape) through the limited terrain elevation data. As a new tool to describe the terrain, it provides a new field of vision for people to study the evolution process of the earth's surface. The application status of DEM in many fields are summerized in this paper, including basic topographic factors, watershed geomorphological features, reconstruction of paleogeomorphology, tectonic geomorphological development model, tectonic activity classification, geomorphological classification and environmental assessment, geomorphological parameter algorithms and computing platform development. Our research generally focuses on land, with river geomorphology and mountain geomorphology as the main objects. The research process changes from the early qualitative description of geomorphology to the semi-quantitative and quantitative analysis of a variety of geomorphological parameters. The research scale extends from a small watershed to the whole orogenic belt in space and from a few hours to millions of years in time. However, many factors can influence the accuracy of quantitative analysis results of tectonic geomorphology, such as the uncertainty of the time series of tectonic geomorphology evolution, the complexity of the acquisition of geomorphological parameters, the diversification of terrain model algorithms and the error factors in the process of DEM generation. Therefore, while summarizing the previous research results, some thoughts are given on the application of DEM in tectonic geomorphology.

  • 加载中
  • ARDIANSYAH P O D, YOKOYAMA R, 2002. DEM generation method from contour lines based on the steepest slope segment chain and a monotone interpolation function[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 57(1-2): 86-101. doi: 10.1016/S0924-2716(02)00117-X

    CrossRef Google Scholar

    BERNATEK-JAKIEL A, JAKIEL M, 2021. Identification of soil piping-related depressions using an airborne LiDAR DEM: Role of land use changes[J]. Geomorphology, 378: 107591. doi: 10.1016/j.geomorph.2020.107591

    CrossRef Google Scholar

    CALVET M, GUNNELL Y, BRAUCHER R, et al., 2015. Cave levels as proxies for measuring post-orogenic uplift: Evidence from cosmogenic dating of alluvium-filled caves in the French Pyrenees[J]. Geomorphology, 246: 617-633. doi: 10.1016/j.geomorph.2015.07.013

    CrossRef Google Scholar

    CASTILLO M, FERRARI L, MUÑOZ-SALINAS E, 2017. Knickpoint retreat and landscape evolution of the Amatlán de Cañas half-graben (northern sector of Jalisco Block, western Mexico)[J]. Journal of South American Earth Sciences, 77: 108-122. doi: 10.1016/j.jsames.2017.05.003

    CrossRef Google Scholar

    CHANG Y C, SONG G S, HSU S K, 1998. Automatic extraction of ridge and valley axes using the profile recognition and polygon-breaking algorithm[J]. Computers & Geosciences, 24 (1): 83-93.

    Google Scholar

    CHEN C F, LIU F Y, YAN C Q, et al., 2016. A Huber-derived robust multi-quadric interpolation method for DEM construction[J]. Geomatics and Information Science of Wuhan University, 41(6): 803-809. (in Chinese with English abstract)

    Google Scholar

    CHENG L, WU D Y, JIN W, et al., 2017. Geomorphic evolution of the Qiantang River drainage basin based on the analysis of topographic indexs[J]. Quaternary Sciences, 37 (2): 343-352. ].

    Google Scholar

    CHEN X Y, 2020. Research on lithology classification based on terrain factors[D]. Changchun: Jilin University. (in Chinese with English abstract)

    Google Scholar

    CHENG W M, ZHOU C H, CHAI H X, et al., 2009. Quantitative extraction and analysis of basic morphological types of land geomorphology in China[J]. Journal of Geo-Information Science, 11 (6): 725-736. (in Chinese with English abstract)

    Google Scholar

    CLARK M K, ROYDEN L H, WHIPPLE K X, et al., 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 111 (F3): F03002.

    Google Scholar

    CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 23 (1): TC1006.

    Google Scholar

    DENG Y X, WILSON J P, SHENG J, 2006. Effects of variable attribute weights on landform classification[J]. Earth Surface Processes and Landforms, 31 (11): 1452-1462. doi: 10.1002/esp.1401

    CrossRef Google Scholar

    DIBIASE R A, WHIPPLE K X, HEIMSATH A M, et al., 2010. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA[J]. Earth and Planetary Science Letters, 289 (1-2): 134-144. doi: 10.1016/j.epsl.2009.10.036

    CrossRef Google Scholar

    EHSANI A H, QUIEL F, MALEKIAN A, 2010. Effect of SRTM resolution on morphometric feature identification using neural network-self organizing map[J]. GeoInformatica, 14 (4): 405-424. doi: 10.1007/s10707-009-0085-4

    CrossRef Google Scholar

    EJARQUE A, BEAUGER A, MIRAS Y, et al., 2015. Historical fluvial palaeodynamics and multi-proxy palaeoenvironmental analyses of a palaeochannel, Allier River, France[J]. Geodinamica acta, 27 (1): 25-47. doi: 10.1080/09853111.2013.877232

    CrossRef Google Scholar

    FAN J R, ZHANG Z Y, LI L H, 2015. Mountain demarcation and mountainous area divisions of Sichuan province[J]. Geographical Research, 34 (1): 65-73. (in Chinese with English abstract)

    Google Scholar

    FLORINSKY I V, 2009. Computation of the third-order partial derivatives from a digital elevation model[J]. International journal of geographical information science, 23 (2): 213-231. doi: 10.1080/13658810802527499

    CrossRef Google Scholar

    FOX M, BODIN T, SHUSTER D L, 2015. Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of river profiles[J]. Geomorphology, 238: 1-14. doi: 10.1016/j.geomorph.2015.02.022

    CrossRef Google Scholar

    GAO Z Y, XIE Y L, WANG N L, et al., 2019. Response of three global DEM data accuracy to different terrain factors in Qinghai-Tibet Plateau[J]. Bulletin of Soil and water conservation, 39 (2): 184-191. (in Chinese with English abstract)

    Google Scholar

    GU W Y, MENG X R, ZHU X C, et al., 2020. Geomorphological classification research based on BEMD decomposition[J]. Journal of Geo-Information Science, 22 (3): 464-473. (in Chinese with English abstract)

    Google Scholar

    GURU D S, SHEKAR B H, NAGABHUSHAN P., 2004. A simple and robust line detection algorithm based on small eigenvalue analysis[J]. Pattern Recognition Letters, 25 (1): 1-13. doi: 10.1016/j.patrec.2003.08.007

    CrossRef Google Scholar

    HAREL M A, MUDD S M, ATTAL M, 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates[J]. Geomorphology, 268: 184-196. doi: 10.1016/j.geomorph.2016.05.035

    CrossRef Google Scholar

    HETZEL R, 2013. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 582: 1-24. doi: 10.1016/j.tecto.2012.10.027

    CrossRef Google Scholar

    HU J L, TANG M G, LUO M L, et al., 2020. The extraction of characteristic elements of mountain based on DEM[J]. Journal of Geo-Information Science, 22 (3): 422-430. (in Chinese with English abstract)

    Google Scholar

    HU Z, NIE Y Y, 2015. DEM-based landform taxonomic features of Hunan Province[J]. Geography and Geo-Information Science, 31 (6): 67-71. (in Chinese with English abstract)

    Google Scholar

    HUANG F M, YANG J B, ZHANG B, et al., 2020. Regional Terrain Complexity Assessment Based on Principal Component Analysis and Geographic Information System: A Case of Jiangxi Province, China[J]. ISPRS International Journal of Geo-Information, 9 (9): 539. doi: 10.3390/ijgi9090539

    CrossRef Google Scholar

    HUANG Y F, LI Z H, NING H, et al., 2019. Research on Rock and Mineral Information Extraction Based on ASTER Remote Sensing Image[J]. Spacecraft Engineering 28 (6): 130-135. (in Chinese with English abstract)

    Google Scholar

    KANG X, WANG Y W, QIN C Z, et al., 2016. A new method of landform element classification based on multi-scale morphology[J]. Geographical Research, 35 (9): 1637-1646. (in Chinese with English abstract)

    Google Scholar

    KIRBY E, WHIPPLE K X, 2012. Expression of active tectonics in erosional landscapes[J]. Journal of structural geology, 44: 54-75. doi: 10.1016/j.jsg.2012.07.009

    CrossRef Google Scholar

    LAGUE D, HOVIUS N, DAVY P, 2005. Discharge, discharge variability, and the bedrock channel profile[J]. Journal of Geophysical Research: Earth Surface, 110 (F4): F04006.

    Google Scholar

    LAKSHMI S E, YARRAKULA K, 2018. Review and critical analysis on digital elevation models[J]. Geofizika, 35 (2): 129-157.

    Google Scholar

    LANG K A, HUNTINGTON K W, BURMESTER R F, et al., 2016. Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene[J]. GSA Bulletin, 128 (9-10): 1403-1422. doi: 10.1130/B31419.1

    CrossRef Google Scholar

    LEASE R O, EHLERS T A, 2013. Incision into the Eastern Andean Plateau During Pliocene Cooling[J]. Science, 341 (6147): 774-776. doi: 10.1126/science.1239132

    CrossRef Google Scholar

    LI B, ZHANG J, YUE Z Y, et al., 2020. Deriving terrain factors from high-resolution lunar images: A case study of the Mons Rümker Region[J]. Geomorphology, 358: 107114. doi: 10.1016/j.geomorph.2020.107114

    CrossRef Google Scholar

    LI H, HUANG X Y, DENG Q L, et al., 2012. Mapping of planation surfaces in the southwest region of Hubei Province, China-Using the DEM-derived painted relief model[J]. Journal of Earth Science, 23 (5): 719-730. doi: 10.1007/s12583-012-0290-1

    CrossRef Google Scholar

    LI J J, FANG X M, PAN B T, et al., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 21 (5): 381-391. (in Chinese with English abstract)

    Google Scholar

    LI J J, MA Z H, LI X M, et al., 2017. Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau[J]. Geomorphology, 295: 393-405. doi: 10.1016/j.geomorph.2017.07.024

    CrossRef Google Scholar

    LIN L L, LI X M, ZHANG H P, et al., 2021. River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos Block[J]. Journal of Geomechanics, 27 (2): 294-303. (in Chinese with English abstract)

    Google Scholar

    LIU J, ZHANG J Y, GE Y K, et al., 2018. Tectonic Geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 63 (30): 3070-3088. (in Chinese with English abstract) doi: 10.1360/N972018-00498

    CrossRef Google Scholar

    LIU L, ZHANG D, YOU J, 2007. Detecting Wide Lines Using Isotropic Nonlinear Filtering[J]. IEEE Transactions on Image Processing, 16 (6): 1584-1595. doi: 10.1109/TIP.2007.894288

    CrossRef Google Scholar

    LIU S F, WANG T, ZHANG H P, et al., 2005. Application of digital elevation model to surficial process research[J]. Earth Science Frontiers, 12(1): 303-309. (in Chinese with English abstract)

    Google Scholar

    LIU X, WANG L, GAO P L, 2011. Extraction of stream runoff nodes based on geometric network[J]. Science of Surveying and Mapping, 36 (5): 85-86, 72. (in Chinese with English abstract)

    Google Scholar

    LIU Y, WANG Y X, PAN B T, 1999. A preliminary approach on the 3D presentation and quantitative analysis of planation surface[J]. Geographical Research, 18(4): 391-399. (in Chinese with English abstract)

    Google Scholar

    LIU Y X, 2014. The research and implementation n the skeleton feature extraction method for terrain model based on profile recognition and morphological simplification[D]. Changchun: Northeast Normal University. (in Chinese with English abstract)

    Google Scholar

    LUCIEER A, TURNER D, KING D H, et al., 2014. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds[J]. International Journal of Applied Earth Observation and Geoinformation, 27: 53-62. doi: 10.1016/j.jag.2013.05.011

    CrossRef Google Scholar

    LUO W, LIU C C, 2018. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides, 15 (3): 465-474. doi: 10.1007/s10346-017-0893-9

    CrossRef Google Scholar

    MA J P, 2017. Quantitative study geomorphic indices and planation surfaces of the Taohe drainage system based on DEM[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)

    Google Scholar

    MA Z H, LI X M, PENG T J, et al., 2020. Landscape evolution of the Dabanshan planation surface: Implications for the uplift of the eastern tip of the Qilian Mountains since the Late Miocene[J]. Geomorphology, 356: 107091. doi: 10.1016/j.geomorph.2020.107091

    CrossRef Google Scholar

    NOH M J, HOWAT I M, 2015. Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions[J]. GIScience & remote sensing, 52 (2): 198-217.

    Google Scholar

    POLIDORI L, EL HAGE M, 2020. Digital Elevation Model Quality Assessment Methods: A Critical Review[J]. Remote sensing, 12 (21): 3522. doi: 10.3390/rs12213522

    CrossRef Google Scholar

    PU Y, LUO M L, LIU W M, et al., 2018. Research on the correlation characteristics of peak points based on DEM: a case study of the main peak area of Huaying mountain of folded mountain system in East Sichuan[J]. Geography and GEO-information Science, 34 (4): 96-100. (in Chinese with English abstract)

    Google Scholar

    QUYE-SAWYER J, WHITTAKER A C, ROBERTS G G, 2020. Calibrating fluvial erosion laws and quantifying river response to faulting in Sardinia, Italy[J]. Geomorphology, 370: 107388. doi: 10.1016/j.geomorph.2020.107388

    CrossRef Google Scholar

    REN J S, NIU B G, ZHAO L, et al., 2019. Basic ideas of the multisphere tectonics of earth system[J]. Journal of Geomechanics, 25 (5): 607-612. (in Chinese with English abstract)

    Google Scholar

    ROOD D H, BURBANK D W, FINKEL R C, 2011. Chronology of glaciations in the Sierra Nevada, California, from 10Be surface exposure dating[J]. Quaternary Science Reviews, 30 (5-6): 646-661. doi: 10.1016/j.quascirev.2010.12.001

    CrossRef Google Scholar

    SCHOENBOHM L M, BURCHFIEL B C, CHEN L, et al., 2005. Exhumation of the Ailao Shan shear zone recorded by Cenozoic sedimentary rocks, Yunnan Province, China[J]. Tectonics, 24 (6): TC6015.

    Google Scholar

    SCOWN M W, THOMS M C, DE JAGER N R, 2015. Floodplain complexity and surface metrics: Influences of scale and geomorphology[J]. Geomorphology, 245: 102-116. doi: 10.1016/j.geomorph.2015.05.024

    CrossRef Google Scholar

    ŚLEDŹ S, EWERTOWSKI M W, PIEKARCZYK J, 2021. Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology[J]. Geomorphology, 378: 107620. doi: 10.1016/j.geomorph.2021.107620

    CrossRef Google Scholar

    SOFIA G, 2020. Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward[J]. Geomorphology, 355: 107055. doi: 10.1016/j.geomorph.2020.107055

    CrossRef Google Scholar

    STEER P, HUISMANS R S, VALLA P G, et al., 2012. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia[J]. Nature Geoscience, 5 (9): 635-639. doi: 10.1038/ngeo1549

    CrossRef Google Scholar

    SUN C L, WANG J L, 2008. The progress on automatic basin streamline extracting & classifying methods based on DEM[J]. Progress in Geography, 27(1): 118-124. (in Chinese with English abstract)

    Google Scholar

    TANG G A, 2014. Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 69 (9): 1305-1325. (in Chinese with English abstract)

    Google Scholar

    TANG G A, LI F Y, XIONG L Y, 2017a. Progress of Digital Terrain Analysis in the Loess Plateau of China[J]. Geography and Geo-Information Science, 33 (4): 1-7. (in Chinese with English abstract)

    Google Scholar

    TANG G A, NA J M, CHENG W M, 2017b. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et CartographicaSinica, 46 (10): 1570-1591. (in Chinese with English abstract)

    Google Scholar

    TANG X M, LI S J, LI T, et al., 2021. Review on global digital elevation products[J]. Journal of Remote Sensing, 25 (1): 167-181. (in Chinese with English abstract)

    Google Scholar

    TU X J, CHEN X H, 2010. Characteristics variability study of regional river runoff time series based on change point recognition[J]. Journal of Natural Resources 25 (11): 1930-1937. (in Chinese with English abstract)

    Google Scholar

    VALENTINE A, KALNINS L, 2016. An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics[J]. Earth Surface Dynamics, 4 (2): 445-460. doi: 10.5194/esurf-4-445-2016

    CrossRef Google Scholar

    VAYSSIōRE A, CASTANET C, GAUTIER E, et al., 2020. Readjustments of a sinuous river during the last 6000 years in northwestern Europe (Cher River, France): from an active meandering river to a stable river course under human forcing[J]. Geomorphology, 370: 107395. doi: 10.1016/j.geomorph.2020.107395

    CrossRef Google Scholar

    WANG J Y, CUI T J, MIAO G Q, 2004. Digital elevation model and its data structure[J]. Hydrographic Surveying and Charting, 24 (3): 1-4. (in Chinese with English abstract)

    Google Scholar

    WANG Y G, ZHU C Q WANG Z W, 2008. A surface model of grid DEM based on coons surface[J]. Acta Geodaetica et Cartographica Sinica 37 (2): 217-222. (in Chinese with English abstract)

    Google Scholar

    WANG Y W, QIN C Z, 2017. Review of methods for landform automatic classification[J]. Geography and Geo-Information Science, 33 (4): 16-21. (in Chinese with English abstract)

    Google Scholar

    WANG Y Z, ZHANG H P, ZHENG D W, et al., 2017. How a stationary knickpoint is sustained: New insights into the formation of the deep YarlungTsangpo Gorge[J]. Geomorphology, 285: 28-43. doi: 10.1016/j.geomorph.2017.02.005

    CrossRef Google Scholar

    WANG Y Z, ZHENG D W, ZHANG H P, et al., 2019. The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: Inference from bedrock channel profiles[J]. Tectonophysics, 759: 15-29. doi: 10.1016/j.tecto.2019.04.001

    CrossRef Google Scholar

    WANG Y Z, ZHENG D W, ZHANG H P, et al., 2020. Activity Characteristics of the Huashan Piedmont Normal Fault: Insights from Fluvial Geomorphic Parameters[J]. Seismology and Geology 42 (2): 382-398. (in Chinese with English abstract)

    Google Scholar

    WHIPPLE K X, 2004. Bedrock Rivers and the Geomorphology of Active Orogens[J]. Annual Review of Earth and Planetary Sciences, 32: 151-185. doi: 10.1146/annurev.earth.32.101802.120356

    CrossRef Google Scholar

    WHIPPLE K X, FORTE A M, DIBIASE R A, et al., 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution[J]. Journal of Geophysical Research: Earth Surface, 122 (1): 248-273. doi: 10.1002/2016JF003973

    CrossRef Google Scholar

    WILLETT S D, MCCOY S W, PERRON J T, et al., 2014. Dynamic Reorganization of River Basins[J]. Science, 343 (6175): 1248765. doi: 10.1126/science.1248765

    CrossRef Google Scholar

    WILSON J P, 2018. Geomorphometry: Today and tomorrow[J]. Peer J Preprints 6: e27197v1.

    Google Scholar

    WU Q J, CHEN Y M, ZHOU H Y, et al., 2020. A New Algorithm for Calculating the Flow Path Curvature (C) from the Square-Grid Digital Elevation Model (DEM)[J]. ISPRS International Journal of Geo-Information, 9 (9): 510. doi: 10.3390/ijgi9090510

    CrossRef Google Scholar

    XIA S, RUAN R Z, SHE Y J, et al., 2012. Classification of remote sensing image based on C4.5 algorithm[J]. Geospatial Information, 10 (4): 89-91, 94. (in Chinese with English abstract)

    Google Scholar

    XIAO Z, FUJI N, IIDAKA T, et al., 2020. Seismic structure beneath the Tibetan Plateau from iterative finite-frequency tomography based on ChinArray: New insights into the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018344.

    Google Scholar

    XIE Y Q, ZHU H C, TANG G A, et al., 2013. Extraction and analysis of gully feature points based on DEM[J]. Journal of Geo-Information Science, 15 (1): 61-67. (in Chinese with English abstract) doi: 10.3724/SP.J.1047.2013.00061

    CrossRef Google Scholar

    XIN X, 2018. The study on the mapping and hazard assessment of shallow landslides in gully loess area[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)

    Google Scholar

    XIONG L Y, TANG G A, YANG X, et al., 2021. Geomorphology-oriented digital terrain analysis: Progress and perspectives[J]. Acta Geographica Sinica, 76 (3): 595-611. (in Chinese with English abstract)

    Google Scholar

    XU L, LI J H, LIU C H, et al., 2017. Research on Geomorphological Morphology and Regionalization of Hoh Xil Based on Digital Elevation Model (DEM)[J]. Acta ScientiarumNaturalium Universitatis Pekinensis, 53 (5): 833-842. (in Chinese with English abstract)

    Google Scholar

    YANG R, WILLETT S D, GOREN L, 2015. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 520 (7548): 526-529. doi: 10.1038/nature14354

    CrossRef Google Scholar

    YANG X, TANG G A, XIAO C C, et al., 2011. The scaling method of specific catchment area from DEMs[J]. Journal of Geographical Sciences, 21 (4): 689-704. doi: 10.1007/s11442-011-0873-2

    CrossRef Google Scholar

    YAO H J, BEGHEIN C, VAN DER HILST R D, 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two station analysis II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 173 (1): 205-219. doi: 10.1111/j.1365-246X.2007.03696.x

    CrossRef Google Scholar

    ZAIDI S M, AKBARI A, GISEN J I, et al., 2018. Utilization of Satellite-based Digital Elevation Model (DEM) for Hydrologic Applications: A Review[J]. Journal of the Geological Society of India, 92 (3): 329-336. doi: 10.1007/s12594-018-1016-5

    CrossRef Google Scholar

    ZEITLER P K, 2001. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism[J]. GSA Today, 11 (1): 4-94. doi: 10.1130/1052-5173(2001)011<0004:EHGATG>2.0.CO;2

    CrossRef Google Scholar

    ZHANG H P, 2006. Study on late Cenozoic geomorphic processes of typical regions along the eastern and northeastern Tibetan margins[D]. Beijing: China University of Geosciences(Beijing). (in Chinese with English abstract)

    Google Scholar

    ZHANG H P, CRADDOCK W H, LEASE R O, et al., 2012. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau[J]. Basin Research, 24 (1): 31-50. doi: 10.1111/j.1365-2117.2011.00512.x

    CrossRef Google Scholar

    ZHANG H P, KIRBY E, PITLICK J, et al., 2017. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 122 (2): 546-572. doi: 10.1002/2015JF003715

    CrossRef Google Scholar

    ZHANG H Q, LIU X Y, YANG S, et al., 2017. Retrieval of remote sensing images based on semisupervised deep learning[J]. Journal of Remote Sensing, 21 (3): 406-414. (in Chinese with English abstract)

    Google Scholar

    ZHAO W F, XIONG L Y, DING H, et al., 2017. Automatic recognition of loess landforms using Random Forest method[J]. Journal of Mountain Science, 14 (5): 885-897. doi: 10.1007/s11629-016-4320-9

    CrossRef Google Scholar

    ZHU H C, ZHAO Y P, XU Y X, et al., 2018. Hierarchy structure characteristics analysis for the China Loess watersheds based on gully node calibration[J]. Journal of Mountain Science, 15 (12): 2637-2650. doi: 10.1007/s11629-018-5000-8

    CrossRef Google Scholar

    ZUFFETTI C, BERSEZIO R, 2020. Morphostructural evidence of Late Quaternary tectonics at the Po Plain-Northern Apennines border (Lombardy, Italy)[J]. Geomorphology, 364: 107245. doi: 10.1016/j.geomorph.2020.107245

    CrossRef Google Scholar

    ZUZA A V, YIN A, 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet[J]. Tectonophysics, 677-678: 227-240. doi: 10.1016/j.tecto.2016.04.007

    CrossRef Google Scholar

    陈传法, 刘凤英, 闫长青, 等, 2016. DEM建模的多面函数Huber抗差算法[J]. 武汉大学学报(信息科学版), 41 (6): 803-809.

    Google Scholar

    程璐, 武登云, 靳文, 等, 2017. 基于地貌计量指标分析的钱塘江流域地貌演化特征[J]. 第四纪研究, 37 (2): 343-352.

    Google Scholar

    陈霄燕, 2020. 基于地形因子的岩性分类方法研究[D]. 长春: 吉林大学.

    Google Scholar

    程维明, 周成虎, 柴慧霞, 等, 2009. 中国陆地地貌基本形态类型定量提取与分析[J]. 地球信息科学学报, 11 (6): 725-736. doi: 10.3969/j.issn.1560-8999.2009.06.007

    CrossRef Google Scholar

    范建容, 张子瑜, 李立华, 2015. 四川省山地类型界定与山区类型划分[J]. 地理研究, 34 (1): 65-73. doi: 10.3969/j.issn.1003-2363.2015.01.012

    CrossRef Google Scholar

    高志远, 谢元礼, 王宁练, 等, 2019. 青藏高原地区3种全球DEM精度对不同地形因子的响应[J]. 水土保持通报, 39 (2): 184-191.

    Google Scholar

    顾文亚, 孟祥瑞, 朱晓晨, 等, 2020. 基于BEMD分解的地貌分类研究[J]. 地球信息科学学报, 22 (3): 464-473.

    Google Scholar

    胡金龙, 唐梦鸽, 罗明良, 等, 2020. 基于DEM的一体化山地特征要素提取[J]. 地球信息科学学报, 22 (3): 422-430.

    Google Scholar

    胡最, 聂阳意, 2015. 基于DEM的湖南省地貌形态特征分类[J]. 地理与地理信息科学, 31 (6): 67-71. doi: 10.3969/j.issn.1672-0504.2015.06.013

    CrossRef Google Scholar

    黄宇飞, 李智慧, 宁慧, 等, 2019. 应用ASTER遥感图像的岩矿信息提取研究[J]. 航天器工程, 28 (6): 130-135.

    Google Scholar

    康鑫, 王彦文, 秦承志, 等, 2016. 多分析尺度下综合判别的地形元素分类方法[J]. 地理研究, 35 (9): 1637-1646.

    Google Scholar

    李吉均, 方小敏, 潘保田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, (5): 381. doi: 10.3321/j.issn:1001-7410.2001.05.001

    CrossRef Google Scholar

    林玲玲, 李雪梅, 张会平, 等, 2021. 鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究[J]. 地质力学学报, 27(2): 294-303.

    Google Scholar

    刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 63 (30): 3070-3088.

    Google Scholar

    刘少峰, 王陶, 张会平, 等, 2005. 数字高程模型在地表过程研究中的应用[J]. 地学前缘, 12(1): 303-309. doi: 10.3321/j.issn:1005-2321.2005.01.040

    CrossRef Google Scholar

    刘晓, 王雷, 高佩玲, 2011. 利用几何网络提取河网径流节点的方法研究[J]. 测绘科学, 36 (5): 85-86, 72.

    Google Scholar

    刘亚鑫, 2014. 基于剖面识别和形态简化的地形骨架特征提取方法研究与实现[D]. 长春: 东北师范大学.

    Google Scholar

    刘勇, 王义祥, 潘保田, 1999. 夷平面的三维显示与定量分析方法初探[J]. 地理研究, 18(4): 391-399. doi: 10.3321/j.issn:1000-0585.1999.04.008

    CrossRef Google Scholar

    马金萍, 2017. 基于DEM的洮河流域水系地貌参数与夷平面定量化研究[D]. 兰州: 兰州大学.

    Google Scholar

    蒲阳, 罗明良, 刘维明, 等, 2018. 基于DEM的山顶点关联特征研究: 以川东褶皱山系华蓥山主峰区为例[J]. 地理与地理信息科学, 34 (4): 96-100. doi: 10.3969/j.issn.1672-0504.2018.04.015

    CrossRef Google Scholar

    任纪舜, 牛宝贵, 赵磊, 等, 2019. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 25 (5): 607-612.

    Google Scholar

    孙崇亮, 王卷乐, 2008. 基于DEM的水系自动提取与分级研究进展[J]. 地理科学进展, 27(1): 118-124.

    Google Scholar

    汤国安, 2014. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 69 (9): 1305-1325.

    Google Scholar

    汤国安, 李发源, 熊礼阳, 2017a. 黄土高原数字地形分析研究进展[J]. 地理与地理信息科学, 33 (4): 1-7.

    Google Scholar

    汤国安, 那嘉明, 程维明, 2017b. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 46 (10): 1570-1591.

    Google Scholar

    唐新明, 李世金, 李涛, 等, 2021. 全球数字高程产品概述[J]. 遥感学报, 25 (1): 167-181.

    Google Scholar

    涂新军, 陈晓宏, 2010. 基于变点识别的区域河川径流量特征值变异研究[J]. 自然资源学报, 25 (11): 1930-1937. doi: 10.11849/zrzyxb.2010.11.012

    CrossRef Google Scholar

    王家耀, 崔铁军, 苗国强, 2004. 数字高程模型及其数据结构[J]. 海洋测绘, 24(3): 1-4. doi: 10.3969/j.issn.1671-3044.2004.03.001

    CrossRef Google Scholar

    王彦文, 秦承志, 2017. 地貌形态类型的自动分类方法综述[J]. 地理与地理信息科学, 33 (4): 16-21. doi: 10.3969/j.issn.1672-0504.2017.04.003

    CrossRef Google Scholar

    王耀革, 朱长青, 王志伟, 2008. 基于Coons曲面的规则格网DEM表面模型[J]. 测绘学报, 37 (2): 217-222. doi: 10.3321/j.issn:1001-1595.2008.02.016

    CrossRef Google Scholar

    王一舟, 郑德文, 张会平, 等, 2020. 华山山前正断层的分段活动特征: 来自河流地貌参数的约束[J]. 地震地质, 42 (2): 382-398. doi: 10.3969/j.issn.0253-4967.2020.02.009

    CrossRef Google Scholar

    夏双, 阮仁宗, 佘远见, 等, 2012. 基于C4.5算法的遥感影像分类[J]. 地理空间信息, 10 (4): 89-91, 94.

    Google Scholar

    谢轶群, 朱红春, 汤国安, 等, 2013. 基于DEM的沟谷特征点提取与分析[J]. 地球信息科学学报, 15 (1): 61-67.

    Google Scholar

    辛星, 2018. 黄土沟壑区浅层滑坡的制图和危险性评价研究[D]. 兰州: 兰州大学.

    Google Scholar

    熊礼阳, 汤国安, 杨昕, 等, 2021. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 76 (3): 595-611.

    Google Scholar

    许丽, 李江海, 刘持恒, 等, 2017. 基于数字高程模型(DEM)的可可西里地貌及区划研究[J]. 北京大学学报(自然科学版), 53 (5): 833-842.

    Google Scholar

    张会平, 2006. 青藏高原东缘、东北缘典型地区晚新生代地貌过程研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    张洪群, 刘雪莹, 杨森, 等, 2017. 深度学习的半监督遥感图像检索[J]. 遥感学报, 21 (3): 406-414.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1352) PDF downloads(15) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint