2020 Vol. 26, No. 1
Article Contents

SUN Dongsheng, CHEN Qunce, ZHANG Yanqing. 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine. Journal of Geomechanics, 26(1): 33-38. doi: 10.12090/j.issn.1006-6616.2020.26.01.003
Citation: SUN Dongsheng, CHEN Qunce, ZHANG Yanqing. 2020. Analysis on the application prospect of ASR in-situ stress measurement method in underground mine. Journal of Geomechanics, 26(1): 33-38. doi: 10.12090/j.issn.1006-6616.2020.26.01.003

Analysis on the application prospect of ASR in-situ stress measurement method in underground mine

  • Present in-situ stress state is an important data for the underground construction, tunnel stability analysis and rock burst (coal and gas burst) prediction in underground mine. At present, in-situ stress measurement in underground mine is mainly based on hollow inclusion gauge method. In practice, it is found that the stress meter of hollow inclusion gauge often fails to fully adhere to the borehole wall, which brings the low success rate and high labor intensity. In this paper, the anelastic strain recovery (ASR in short) in-situ stress measurement method based on the oriented cores is introduced. The effectiveness of ASR method are analyzed by comparing the test results with that obtained through the hydraulic fracturing method. The reliability of the ASR method is also analyzed by the repeatable test results. The results show that the maximum value of mean deviation parameter is 6.29%. The ASR method will have broad application prospects on in-situ stress measurement in underground mine with the advantages of safety, high efficiency and immunity to the limitation of depth and measurement environment.

  • 加载中
  • CAI M F, QIAO L, YU B, et al., 1999. Results and analysis of in-situ stress measurement at deep position of No. 2 mining area of Jinchuan Nichkel mine[J]. Chinese Journal of Rock Mechanics and Engineering, 18(4):414-418. (in Chinese with English abstract)

    Google Scholar

    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5):853-865. (in Chinese with English abstract)

    Google Scholar

    LIN W R, 2008. A core-based method to determine three-dimensional in-situ stress in deep drilling wells:anelastic strain recovery technique[J]. Chinese Journal of Rock Mechanics and Engineering, 27(12):2387-2394. (in English with Chinese abstract) doi: 10.3321/j.issn:1000-6915.2008.12.002

    CrossRef Google Scholar

    LIN W R, KWASNIEWSKI M, IMAMURA T, et al., 2006. Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth[J]. Tectonophysics, 426(1-2):221-238. doi: 10.1016/j.tecto.2006.02.019

    CrossRef Google Scholar

    MATSUKI K, 2008. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement[J]. International Journal of Rock Mechanics and Mining Sciences, 45(6):952-965. doi: 10.1016/j.ijrmms.2007.10.005

    CrossRef Google Scholar

    MATSUKI K, TAKEUCHI K, 1993. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7):1019-1022.

    Google Scholar

    SUN D S, 2018. Calculation software of ASR in-situ stress measurement method[PELVRES] 1. 0: No. 2976423[CP]. 2018-05-02. (in Chinese)

    Google Scholar

    SUN D S, LIN W R, CUI J W, et al., 2014. Three-dimensional in situ stress determination by anelastic strain recovery and its application at the Wenchuan Earthquake Fault Scientific Drilling Hole-1(WFSD-1)[J]. Science China Earth Sciences, 57(6):1212-1220. doi: 10.1007/s11430-013-4739-6

    CrossRef Google Scholar

    SUN D S, SONE H, LIN W R, et al., 2017. Stress state measured at~7 km depth in the Tarim Basin, NW China[J]. Scientific Reports, 7:4503. doi: 10.1038/s41598-017-04516-9

    CrossRef Google Scholar

    SUN D S, WANG L J, ZHAO W H, et al., 2010. The application of in-situ stress measurement to the study of coal and gas outburst in coal mines[J]. Geology in China, 37(1):223-228. (in Chinese with English abstract)

    Google Scholar

    VOIGHT B, 1968. Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial inelastic strain tensor in drill cores[J]. Felsmechanik und Ingenieurgeologie. 6:201-215

    Google Scholar

    WANG L J, LIAO C T, OU M Y, et al., 1988. KX-81 triaxial hollow inclusion gauges for in-situ stress[M]//Institute of Geomechanics, Chinese Academy of Geosciences. Bulletin of the Institute of Geomechanics CAGS. Beijing: Geological Publishing House: 127-136. (in Chinese)

    Google Scholar

    WANG L J, PAN L Z, LIAO C T, 1991. Crustal stress measurements and their application in engineering[M]. Beijing:Geological Publishing House:110-145. (in Chinese)

    Google Scholar

    WANG L J, SUN D S, LIN W R, et al., 2012. Anelastic strain recovery method to determine in-situ stress and application example[J]. Chinese Journal of Geophysics, 55(5):1674-1681. (in Chinese with English abstract)

    Google Scholar

    WANG L J, SUN D S, ZHANG L R, et al., 2009. Application of in-situ stress measurement on bursts disasters of rock and CO2 in coal mine[J]. Journal of China Coal Society, 34(1):28-32. (in Chinese with English abstract)

    Google Scholar

    XIAN X F, XU J, WANG H T, 2001. Predication of potential danger region (zone) of coal and gas outburst[J]. Engineering Science, 3(2):39-46, 51. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-1742.2001.02.009

    CrossRef Google Scholar

    YANG X C, WANG L J, 2000. Error processing and precision estimation for rock stress measurement[J]. Journal of Geomechanics, 6(2):53-63. (in Chinese with English abstract)

    Google Scholar

    ZHAO W H, SUN D S, WANG H C, et al., 2008. Measurement of rock stress of Hongling coal mine[J]. Journal of Geomechanics, 14(3):286-291. (in Chinese with English abstract)

    Google Scholar

    蔡美峰, 乔兰, 于波, 等, 1999.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报, 18(4):414-418.

    Google Scholar

    陈群策, 孙东生, 崔建军, 等, 2019.雪峰山深孔水压致裂地应力测量及其意义[J].地质力学学报, 25(5):853-865.

    Google Scholar

    林为人, 2008.基于岩芯非弹性应变恢复量测定的深孔三维地应力测试方法[J].岩石力学与工程学报, 27(12):2387-2394. doi: 10.3321/j.issn:1000-6915.2008.12.002

    CrossRef Google Scholar

    孙东生, 王连捷, 赵卫华, 等, 2010.地应力测量在煤与瓦斯突出灾害研究中的应用[J].中国地质, 37(1):223-228. doi: 10.3969/j.issn.1000-3657.2010.01.026

    CrossRef Google Scholar

    孙东生, 2018. ASR法地应力计算软件[PELVRES] 1.0: 软著登字第2976423号[CP]. 2018-05-02.

    Google Scholar

    王连捷, 廖椿庭, 区明益, 等, 1988. KX-81型空芯包体三轴地应力计[M]//中国地质科学院地质力学研究所.地质力学文集第八集.北京: 地质出版社: 127-136.

    Google Scholar

    王连捷, 潘立宙, 廖椿庭, 1991.地应力测量及其在工程中的应用[M].北京:地质出版社:110-145.

    Google Scholar

    王连捷, 孙东生, 张利容, 等, 2009.地应力测量在岩石与CO2突出灾害研究中的应用[J].煤炭学报, 34(1):28-32. doi: 10.3321/j.issn:0253-9993.2009.01.006

    CrossRef Google Scholar

    王连捷, 孙东生, 林为人, 等, 2012.地应力测量的非弹性应变恢复法及应用实例[J].地球物理学报, 55(5):1674-1681.

    Google Scholar

    鲜学福, 许江, 王宏图, 2001.煤与瓦斯突出潜在危险区(带)预测[J].中国工程科学, 3(2):39-46, 51. doi: 10.3969/j.issn.1009-1742.2001.02.009

    CrossRef Google Scholar

    杨小聪, 王连捷, 2000.地应力测量的误差处理及精度评定[J].地质力学学报, 6(2):53-63. doi: 10.3969/j.issn.1006-6616.2000.02.009

    CrossRef Google Scholar

    赵卫华, 孙东生, 王红才, 等, 2008.沈阳红菱煤矿地应力测量[J].地质力学学报, 14(3):286-291. doi: 10.3969/j.issn.1006-6616.2008.03.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1926) PDF downloads(50) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint