Citation: | WENG Jianqiao, ZENG Lianbo, LYU Wenya, LIU Qi, ZU Kewei. 2020. Width of stress disturbed zone near fault and its influencing factors. Journal of Geomechanics, 26(1): 39-47. doi: 10.12090/j.issn.1006-6616.2020.26.01.004 |
3D normal fault models in a triaxial crustal stress state were established in finite element simulation software to study the characteristics of in-situ stress in the fault developed areas. Simulated data show that the disturbed zones of in-situ stress widely exist in the surrounding rocks due to the fault movement. The principle stress direction in the disturbed zones is obviously deviated from the background stress state. The stress value is lower near the middle of the faults, while the fault ends are the abnormally high stress realm. Based on the analysis results, the distribution of stress disturbed zone is mainly decided by the fault scale. Width of stress disturbed zone proportionally goes up as fault length and displacement increase simultaneously. Rock mechanism, fault strike, shape of fault plane and background stress state affect the width of stress disturbed zone by changing the ratio of width to fault length (W-L). More intensely fractured fault rock along with higher angle between fault strike and background maximum horizontal principle stress direction, greater ratio of fault displacement to fault length (D-L), larger differential stress, leads to higher W/L value. The conclusions are verified in BZ-X Oilfield, Bohai Bay Basin. Building a 3D geologic model on the basis of actual structure relief and regional stress state, the in-situ stress in 2nd member of Shahejie Formation was calculated with the finite element method. The distribution of stress disturbed zones near faults is made clear by analyzing variation of in-situ stress state in surrounding rocks. The width of stress disturbed zones changes regularly as predicted in the law above. Both stress value and orientation, is notably changed in disturbed zones, which could affect artificial fracture propagation and well pattern deployment significantly.
CHEN B, TIAN C L, 1998. Numerical simulation technique for structural fractures in a reservoir:case studies[J]. Acta Petrolei Sinica, 19(4):50-54. (in Chinese with English abstract) |
CHEN F, LUO M E, ZHANG W P, et al., 2006. Terrestrial stress characteristics and artificial fracture pattern analysis of Daqing periphery oilfield[J]. Fault-Block Oil & Gas Field, 13(3):13-15. (in Chinese with English abstract) |
DENG G D, GAO D W, ZHAO D P, et al., 2013. Application of in-situ stress analysis to an optimal design of drilling in the Jiulongshan Structure, northern West Sichuan Basin[J]. Natural Gas Industry, 33(8):95-101. (in Chinese with English abstract) |
FU Y H, WANG X M, YUAN H P, 2009. Finite element inverse analysis of boundary load for tectonic stress field[J]. Rock and Soil Mechanics, 30(6):1850-1855. (in Chinese with English abstract) |
HUANG X C, XIA X H, SHEN W P, 1998. Measurement and back analysis on the initial rock stress field around the faults[J]. Journal of Shanghai Jiaotong University, 32(12):55-59. (in Chinese with English abstract) |
HUDSON J A, HARRISON J P, 2000. Engineering rock mechanics-an introduction to the principles[M]. Oxford:Elsevier. |
JING F, SHENG Q, ZHANG Y H, et al., 2011. Study advance on in-site geostress measurement and analysis of initial geostress field in China[J]. Rock and Soil Mechanics, 32(S2):51-58. (in Chinese with English abstract) |
LI F Q, LIU G X, 1986. The present state of stress in China and related problems[J]. Acta Seismologica Sinica, 8(2):156-171. (in Chinese) |
LI Z M, ZHANG J Z, 1997. In-situ stress and petroleum exploration & development[M]. Beijing:Petroleum Industry Press. (in Chinese) |
LIAO X W, LIU Q, LI C, et al., 2015. Distribution of the present stress in low permeability oilfield of Bozhong 25-1 and its effect on development[J]. Journal of Geomechanics, 21(1):30-37. (in Chinese with English abstract) |
QIN X H, TAN C X, SUN J Z, et al., 2012. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 33(6):1689-1695. (in Chinese with English abstract) |
SHEN H C, CHENG Y F, WANG J Y, et al., 2007a. 3-D FEM inversion for the in-situ stress field around complex faults based on the theory of constrained optimization[J]. Rock and Soil Mechanics, 28(S1):359-365. (in Chinese with English abstract) |
SHEN H C, CHENG Y F, WANG J Y, et al., 2007b. Study of finite element on effects of faults on ground stress field[J]. Petroleum Geology & Oilfield Development in Daqing, 26(2):34-37. (in Chinese with English abstract) |
SONG S L, WU T Z, ZOU F M, et al., 2004. Determining the crustal stress field using ANSYS curved shell model[J]. Oil Drilling & Production Technology, 26(5):13-15. (in Chinese with English abstract) |
SU S R, WANG S T, ZHU H H, 2002. The effect of faults on geostress fields[C]//Seventh Academic Conference of China Rock Mechanics & Engineering Society. Xi'an: Chinese Society for Rock Mechanics & Engineering, CSRME: 649-654. (in Chinese) |
SUN L J, ZHU Y Q, YANG G L, et al., 2009. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 29(2):7-12. (in Chinese with English abstract) |
SUN Z Q, ZHANG G B, ZHANG J H, 2000. Study of in-situ stress state evolution in geologic fault structure[J]. Petroleum Exploration and Development, 27(1):102-105. (in Chinese with English abstract) |
SUN Z Q, ZHANG J H, 2004. Variation of in-situ stresses before and after occurrence of geologic fault structure[J]. Chinese Journal of Rock Mechanics and Engineering, 23(23):3964-3969. (in Chinese with English abstract) |
TAN C X, SUN W F, SUN Y, et al., 2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10):1627-1632. (in Chinese with English abstract) |
TIAN H, ZENG L B, SHU Z G, et al., 2019. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostress[J]. Journal of Geomechanics, 25(2):166-176. (in Chinese with English abstract) |
TORABI A, BERG S S, 2011. Scaling of fault attributes:a review[J]. Marine and Petroleum Geology, 28(8):1444-1460. doi: 10.1016/j.marpetgeo.2011.04.003 |
WAN X L, GAO C N, WANG Y K, et al., 2009. Coupled relationship between created and natural fractures and its implication to development[J]. Journal of Geomechanics, 15(3):245-252. (in Chinese with English abstract) |
WANG J D, SUN L N, WANG J, et al., 2019. Research on the ground stress correction of reservoirs based on the finite element method[J]. Journal of Geomechanics, 25(3):349-356. (in Chinese with English abstract) |
WANG K, DAI J S, 2012. A quantitative relationship between the crustal stress and fault sealing ability[J]. Acta Petrolei Sinica, 33(1):74-81. (in Chinese with English abstract) |
XU S Y, 2004. The analysis of basin dynamics in Bohaiwan region and study on geological hazards of oilfield[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) |
YUAN J L, DENG J G, WEI B H, et al., 2012. Wellbore stability of horizontal wells in shale gas reservoirs[J]. Natural Gas Industry, 32(9):66-70. (in Chinese with English abstract) |
ZENG L B, TIAN C L, 1998. Tectonic stress field and the development of low permeability oil fields[J]. Petroleum Exploration and Development, 25(3):91-93. (in Chinese with English abstract) |
ZHOU W, YAN C H, WANG S Z, et al., 2007. Evaluation method of present in-situ stress in oil and gas reservoirs and its application[M]. Beijing:Geological Publishing House. (in Chinese) |
ZHU H C, TAO Z Y, 1994. The distribution of the in-situ stress in different rocks[J]. Acta Seismologica Sinica, 16(1):49-63. (in Chinese) |
ZOBACK M D, ROLLER J C, 1979. Magnitude of shear stress on the San Andreas fault:Implications of a stress measurement profile at shallow depth[J]. Science, 206(4417):445-447. doi: 10.1126/science.206.4417.445 |
ZOBACK M D, TSUKAHARA H, HICKMAN S, 1980. Stress measurements at depth in the vicinity of the San Andreas fault:Implications for the magnitude of shear stress at depth[J]. Journal of Geophysical Research:Solid Earth, 85(B11):6157-6173. doi: 10.1029/JB085iB11p06157 |
ZU K W, ZENG L B, LIU X Z, et al., 2014. Analysis of influencing factors for ground stress in channel sandstone[J]. Journal of Geomechanics, 20(2):149-158. (in Chinese with English abstract) |
陈波, 田崇鲁, 1998.储层构造裂缝数值模拟技术的应用实例[J].石油学报, 19(4):50-54. doi: 10.3321/j.issn:0253-2697.1998.04.009 |
陈凤, 罗美娥, 张维平, 等, 2006.大庆外围油田地应力特征及人工裂缝形态分析[J].断块油气田, 13(3):13-15. doi: 10.3969/j.issn.1005-8907.2006.03.004 |
邓广东, 高德伟, 赵大鹏, 等, 2013.应用地应力分析技术优化九龙山构造的钻井设计[J].天然气工业, 33(8):95-101. |
付玉华, 王兴明, 袁海平, 2009.构造应力场边界载荷反演的有限元逆逼近法[J].岩土力学, 30(6):1850-1855. doi: 10.3969/j.issn.1000-7598.2009.06.056 |
黄醒春, 夏小和, 沈为平, 1998.断层周边应力场的原位实测及数值反演[J].上海交通大学学报, 32(12):55-59. |
景锋, 盛谦, 张勇慧, 等, 2011.我国原位地应力测量与地应力场分析研究进展[J].岩土力学, 32(S2):51-58. |
李方全, 刘光勋, 1986.我国现今地应力状态及有关问题[J].地震学报, 8(2):156-171. |
李志明, 张金珠, 1997.地应力与油气勘探开发[M].北京:石油工业出版社. |
廖新武, 刘奇, 李超, 等, 2015.渤中25-1低渗透油田地应力分布特征及对开发的影响[J].地质力学学报, 21(1):30-37. doi: 10.3969/j.issn.1006-6616.2015.01.004 |
秦向辉, 谭成轩, 孙进忠, 等, 2012.地应力与岩石弹性模量关系试验研究[J].岩土力学, 33(6):1689-1695. doi: 10.3969/j.issn.1000-7598.2012.06.014 |
沈海超, 程远方, 王京印, 等, 2007a.断层扰动下地应力场三维有限元约束优化反演[J].岩土力学, 28(S1):359-365. |
沈海超, 程远方, 王京印, 等, 2007b.断层对地应力场影响的有限元研究[J].大庆石油地质与开发, 26(2):34-37. |
宋胜利, 吴田忠, 邹峰梅, 等, 2004. ANSYS曲壳模型计算复杂断块现今地应力场[J].石油钻采工艺, 26(5):13-15. doi: 10.3969/j.issn.1000-7393.2004.05.003 |
苏生瑞, 王士天, 朱合华, 2002.断裂对地应力场影响的研究[C]//中国岩石力学与工程学会第七次学术大会论文集.西安: 中国岩石力学与工程学会: 649-654. |
孙礼健, 朱元清, 杨光亮, 等, 2009.断层端部及附近地应力场的数值模拟[J].大地测量与地球动力学, 29(2):7-12. |
孙宗颀, 张国报, 张景和, 2000.在地质断层构造中地应力状态演变研究[J].石油勘探与开发, 27(1):102-105. doi: 10.3321/j.issn:1000-0747.2000.01.031 |
孙宗颀, 张景和, 2004.地应力在地质断层构造发生前后的变化[J].岩石力学与工程学报, 23(23):3964-3969. doi: 10.3321/j.issn:1000-6915.2004.23.009 |
谭成轩, 孙炜锋, 孙叶, 等, 2006.地应力测量及其地下工程应用的思考[J].地质学报, 80(10):1627-1632. doi: 10.3321/j.issn:0001-5717.2006.10.018 |
田鹤, 曾联波, 舒志国, 等, 2019.页岩横向各向同性地应力预测模型中弹性参数的确定方法[J].地质力学学报, 25(2):166-176. |
万晓龙, 高春宁, 王永康, 等, 2009.人工裂缝与天然裂缝耦合关系及其开发意义[J].地质力学学报, 15(3):245-252. doi: 10.3969/j.issn.1006-6616.2009.03.006 |
王金铎, 孙鲁宁, 王军, 等, 2019.基于有限元方法的储层地应力修正研究[J].地质力学学报, 25(3):349-356. |
王珂, 戴俊生, 2012.地应力与断层封闭性之间的定量关系[J].石油学报, 33(1):74-81. |
徐守余, 2004.渤海湾地区盆地动力学分析及油田地质灾害研究[D].北京: 中国地质大学(北京). |
袁俊亮, 邓金根, 蔚宝华, 等, 2012.页岩气藏水平井井壁稳定性研究[J].天然气工业, 32(9):66-70. doi: 10.3787/j.issn.1000-0976.2012.09.015 |
曾联波, 田崇鲁, 1998.构造应力场与低渗透油田开发[J].石油勘探与开发, 25(3):91-93. |
周文, 闫长辉, 王世泽, 等, 2007.油气藏现今地应力场评价方法及应用[M].北京:地质出版社. |
朱焕春, 陶振宇, 1994.不同岩石中地应力分布[J].地震学报, 16(1):49-63. |
祖克威, 曾联波, 刘喜中, 等, 2014.厚层河道砂体地应力分布影响因素分析[J].地质力学学报, 20(2):149-158. doi: 10.3969/j.issn.1006-6616.2014.02.006 |
3D normal fault model
In-situ stress state in surrounding rocks
Variation rule of fault disturbed zone's width
Controlling factors of fault disturbed zone's width
Horizontal distribution of fault disturbed zones in Es2, BZ-X Oilfield
Variation rule of fault disturbed zone's width in Es2, BZ-X Oilfield