Citation: | WANG Yanyan, CAO Wengeng, LONG Min, ZHANG Rong, PAN Deng, WEI Canmei, DING Minjin. 2025. Temporal and spatial distribution, status and progress of treatment technologies for antibiotic-bearing groundwater[J]. Geology in China, 52(4): 1352-1368. doi: 10.12029/gc20240709001 |
This paper is the result of hydrogeological survey engineering.
Antibiotics are widely used in agriculture, livestock and poultry breeding and human health care fields, and the entry of residual antibiotics into the water environment will pose a potential threat to human health and ecosystems. With the frequent detection of antibiotics in groundwater, the pollution problem cannot be ignored.
Based on literature research, analysis and summary, this paper systematically introduces the research status of antibiotics in groundwater from sources, spatial and temporal distribution characteristics, environmental risks and treatment technologies, and analyzes the future development trend.
Sulfonamides, tetracyclines, fluoroquinolones and macrolides were the most frequently detected antibiotics in groundwater. Relevant studies are mainly concentrated in Europe, North America and Asia, while in China they are concentrated in North China and Southwest China. The research degree in other regions is relatively low, and the spatial and temporal distribution is affected by factors such as aquifer media, groundwater types and seasonal changes. Groundwater containing antibiotics has ecological risks, health risks and agricultural risks, and the risks are relatively controllable. Adsorption, chemical oxidation, membrane separation, microbial degradation, phytoremediation and enzyme-catalyzed degradation are the commonly used methods for the treatment of antibiotic-containing groundwater.
The research on antibiotic-containing groundwater has achieved a lot, but it is still in the initial stage. Given the potential biological activity of antibiotics and the unknown impact on the groundwater environment, the related research work will continue to increase. Optimization of qualitative and quantitative detection methods, comprehensive investigation of antibiotics in groundwater and scientific evaluation of the relationship between antibiotic forms and ecotoxicological effects are the future focus of antibiotic research in groundwater.
[1] | Alowitz M J, Scherer M M. 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal[J]. Environmental Science & Technology, 36: 299−306. |
[2] | Arun S, Xin L, Gaonkar O, Neppolian B, Zhang G, Chakraborty P. 2022. Antibiotics in sewage treatment plants, receiving water bodies and groundwater of Chennai city and the suburb, South India: Occurrence, removal efficiencies, and risk assessment[J]. Science of the Total Environment, 851(2): 158195. |
[3] | Becattini S, Taur Y, Pamer E G. 2016. Antibiotic–induced changes in the intestinal microbiota and disease[J]. Trends in Molecular Medicine, 22(6): 458−478. doi: 10.1016/j.molmed.2016.04.003 |
[4] | Bolujoko N B, Olorunnisola D, Poudel S, Omorogie M O, Ogunlaja O O, Olorunnisola C G, Adesina M, Deguenon E, Dougnon V, Alfred M O, Ogunlaja A, Olukanni O D, Msagati Titus A M, Unuabonah E I. 2024. Occurrence profiling, risk assessment, and correlations of antimicrobials in surface water and groundwater systems in Southwest Nigeria[J]. Environmental Science: Processes & Impacts, 26(3): 595–610. |
[5] | Bortone I, Nardo A D, Natale D M, Erto A, Musmarra D, Santonastaso G. 2013. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon[J]. Journal of Hazardous Materials, 260: 914−920. doi: 10.1016/j.jhazmat.2013.06.050 |
[6] | Bu Xiaodan, Shen Mengnan, Yang Fan, Hu Yi, Hu Xiaowei, Chen Tao, Cai Hang, Zhang Ming, Liu Qingyu. 2023. Research progress of phytoremediation for antibiotic removal from water[J]. Chemical Engineering Design Communications, 49(8): 152−153,164 (in Chinese with English abstract). |
[7] | Cabeza Y, Candela L, Ronen D. 2012. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain) [J]. Journal of Hazardous Materials, 239–240: 32–39. |
[8] | Cao B, Huang X, Kitanaka A, Yang Y. 2008. Pilot study on combined MBR–RO process for wastewater recovery[J]. Environmental Science, 29(4): 915−919. |
[9] | Cao Wengeng, Wang Yanyan, Zhang Dong, Sun Xiaoyue, Wen Aixin, Na Jing. 2023. Research status and new development on heavy metals removals from industrial wastewater[J]. Geology in China, 50(3): 756–776((in Chinese with English abstract). |
[10] | Cao Xuejun, Liu Yeqing. 2000. Membrane separation technology and its application in the pharmaceutical industry[J]. World Notes on Antibiotics, (5): 212−214 (in Chinese with English abstract). |
[11] | Chen L, Huang F, Lu A, Liu F, Guan X, Wang J. 2024. Critical role of multiple antibiotics on the denitrification rate in groundwater: Field investigative proof[J]. Science of the Total Environment, 914: 169785. doi: 10.1016/j.scitotenv.2023.169785 |
[12] | Chen Weiping, Peng Chengwei, Yang Yang, Wu Yumei. 2017. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science, 38(12): 5074−5080 (in Chinese with English abstract). |
[13] | Dai Y, Liu M, Li J, Yang S, Sun Y, Sun Q, Wang W, Lu L, Zhang K, Xu J, Zheng W, Hu Z, Yang Y, Gao Y, Liu Z. 2019. A review on pollution situation and treatment methods of tetracycline in groundwater[J]. Separation Science and Technology, 55(5): 1005−1021. |
[14] | Ding Huijun, Wu Yixiao, Zhong Jiayou, Zou Binchun, Zhang Weihao, Lou Qian. 2016. Role of two mediators in sulfonamide antibiotics degradation by laccase oxidation system[J]. China Environmental Science, 36(5): 1469−1475 (in Chinese with English abstract). |
[15] | Dorival–García N, Zafra–Gómez A, Navalón A, González J, Vílchez J L. 2013. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory–scale membrane bioreactors[J]. Science of the Total Environment, 442: 317−328. doi: 10.1016/j.scitotenv.2012.10.026 |
[16] | European Commission. 2006. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration[Z]. European Environmental Law Review, European Commission. |
[17] | Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B. 2019. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge[J]. Science of the Total Environment, 654(1): 324−337. |
[18] | Fu C X, Xu B T, Chen H, Zhao X, Li G R, Zheng Y, Qiu W H, Zheng C M, Duan L, Wang W K. 2022. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an new area, China, and their relationship with antibiotic resistance genes[J]. Science of the Total Environment, 807(2): 151011. |
[19] | Gaballah M S, Guo J, Sun H, Aboagye D, Sobhi M, Muhmood A. 2021. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook[J]. Bioresource Technology, (1): 333. |
[20] | Gao F Z, Zou H Y, Wu D L, Chen S, He L Y, Zhang M, Bai H, Ying G G. 2020. Swine farming elevated the proliferation of acinetobacter with the prevalence of antibiotic resistance genes in the groundwater[J]. Environment international, 136: 105484. doi: 10.1016/j.envint.2020.105484 |
[21] | Gao Junhong, Ma Tingmin. 2024. Analysis of the current status, transmission, and treatment techniques of antibiotic pollution in water environments[J]. Heilongjiang Environmental Journal, 37(2): 8−10 (in Chinese with English abstract). |
[22] | Gao Rong, Yin Xiaoyu, Hou Seng, Zhao Xue, Ren Nanqi, Chen Ying. 2023. Technology development of degradation and pollution control related to sulfamethoxazole[J]. Technology of Water Treatment, 49(11): 8−12 (in Chinese with English abstract). |
[23] | Gao Y, Wang Q, Ji G Z, Li A M. 2022. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chemical Engineering Journal, 429: 132387. doi: 10.1016/j.cej.2021.132387 |
[24] | Gros M, Catalán N, Mas–Pla J, Čelić M, Petrović M, Farré M J. 2021. Groundwater antibiotic pollution and its relationship with dissolved organic matter: Identification and environmental implications[J]. Environmental Pollution, 289(Suppl C): 117927. |
[25] | Gu Changqi. 2023. Research progress of microbial degradation of quinolone antibiotics[J]. Shandong Chemical Industry, 52(4): 100−103 (in Chinese with English abstract). |
[26] | Guo X, Liu M M, Zhong H, Li P, Zhang C, Wei D, Zhao T. 2020. Potential of myriophyllum aquaticum for phytoremediation of water contaminated with tetracycline antibiotics and copper[J]. Journal of Environmental Management, 270: 110867. doi: 10.1016/j.jenvman.2020.110867 |
[27] | Gwenzi W, Musiyiwa k, Mangori L. 2020. Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir[J]. Journal of Environmental Chemical Engineering, 8(1): 102220. doi: 10.1016/j.jece.2018.02.028 |
[28] | Hu Hongtao, Long Mingce. 2018. Methods study for gas station site environmental assessment and remediation of contaminated soil and groundwater[J]. China Resources Comprehensive Utilization, 36(4): 86−87,92 (in Chinese with English abstract). |
[29] | Hu X, Zhou Q, Luo Y. 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 158: 2992−2998. doi: 10.1016/j.envpol.2010.05.023 |
[30] | Jing L, Cheng L. 2010. Progress and status of in situ remediation technology of groundwater[J]. Technology of Water Treatment. 36: 6–9. |
[31] | Ju Zejia, Zhao Xinyu, Chen Hui, Fu Yu, Zhang Lulu, Cui Jiansheng. 2021. The characteristics of spatial distribution and environmental risk assessment for Quinolones antibiotics in the aquatic environment of Shijiazhuang City[J]. Acta Scientiae Circumstantiate, 41(12): 4919−4931 (in Chinese with English abstract). |
[32] | Jurado A, Margareto A, Pujades E, Vázquez–Suñé E, Diaz–Cruz M S. 2020. Fate and risk assessment of sulfonamides and metabolites in urban groundwater[J]. Environmental Pollution, 267: 115480. doi: 10.1016/j.envpol.2020.115480 |
[33] | Jurado A, Walther M, Díaz–Cruz M S. 2019. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the watch lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain[J]. Science of the Total Environment, 663: 285−296. doi: 10.1016/j.scitotenv.2019.01.270 |
[34] | Kairigo P, Ngumba E, Sundberg L, Gachanja A, Tuhkanen T. 2020. Occurrence of antibiotics and risk of antibiotic resistance evolution in selected kenyan wastewaters, surface waters and sediments[J]. Science of the Total Environment, 720: 137580. doi: 10.1016/j.scitotenv.2020.137580 |
[35] | Kivits T, Broers H P, Beeltje H, van Vliet M, Griffioen J. 2018. Presence and fate of veterinary antibiotics in age–dated groundwater in areas with intensive livestock farming[J]. Environmental Pollution, 241: 988−998. doi: 10.1016/j.envpol.2018.05.085 |
[36] | Klaus K. 2009. Antibiotics in the aquatic environment–A review–part I[J]. Chemosphere: Global Change Science, 75: 417−434. |
[37] | Kohantorabi M, Moussavi G, Giannakis S. 2021. A review of the innovations in metal–and carbon–based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non–radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 411: 127957. doi: 10.1016/j.cej.2020.127957 |
[38] | Kong Huimin, Zhao Xiaohui, Xu Wan, Dai Yuhan, Zhang Jiayu. 2023. Occurrence and risk assessment of antibiotic in groundwater environment in China[J]. Environmental Engineering, 41(2): 219−226 (in Chinese with English abstract). |
[39] | Kong X, Zhang Z, Wang P, Wang Y, Zhang Z, Han Z, Ma L. 2022. Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil[J]. Journal of Groundwater Science and Engineering, 10: 223−232. |
[40] | Kovalakova P, Cizmas L, Mcdonald T J, Marsalek B, Sharma V K. 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351 |
[41] | Kumar M, Ram B, Honda R, Poopipattana C, Canh V D, Chaminda T, Furumai H. 2019. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective[J]. Science of the Total Environment, 693: 133640. doi: 10.1016/j.scitotenv.2019.133640 |
[42] | Lapworth D J, Baran N, Stuart M, Ward R. 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence[J]. Environmental Pollution, 163: 287−303. doi: 10.1016/j.envpol.2011.12.034 |
[43] | Laura F, Víctor M. 2020. Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae–based systems[J]. The Science of the Total Environment, 703: 134740. doi: 10.1016/j.scitotenv.2019.134740 |
[44] | Lee H J, Kim K Y, Hamm S Y, Kim M, Kim H K, Oh J E. 2019. Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea[J]. Science of the Total Environment, 659: 168−176. doi: 10.1016/j.scitotenv.2018.12.258 |
[45] | Lesser L E, Mora A, Moreau C, Mahlknecht J, Hernández–Antonio A, Ramírez A I, Barrios–Piña H. 2018. Survey of 218 organic contaminants in groundwater derived from the world's largest untreated wastewater irrigation system: Mezquital Valley, Mexico[J]. Chemosphere, 198: 510−521. doi: 10.1016/j.chemosphere.2018.01.154 |
[46] | Leung H W, Minh T B, Murphy M B, Lam J C W, So M K, Martin M, Lam P K S, Richardson B J. 2012. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China[J]. Environment International, 42: 1−9. doi: 10.1016/j.envint.2011.03.004 |
[47] | Li X, Liu C, Chen Y, Huang H, Ren T. 2018. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China[J]. Environmental Science and Pollution Research, 25: 11565−11575. doi: 10.1007/s11356-018-1339-1 |
[48] | Li Yang, Jiang Guoxiang, Niu Junfeng, Wang Ying, Hu Lijun. 2009. Laccase–catalyzed oxidation of organic pollutants in water[J]. Progress in Chemistry, 21(10): 2028−2036 (in Chinese with English abstract). |
[49] | Liao X B, Zou R S, Li B X. 2017. Biodegradation of chlortetracycline by acclimated microbiota[J]. Process Safety and Environmental Protection, 109: 11−17. doi: 10.1016/j.psep.2017.03.015 |
[50] | Liu Xinyu, Liu Cheng, Tang Xiangyu, Zhang Jianqiang. 2022. Antibiotics migration in surface runoff and leachate from purple soil[J]. China Environmental Science, 42(11): 5328−5340 (in Chinese with English abstract). |
[51] | Liu X, Liu Y, Lu S, Guo X, Lu H, Qin P, Bi B, Wan Z, Xi B, Zhang T. 2018. Occurrence of typical antibiotics and source analysis based on PCA–MLR model in the East Dongting Lake, China[J]. Ecotoxicology and Environmental Safety, 163: 145−152. doi: 10.1016/j.ecoenv.2018.07.067 |
[52] | Liu X, Zhang G, Liu Y, Lu S, Qin P, Guo X, Bi B, Wang L, Xi B, Wu F, Wang W, Zhang T. 2019. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China[J]. Environmental Pollution, 246: 163−173. doi: 10.1016/j.envpol.2018.12.005 |
[53] | Loftin K A, Adams C D, Meyer M T, Surampalli R. 2008. Effects of Ionic strength, temperature, and pH on degradation of selected antibiotics[J]. Journal of Environmental Quality, 37: 378−386. doi: 10.2134/jeq2007.0230 |
[54] | López–Serna R, Jurado A, Vázquez–Suñé E, Carrera J, Petrović M, Barceló D. 2013. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain[J]. Environmental Pollution, 174: 305−315. doi: 10.1016/j.envpol.2012.11.022 |
[55] | Lu Li, Wang Zhe, Pei Jianguo, Zou Shengzhang, Lin Yongsheng, Fan Lianjie. 2018. Study on pollution model of typical karst groundwater system in area of southwest China[J]. South–to–North Water Transfers and Water Science & Technology, 16(6): 89−96 (in Chinese with English abstract). |
[56] | Ma Jiansheng, Wang Zhe, Zhang Zeyu, Liu Qiang, Li Lijun. 2021. Distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 40(6): 944−953 (in Chinese with English abstract). |
[57] | Ma L, Han Z, Wang Y. 2021. Dispersion performance of nanoparticles in water[J]. Journal of Groundwater Science and Engineering, 9(1): 37−44. |
[58] | Meng T, Cheng W, Wan T, Wang M, Ren J, Li Y, Huang C. 2019. Occurrence of antibiotics in rural drinking water and related human health risk assessment[J]. Environmental Technology, 42: 671−681. |
[59] | Niu Ying, An Sheng, Chen Kai, Qin yongjun, Liu Fei. 2023. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012–2021)[J]. Rock and Mineral Analysis, 42(1): 39−58 (in Chinese with English abstract). |
[60] | Pan C Y, Bao Y Y, Xu B T. 2020. Seasonal variation of antibiotics in surface water of Pudong new area of Shanghai, China and the occurrence in typical wastewater sources[J]. Chemosphere, 239: 124816. doi: 10.1016/j.chemosphere.2019.124816 |
[61] | Pan Weiyan, Xing Liting, Yu Miao, Deng Xing. 2021. Review on the pollution situation and behavior of antibiotics in the karst groundwater system[J]. Ground Water, 43(2): 5−10 (in Chinese with English abstract). |
[62] | Pu Jincheng, Zhang Mingkui. 2009. Dissipation and leaching of oxytetracycline and tylosin in typical agricultural fields[J]. Chinese Journal of Eco–Agriculture, 17(5): 954−959 (in Chinese with English abstract). |
[63] | Qiu W, Hu J Q, Magnuson J T, Greer J, Daniel S. 2020. Evidence linking exposure of fish primary macrophages to antibiotics activates the NF–kB pathway[J]. Environment International, 138: 105624. doi: 10.1016/j.envint.2020.105624 |
[64] | Qiu W H, Sun J, Fang M J, Luo S S, Tian Y Q, Dong P Y, Xu B T, Zheng C M. 2019. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community[J]. Science of the Total Environment, 653: 334−341. doi: 10.1016/j.scitotenv.2018.10.398 |
[65] | Sacher F, Lange F T, Brauch H J, Blankenhorn I. 2001. Pharmaceuticals in groundwaters–Analytical methods and results of a monitoring program in Baden–Wurttemberg, Germany[J]. Journal of Chromatography. A, 938: 199−210. doi: 10.1016/S0021-9673(01)01266-3 |
[66] | Senta I, Terzic S, Ahel M. 2021. Analysis and occurrence of macrolide residues in stream sediments and underlying alluvial aquifer downstream from a pharmaceutical plant[J]. Environmental Pollution, 273: 116433. doi: 10.1016/j.envpol.2021.116433 |
[67] | Sharma B M, Bečanová J, Scheringer M, Sharma A, Bharat G K, Whitehead P G, Klánová J, Nizzetto L. 2019. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India[J]. Science of The Total Environment, 646: 1459−1467. doi: 10.1016/j.scitotenv.2018.07.235 |
[68] | Su C, Robert W P. 2007. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers[J]. Chemosphere, 67: 1653−1662. doi: 10.1016/j.chemosphere.2006.09.059 |
[69] | Tian Qiuju. 2023. Enrichment and Detection of Fluoroquinolone Antibiotics Using Magnetic Microporous Organic Network Complexes[D]. Taiyuan: Shanxi Medical University: 1–60 (in Chinese with English abstract). |
[70] | Tong L, Huang S, Wang Y, Liu H, Li M. 2014. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[J]. Science of The Total Environment, 497–498: 180–187. |
[71] | Veiga–Gómez M, Nebot C, Falqué E, Pérez B, Franco C M, Cepeda A. 2021. Determination of pharmaceuticals and heavy metals in groundwater for human and animal consumption and crop irrigation in Galicia[J]. Food Additives and Contaminants Part a–Chemistry Analysis Control Exposure & Risk Assessment, 38: 2055−2076. |
[72] | Vineet S, Bhawna P, Surindra S. 2019. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system[J]. Ecotoxicology and Environmental Safety, 179: 88−95. doi: 10.1016/j.ecoenv.2019.04.018 |
[73] | Wan Yuchen. 2023. Degradation Characteristics of Antibiotics in the Soil and Their Effects on Soil Chemistry Properties and Crop Growth[D]. Hohhot: Inner Mongolia Agricultural University: 1–52 (in Chinese with English abstract). |
[74] | Wang Jinrong, Wang Zhigao, Qi Xiuying, Peng Wenbo, Zhang Hong. 2014. Study on treating fermentation wastewater from antibiotic product[J]. Technology of Water Treatment, 40(3): 118−121 (in Chinese with English abstract). |
[75] | Wang Lei, Wang Jinhua, Wang Jun, Zhu Lusheng, Wang Lanjun. 2017. Effects of four antibiotics on seed germination and root elongation of wheat, maize and sorghum[J]. Journal of Agro–Environment Science, 36(2): 216−222 (in Chinese with English abstract). |
[76] | Wu W, Ma M, Hu Y, Yu W, Liu H, Bao Z. 2021. The fate and impacts of pharmaceuticals and personal care products and microbes in agricultural soils with long term irrigation with reclaimed water[J]. Agricultural Water Management, 251: 106862. doi: 10.1016/j.agwat.2021.106862 |
[77] | Xiao W, Zhao X, Teng Y, Wu J, Zhang T. 2023. Review on biogeochemical characteristics of typical antibiotics in groundwater in China[J]. Sustainability, 15: 6985. doi: 10.3390/su15086985 |
[78] | Xu D, Xiao Y, Pan H, Mei Y. 2019. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 174: 43−47. doi: 10.1016/j.ecoenv.2019.02.063 |
[79] | Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. 2021. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment, 753: 141975. doi: 10.1016/j.scitotenv.2020.141975 |
[80] | Yao L, Wang Y, Tong L, Deng Y, Li Y, Gan Y, Guo W, Dong C, Duan Y, Zhao K. 2017. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 135: 236−242. doi: 10.1016/j.ecoenv.2016.10.006 |
[81] | Yao L, Wang Y, Tong L, Li Y, Deng Y, Guo W, Gan Y. 2015. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China[J]. Science of the Total Environment, 527–528: 56–64. |
[82] | Ye J, Du Y, Wang L, Qian J, Chen J, Wu Q, Hu X. 2017. Toxin release of cyanobacterium microcystis aeruginosa after exposure to typical tetracycline antibiotic contaminants[J]. Toxins, 9: 53. doi: 10.3390/toxins9020053 |
[83] | Yi Lili, Jiao Wentao, Chen Weiping. 2013. Adsorption characteristics of three types of antibiotics in the soil profiles[J]. Environmental Chemistry, 32(12): 2357−2363 (in Chinese with English abstract). |
[84] | Yin Shouyan, Yang Silin, Kou Xuyang, Sun Shixian. 2024. Removal mechanisms of single and combined pollutants of cadmium and antibiotics by wetland plants[J]. Asian Journal of Ecotoxicology, 19(1): 127−149 (in Chinese with English abstract). |
[85] | Yu Xiaoyu. 2019. Research and prospect of antibiotic wastewater treatment technology[J]. Yunnan Chemical Technology, 46(12): 72−73 (in Chinese with English abstract). |
[86] | Zainab S M, Junaid M, Xu N, Malik R N. 2020. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Research, 187: 116455. doi: 10.1016/j.watres.2020.116455 |
[87] | Zainab S M, Junaid M, Rehman M Y A, Lü M, Yue L, Xu N, Malik R N. 2021. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban–rural settings of Pakistan[J]. Science of the Total Environment, 791: 148298. |
[88] | Zeng H P, Li J X, Zhao W H, Xu J X, Xu H, Li D, Zhang J. 2022. The Current status and prevention of antibiotic pollution in groundwater in China[J]. International Journal of Environmental Research and Public Health, 19: 11256. doi: 10.3390/ijerph191811256 |
[89] | Zhang Q Q, Ying G Q, Pan C Y, Liu Y S, Zhao J L. 2015a. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 49: 6772−6782. |
[90] | Zhang Q, Cheng J, Xin Q. 2015b. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos[J]. Ecotoxicology, 24: 707−719. doi: 10.1007/s10646-015-1417-9 |
[91] | Zhang Shuyuan, Zhang Wei, Dong Yihui, Zhu Yucheng, Liu Yaci, Wang Yanyan, Wang Ping, Li Jiale, Kong Xiangke. 2024. Pollution characteristics and risk assessment of sulfonamide antibiotics during shallow groundwater recharge in the Shijiazhuang section of the Hutuo River[J]. Geological Bulletin of China, 43(4): 620−629 (in Chinese with English abstract). |
[92] | Zhou Liangqin, Zhang Ao, Wang Rong, Fan Jinlong, Fu Dayou. 2024. Modified coal cinder was prepared for adsorption and removal of sulfonamides antibiotics in wastewater[J]. Applied Chemical Industry, 53(6): 1305−1309 (in Chinese with English abstract). |
[93] | Zhou Z, Elliott S M, Erickson M L, Krall A L, Adams B A. 2018. Concentrations of pharmaceuticals and other micropollutants in groundwater downgradient from large on–site wastewater discharges[J]. Plos One, 13(11): e0206004. doi: 10.1371/journal.pone.0206004 |
[94] | Zhu Donghua, Xie Jingming. 2017. Application of membrane separation technology in purification of antibiotics and membrane cleaning[J]. Cleaning World, 36(6): 4−7 (in Chinese with English abstract). |
[95] | Zuo R, Liu X, Zhang Q, Wang J, Yang J, Teng Y, Chen X, Zhai Y. 2021. Sulfonamide antibiotics in groundwater and their migration in the vadose zone: A case in a drinking water resource[J]. Ecological Engineering, 162: 106175. doi: 10.1016/j.ecoleng.2021.106175 |
[96] | 卜小丹, 沈梦楠, 杨帆, 胡艺, 胡啸威, 陈涛, 蔡航, 张明, 刘青宇. 2023. 植物修复技术去除水体抗生素应用研究进展[J]. 化工设计通讯, 49(8): 152−153,164. doi: 10.3969/j.issn.1003-6490.2023.08.054 |
[97] | 曹文庚, 王妍妍, 张栋, 孙晓悦, 文爱欣, 那静. 2023. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 50(3): 756−776. |
[98] | 曹学君, 刘叶青. 2000. 膜分离技术在医药工业中的应用[J]. 国外医药. 抗生素分册, (5): 212−214. |
[99] | 陈卫平, 彭程伟, 杨阳, 吴玉梅. 2017. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 38(12): 5074−5080. |
[100] | 丁惠君, 吴亦潇, 钟家有, 邹斌春, 张维昊, 楼倩. 2016. 两种介体物质在漆酶降解磺胺类抗生素中的作用[J]. 中国环境科学, 36(5): 1469−1475. |
[101] | 高俊红, 马廷民. 2024. 水环境中抗生素的污染现状、传播和处理技术分析[J]. 黑龙江环境通报, 37(2): 8−10. |
[102] | 高荣, 尹笑宇, 侯森, 赵雪, 任南琪, 陈瑛. 2023. 磺胺甲恶唑降解与污染防治技术进展[J]. 水处理技术, 49(11): 8−12. |
[103] | 顾昌祺. 2023. 微生物降解喹诺酮类抗生素的研究进展[J]. 山东化工, 52(4): 100−103. |
[104] | 胡宏涛, 龙明策. 2018. 加油站场地调查及污染土壤和地下水修复方法研究[J]. 中国资源综合利用, 36(4): 86−87,92. |
[105] | 剧泽佳, 赵鑫宇, 陈慧, 付雨, 张璐璐, 崔建升. 2021. 石家庄市水环境中喹诺酮类抗生素的空间分布特征与环境风险评[J]. 环境科学学报, 41(12): 4919−4931. |
[106] | 孔慧敏, 赵晓辉, 徐琬, 代宇函, 张佳宇. 2023. 我国地下水环境抗生素赋存现状及风险评价[J]. 环境工程, 41(2): 219−226. |
[107] | 李阳, 蒋国翔, 牛军峰, 王颖, 呼丽娟. 2009. 漆酶催化氧化水中有机污染物[J]. 化学进展, 21(10): 2028−2036. |
[108] | 刘欣雨, 刘琛, 唐翔宇, 张建强. 2022. 抗生素在紫色土地表径流和地下渗流中的迁移[J]. 中国环境科学, 42(11): 5328−5340. |
[109] | 卢丽, 王喆, 裴建国, 邹胜章, 林永生, 樊连杰. 2018. 西南地区典型岩溶地下水系统污染模式[J]. 南水北调与水利科技, 16(6): 89−96. |
[110] | 马健生, 王卓, 张泽宇, 刘强, 李丽君. 2021. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 40(6): 944−953. |
[111] | 牛颖, 安圣, 陈凯, 秦久君, 刘菲. 2023. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 42(1): 39−58. |
[112] | 潘维艳, 邢立亭, 于苗, 邓兴. 2021. 岩溶地下水中抗生素污染现状和特征研究综述[J]. 地下水, 43(2): 5−10. |
[113] | 普锦成, 章明奎. 2009. 泰乐菌素和土霉素在农业土壤中的消解和运移[J]. 中国生态农业学报, 17(5): 954−959. |
[114] | 田秋菊. 2023. 磁性微孔有机网络复合物用于氟喹诺酮类抗生素的富集及检测研究[D]. 太原: 山西医科大学: 1–60. |
[115] | 万宇宸. 2023. 抗生素在土壤中的降解特征及对土壤化学性质和作物生长的影响[D]. 呼和浩特: 内蒙古农业大学: 1–52. |
[116] | 王金荣, 王志高, 亓秀莹, 彭文博, 张宏. 2014. 膜分离技术深度处理抗生素废水的研究[J]. 水处理技术, 40(3): 118−121. |
[117] | 王磊, 王金花, 王军, 朱鲁生, 王兰君. 2017. 四种抗生素对小麦玉米高粱三种作物种子芽与根伸长的影响[J]. 农业环境科学学报, 36(2): 216−222. |
[118] | 吴雯艳, 齐梦钰, 张泽坤. 2022. 磺胺类抗生素的污染现状及检测方法研究[J]. 环境科学与管理, 47(12): 121−126. |
[119] | 伊丽丽, 焦文涛, 陈卫平. 2013. 不同抗生素在剖面土壤中的吸附特征[J]. 环境化学, 32(12): 2357−2363. |
[120] | 殷寿延, 杨思林, 寇旭阳, 孙仕仙. 2024. 湿地植物对镉和抗生素单一及复合污染物的去除机制[J]. 生态毒理学报, 19(1): 127−149. |
[121] | 余小玉. 2019. 抗生素废水的处理技术研究与展望[J]. 云南化工, 46(12): 72−73. |
[122] | 张书缘, 张威, 董一慧, 朱玉晨, 刘雅慈, 王妍妍, 王平, 李佳乐, 孔祥科. 2024. 滹沱河石家庄段浅层地下水回补过程中磺胺类抗生素污染特征及风险评价[J]. 地质通报, 43(4): 620−629. |
[123] | 周良芹, 张奥, 王蓉, 范金龙, 付大友. 2024. 改性煤渣用于吸附去除废水中磺胺抗生素[J]. 应用化工, 53(6): 1305−1309. |
[124] | 朱东华, 谢静铭. 2017. 膜技术在抗生素提纯中的应用与清洗[J]. 清洗世界, 33(6): 4−7. |
Antibiotics migration in the environment (after Zeng et al., 2022)
Sketch map of different types of antibiotics in groundwater in different regions of the world (after Fu et al., 2022)
The sketch map of antibiotics in the same place were added according to the categories, showing the detection of different classes of antibiotics in groundwater in different areas (after Niu Ying et al., 2023)
Concentrations of antibiotics in groundwater at different water depths (after Fu et al., 2022)
Concentrations of four antibiotic categories (SAs, MAs, FQs and TCs) in groundwater. (a, autumn; b, spring) (after Tong et al., 2014)
Inhibition of denitrification by multiple antibiotics at ng/L levels in groundwater
Mechanism and main interactions of carbon materials in the degradation of antibiotic pollutants (after Gao et al., 2022)
Removal of antibiotics from wetland plants (after Yin Shouyan et al., 2024)