2025 Vol. 52, No. 4
Article Contents

FU Changchang, LI Xiangquan, ZHANG Wenjing, CHENG Xu, BAI Zhanxue, LI Jinqiu. 2025. Water quality, genetic model, and potential development and use of the Hoh Xil Budongquan Spring on the northern Qinghai–Xizang Plateau[J]. Geology in China, 52(4): 1369-1380. doi: 10.12029/gc20220426002
Citation: FU Changchang, LI Xiangquan, ZHANG Wenjing, CHENG Xu, BAI Zhanxue, LI Jinqiu. 2025. Water quality, genetic model, and potential development and use of the Hoh Xil Budongquan Spring on the northern Qinghai–Xizang Plateau[J]. Geology in China, 52(4): 1369-1380. doi: 10.12029/gc20220426002

Water quality, genetic model, and potential development and use of the Hoh Xil Budongquan Spring on the northern Qinghai–Xizang Plateau

    Fund Project: Supported by the projects of the National Natural Science Foundation of China (No.42002264), China Geological Survey (No.DD20221812) and the Fundamental Research Funds for the Central Public Research Institutes (No.SK202006).
More Information
  • Author Bio: FU Changchang, male, born in 1988, assistant researcher, mainly engaged in hydrochemical evolution and water resources investigation and evaluation; E-mail: fu0936@163.com
  • This paper is the result of hydrogeological survey engineering.

    Objective

    Budongquan Spring is in the region of Hoh Xil on the northern Qinghai–Xizang Plateau. It is a typical sub−surface spring with discharge that ascends to the surface through taliks in the permafrost. It is an important water supply for the Qinghai–Xizang railway and the construction of small towns along the railway. Therefore, it is very important to understand its formation and water characteristics.

    Methods

    In this paper, we evaluated spring water quality using the single index evaluation method. We analyzed water storage, circulation, and sources of main chemical components by examining the local geology, environmental isotopes, and hydrochemistry.

    Results

    Budongquan spring water quality is in class V throughout the year. It is in class V in terms of total hardness, SO42−, and Cl, and in class I–II in terms of toxicological and heavy metal indices. Nearby glacier meltwater and river water are in class I–II. The spring is mainly recharged by glacial meltwater from the southern slope of Kunlun Mountains, atmospheric precipitation, and surface river water. Average cycle length is less than 5–10 years. Groundwater flow follows the talik zone along the northeast−trending active normal faults. Budongquan spring is formed by the surfacing of groundwater that is blocked by the west-northwest-trending active reverse faults. Its chemical composition is mainly determined by evaporation, and presence of and interaction with magnesium salts and carbonate rocks.

    Conclusions

    To meet standards for drinking water, we recommend mixing spring water with river water at a ratio of 1:2.

  • 加载中
  • [1] Balagizi C M, Kasereka M, Kyambikwa A M, Cuoco E, Arienzo I, Liotta M. 2022. Characterizing groundwater recharge sources using water stable isotopes in the North Basin of Lake Kivu, East Africa[J]. Chemical Geology, 594: 120778. doi: 10.1016/j.chemgeo.2022.120778

    CrossRef Google Scholar

    [2] Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology[M]. Boca Raton: Lewis Publishers of United State.

    Google Scholar

    [3] Cheng Guodong, Zhao Lin, Li Ren, Wu Xiaodong, Sheng Yu, Hu Guojie, Zou Defu, Jin Huijun, Wu Qingbai. 2019. Characteristic, changes and impacts of permafrost on Qinghai–Tibet Plateau[J]. Chinese Science Bulletin, 64(27): 2783−2795 (in Chinese with English abstract). doi: 10.1360/TB-2019-0191

    CrossRef Google Scholar

    [4] Chaillou G, Lemay–Borduas F, Larocque M, Couturier M, Biehler A, Tommi–Morin G. 2018. Flow and discharge of groundwater from a snowmelt–affected sandy beach[J]. Journal of Hydrology, 557: 4−15. doi: 10.1016/j.jhydrol.2017.12.010

    CrossRef Google Scholar

    [5] Duan Y, Gao X B, Li C C, Wang H, Kang C Q, Wang W Z, Zhang X, Sun Z, Xiong Y Z, Wang Y X. 2025. Combining hydrodynamics, geochemical and multiple isotopic tracers to understand the hydrogeological functioning of karst groundwater system in Jinci, northern China[J]. Journal of Hydrology, 648: P132375. doi: 10.1016/j.jhydrol.2024.132375

    CrossRef Google Scholar

    [6] Deng Y M, Wang Y X, Ma T. 2009. Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia[J]. Applied Geochemistry, 24(4): 587−599. doi: 10.1016/j.apgeochem.2008.12.018

    CrossRef Google Scholar

    [7] Fu C C, Li X Q, Cheng X, Liu C, Bai Z X, Li J Q. 2025. Hydrochemical processes and water balance trends based on stable isotopes of typical alpine lakes in the Qinghai–Tibet Plateau[J]. Journal of Geochemical Exploration, 270: 107663. doi: 10.1016/j.gexplo.2024.107663

    CrossRef Google Scholar

    [8] Godfrey L V, Gamboa C, Mathur R. 2019. Chemical and isotopic evolution of groundwater through the active Andean arc of Northern Chile[J]. Chemical Geology, 518: 32−44. doi: 10.1016/j.chemgeo.2019.04.011

    CrossRef Google Scholar

    [9] Gibson J J, Birks S J, Yi Y, Vitt D H. 2015. Runoff to boreal lakes linked to land cover, watershed morphology and permafrost thaw: A 9−year isotope mass balance assessment[J]. Hydrological Processes, 29(18): 3848−3861. doi: 10.1002/hyp.10502

    CrossRef Google Scholar

    [10] Guan Rong, Zhao Guipeng, Liu Zhaohui, Li Yongbo. 2014. Investigation and analysis of chlorides, sulfates and nitrates in rural drinking water of central China in 2013[J]. Chinese Health Laboratory Technology, 24(22): 3309−3312 (in Chinese with English abstract).

    Google Scholar

    [11] Li Jianghai, Wen Chen, Liu Chiheng. 2017. Geology and Geomorphology of Hoh Xil and Its Evolution[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [12] Li Yulong, Miao Weiliang, Zhang Xiying, He Maoyong, Tang Qiliang, Yang Kaiyuan, Li Yongshou, Han Jilong, Zhao Xue. 2021. Hydrochemical characteristics and salt–formation elements sources of Li–rich brines in Kushui Lake, west Kunlun[J]. Editorial Committee of Earth Science, 46(11): 4161−4174 (in Chinese with English abstract).

    Google Scholar

    [13] Liu Congqiang, Jiang Yingkui, Tao Faxiang, Lang Yunchao, Li Siliang. 2008. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica, 37(4): 404−414 (in Chinese with English abstract).

    Google Scholar

    [14] Ma Ruying, Han Fengqing, Ma Haizhou, Xiao Yingkai, Ma Yunqi, Zhang Yanxia, Wang Teng, Han Jilong, Guo Jianfeng. 2015. Hydrochemical characteristics and boron isotope geochemistry of Brine in Hoh Xil, Qinghai Province[J]. Acta Geoscientica Sinica, 36(1): 60−66 (in Chinese with English abstract).

    Google Scholar

    [15] Mir R A, Jeelani G, Dar F A. 2016. Spatio–temporal patterns and factors controlling the hydrogeochemistry of the river Jhelum basin, Kashmir Himalaya[J]. Environmental Monitoring and Assessment, 188(7): 1−24.

    Google Scholar

    [16] Shen Zhaoli, Wang Yanxin. 2002. Review and outlook of water–rock interaction studies[J]. Earth Science, 27(2): 127−133 (in Chinese with English abstract).

    Google Scholar

    [17] Su H M, Zhang F W, Hu J Y, Lei J F, Zuo W, Yang B, Liu Y H. 2024. Identified the hydrochemical and the sulfur cycle process in subsidence area of Pingyu mining area using multi–isotopes combined with hydrochemistry methods[J]. Journal of Groundwater Science and Engineering, 12(1): 62−77. doi: 10.26599/JGSE.2024.9280006

    CrossRef Google Scholar

    [18] Song Lingling, Tian Qing, Li Zongjie, He Jing. 2019. Hydrochemical characteristics of melt–water in the Yuzhu Peak Glacier, Kunlun Mountains[J]. Environmental Chemistry, 38(8): 1864−1871 (in Chinese with English abstract).

    Google Scholar

    [19] Tang Chunlei, Zheng Xiuqing, Liang Yongping, Zhang Fawang, Jing Ze. 2020. The hydraulic connection between Jinci and Pingquan in Taiyuan and its contribution to the reflow of Jinci spring[J]. Geology in China, 47(6): 1755−1764 (in Chinese with English abstract).

    Google Scholar

    [20] Tang M, Lü J, Yu S. 2024. Application of hydrochemistry and strontium isotope for understanding the hydrochemical characteristics and genesis of strontium–rich groundwater in karst area, Gongcheng County, Southwest China[J]. Journal of Groundwater Science and Engineering, 12(3): 264−280. doi: 10.26599/JGSE.2024.9280020

    CrossRef Google Scholar

    [21] USEPA. 1989. Risk assessment guidance for superfund. Volume I: human health evaluation manual (Part A) [R]. Washington DC: Office of Emergency and Remedial Response USEPA, EPA/540/189/002.

    Google Scholar

    [22] Wang Yushan, Yin Dechao, Wang Xuqing, Qi Xiaofan, Xia Yubo, Ma Zhitong, Zhang Liang, Xu Rongzhen. 2021. Groundwater–surface water interactions in the Baiyangdian wetland, Xiong’an New Area and its impact on reed land[J]. Geology in China, 48(5): 1368−1381 (in Chinese with English abstract).

    Google Scholar

    [23] Wang Z, Wang L J, Shen J M, Nie Z L, Meng LQ, Cao L, Wei S B, Zeng X F. 2021. Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau[J]. China Geology, 4(3): 421−432.

    Google Scholar

    [24] Wang Zhen, Guo Huaming, Liu Haiyan, Zhao Weiguang, Liu Shuai, Wang Jiao, Shen Mengmeng. 2021. Hydrochemical and hydrogen and oxygen isotope characteristics of subsurface water in the Maqu Plateau[J]. Hydrogeology and Engineering Geology, 48(1): 18−26 (in Chinese with English abstract).

    Google Scholar

    [25] Windler G, Brooks J R, Johnson H M, Comeleo R L, Coulombe R, Bowen G J. 2021. Climate impacts on source contributions and evaporation to flow in the Snake River Basin using surface water isoscapes (δ2H and δ18O)[J]. Water Resources Research, 57(7): e2020WR029157. doi: 10.1029/2020WR029157

    CrossRef Google Scholar

    [26] Xie C, Liu H, Li X R, Zhao H C, Dong X Y, Ma K K, Wang N L, Zhao L J, 2024. Spatial characteristics of hydrochemistry and stable isotopes in river and groundwater, and runoff components in the Shule River Basin, Northeastern of Tibet Plateau[J]. Journal of Environmental Management, 349: 119512.

    Google Scholar

    [27] Xiao Fuqiang, Zou Yongjun, Zhang Shuanglong. 2025. Geochemical characteristics of hot spring fluids in the Xunwu–Shicheng fault zone of southern Jiangxi[J]. Hydrogeology and Engineering Geology, 52(2): 203−216 (in Chinese with English abstract).

    Google Scholar

    [28] Xiao Jieying, Zhao Pin, Li Weihong. 2016. Spatial characteristic and controlling factors of surface water hydrochemistry in the Tarim River Basin[J]. Arid Land Geography, 39(1): 33–40 in Chinese with English abstract).

    Google Scholar

    [29] Xu Hongfei, Zhou Xun, Wang Mengmeng, Liu Yu, Wu Yanqiu, Zhou Linyang. 2020. Characteristics and formation of the Denggeng hot spring and the Mabu hot spring in Lushui County, Yunnan Province[J]. Geology in China, 47(6): 1739−1754 (in Chinese with English abstract).

    Google Scholar

    [30] Xu Naizheng, Gong Jianshi, Tan Mengjiao, Ye Yonghong, Zhou Kaie, Zhu Chunfang, Shu Longcang, Meng Dan. 2021. Hydrogeochemical processes and potential exposure risk of high–arsenic groundwater in Huaihe River Basin, China[J]. Geology in China, 48(5): 1418−1428 (in Chinese with English abstract).

    Google Scholar

    [31] Yao Z J, Liu Z F, Huang H Q, Liu G H. 2014. Statistical estimation of the impacts of glaciers and climate change on river runoff in the headwaters of the Yangtze River[J]. Quaternary International, 336: 89−97. doi: 10.1016/j.quaint.2013.04.026

    CrossRef Google Scholar

    [32] Zhang Senqi, Cao Fuxiang, Li Xufeng, Li Shengtao, Diao Yujie, Li Yingzhi, Li Liang. 2011. Study on mechanism of water controlled by structures in Budong Spring region along Qinghai–Tibet highway[J]. Journal of Jilin University (Earth Science Edition), 41(S1): 253−258 (in Chinese with English abstract).

    Google Scholar

    [33] Zhao W, Lin Y Z, Zhou P P, Wang G C, Dang X Y, Gu X F. 2021. Characteristics of groundwater in Northeast Qinghai–Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin[J]. China Geology, 4(3): 377−388.

    Google Scholar

    [34] Zhang Zonghu, Shi Dehong, Shen Zhaoli, Xue Yuqun. 1997. Evolution and development of groundwater environment in North China Plain under human activities[J]. Acta Geoscientica Sinica, 18(4): 2−9 (in Chinese with English abstract).

    Google Scholar

    [35] Zhou Youwu, Guo Dongxin, Qiu Guoqing, Cheng Guodong. 2000. Geocryology in China[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [36] 程国栋, 赵林, 李韧, 吴晓东, 盛煜, 胡国杰, 邹德富, 金会军, 李新, 吴青柏. 2019. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 64(27): 2783−2795.

    Google Scholar

    [37] 管蓉, 赵桂鹏, 刘朝晖, 李永波. 2014. 2013年中部某地区农村饮用水中氯化物、硫酸盐、硝酸盐的调查分析[J]. 中国卫生检验杂志, 24(22): 3309−3312.

    Google Scholar

    [38] 李江海, 闻丞, 刘持恒. 2017. 可可西里地质地貌及其形成演化[M]. 北京: 科学出版社.

    Google Scholar

    [39] 李玉龙, 苗卫良, 张西营, 贺茂勇, 唐启亮, 杨凯源, 李永寿, 韩继龙, 赵雪. 2021. 西昆仑地区苦水湖富锂盐湖水化学特征及成盐元素来源[J]. 地球科学, 46(11): 4161−4174.

    Google Scholar

    [40] 刘丛强, 蒋颖魁, 陶发祥, 郎赟超, 李思亮. 2008. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 37(4): 404−414.

    Google Scholar

    [41] 马茹莹, 韩凤清, 马海州, 肖应凯, 马云麒, 张燕霞, 王腾, 何蕾, 韩继龙, 韩耀宗, 郭坚峰. 2015. 青海可可西里盐湖水化学及硼同位素地球化学特征[J]. 地球学报, 36(1): 60−66.

    Google Scholar

    [42] 沈照理, 王焰新. 2002. 水–岩相互作用研究的回顾与展望[J]. 地球科学, 27(2): 127−133.

    Google Scholar

    [43] 宋玲玲, 田青, 李宗杰, 何靖. 2019. 昆仑山玉珠峰冰川冰雪融水水化学特征分析[J]. 环境化学, 38(8): 1864−1871.

    Google Scholar

    [44] 唐春雷, 郑秀清, 梁永平, 张发旺, 景泽. 2020. 山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献[J]. 中国地质, 47(6): 1755−1764.

    Google Scholar

    [45] 王雨山, 尹德超, 王旭清, 祁晓凡, 夏雨波, 马稚桐, 张亮, 徐蓉桢. 2021. 雄安新区白洋淀湿地地表水和地下水转化关系及其对芦苇分布的影响[J]. 中国地质, 48(5): 1368−1381.

    Google Scholar

    [46] 王振, 郭华明, 刘海燕, 赵威光, 刘帅, 王娇, 沈萌萌. 2021. 玛曲高原区潜水水化学和氢氧同位素特征[J]. 水文地质工程地质, 48(1): 18−26.

    Google Scholar

    [47] 肖富强, 邹勇军, 章双龙 2025. 赣南寻乌—石城断裂带温泉流体地球化学特征[J]. 水文地质工程地质, 52(2): 203–216.

    Google Scholar

    [48] 肖捷颖, 赵品, 李卫红. 2016. 塔里木河流域地表水水化学空间特征及控制因素研究[J]. 干旱区地理, 39(1): 33−40.

    Google Scholar

    [49] 徐洪飞, 周训, 王蒙蒙, 刘宇, 吴艳秋, 桌琳扬. 2020. 云南泸水登埂温泉与玛布温泉形成特征及成因研究[J]. 中国地质, 47(6): 1739−1754. doi: 10.12029/gc20200611

    CrossRef Google Scholar

    [50] 许乃政, 龚建师, 檀梦皎, 叶永红, 周锴锷, 朱春芳, 束龙仓, 孟丹. 2021. 淮河流域高砷地下水的形成演化过程及其环境健康风险[J]. 中国地质, 48(5): 1418−1428. doi: 10.12029/gc20210508

    CrossRef Google Scholar

    [51] 张森琦, 曹福祥, 李旭峰, 李胜涛, 刁玉杰, 李颖智, 李亮. 2011. 青藏公路沿线不冻泉地区构造控水机理研究[J]. 吉林大学学报(地球科学版), 41(S1): 253−258.

    Google Scholar

    [52] 张宗祜, 施德鸿, 沈照理, 薛禹群. 1997. 人类活动影响下华北平原地下水环境的演化与发展[J]. 地球学报, 18(4): 2−9.

    Google Scholar

    [53] 周幼吾, 郭东信, 邱国庆, 程国栋. 2000. 中国冻土[M]. 北京: 科学出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(13) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint