2025 Vol. 52, No. 4
Article Contents

WANG Yafei, XUE Guoqiang, HAN Jiangtao, LUO Xianzhong, WANG Bangbing, GE Can, XU Hao, GUAN Houchun, WANG Qingsong, ZHANG Kai, WANG Chao, ZHANG Xiaorong, TAO Wei, ZHANG Jinzhe, LIU Xianghong. 2025. Progress in geophysical exploration of groundwater and its technical innovation[J]. Geology in China, 52(4): 1325-1351. doi: 10.12029/gc20240610001
Citation: WANG Yafei, XUE Guoqiang, HAN Jiangtao, LUO Xianzhong, WANG Bangbing, GE Can, XU Hao, GUAN Houchun, WANG Qingsong, ZHANG Kai, WANG Chao, ZHANG Xiaorong, TAO Wei, ZHANG Jinzhe, LIU Xianghong. 2025. Progress in geophysical exploration of groundwater and its technical innovation[J]. Geology in China, 52(4): 1325-1351. doi: 10.12029/gc20240610001

Progress in geophysical exploration of groundwater and its technical innovation

    Fund Project: Supported by Anhui Province Natural Resources Science and Technology Project (No.2022-K-14) and Anhui Province Public Welfare Geological Work Project (No.2024-g-1-10, No.2023-g-1-19, No.2023-g-1-17).
More Information
  • Author Bio: WANG Yafei, female, born in 1987, senior engineer, engaged in comprehensive geological survey and research of natural resources; E-mail: ahddywyf@163.com
  • Corresponding author: WANG Qingsong, male, born in 1959, professor lever senior engineer, engaged in the research of geophysical exploration; E-mail: wqs5936@163.com
  • This paper is the result of geological survey engineering.

    Objectives

    Groundwater resources is an important part of China's water resources, especially in arid and semi−arid areas. Thus, water prospecting and well drilling become a critical public welfare policy to solve the drinking water problem for humans and livestock. This study aims to summarize geophysical methods for water prospecting and propose possible pathways to improve the efficiency and success rate of finding water, thereby guiding the future exploration and evaluation of groundwater resources.

    Methods

    Based on geophysical theories, this study systematically reviews basic principles and a series of case studies related to five geophysical methods for groundwater exploration under various hydrological and geological conditions: direct current electrical method, electromagnetic method, radiometric method, seismic wave method, and nuclear magnetic resonance method. Then, we compare the advantages and disadvantages of these geophysical methods for water exploration and figure out their applicable conditions. Finally, we propose effective methods for water detection under various geological settings.

    Results

    This study proposes a basic approach to prospect groundwater using geophysical techniques. Moreover, we summarize effective methods for five typical geological environments: Karst, granite, sedimentary clastic rock, semi−consolidated red bed, and Quaternary loose layers. The summary will provide useful guides for the geological survey of groundwater resources across the nation.

    Conclusions

    Geophysical methods for water prospecting should be carefully selected based on the hydrogeological characteristics of the exploration site. Based on our literature review, resistivity, induced polarization with multiple parameters, and seismic exploration are effective methods for groundwater exploration, while gravity, magnetic, and radiometric methods can serve as useful supplements. Integrated application of multiple geophysical methods can effectively improve the success rate of groundwater prospecting. Moreover, the lateral electrical resistivity method has large potentials in future evaluation of groundwater resource. However, we still call for continuous innovation in geophysical techniques for groundwater exploration given the needs in complex topographical and geological conditions such as mountainous areas, urban areas, and areas with thick coverage. In this regard, rapidly developing technologies like multi-parameter semi-airborne electromagnetic methods and ground holographic electromagnetic methods represent new directions for future water prospecting research.

  • 加载中
  • [1] Archie G E. 1942. The Electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AlME (Transactions of American Institute of Mining, Metallurgical and Petroleum Engineers), 146(1): 54–62.

    Google Scholar

    [2] Bassey E N, Ajani O O, Isah A G, Adeniji A A. 2024. Geophysical investigation of groundwater potential in iwo, osun state, southwestern nigeria using audiomagnetotelluric method[J]. Results in Geophysical Sciences, 16: 100066. doi: 10.1016/j.ringps.2023.100066

    CrossRef Google Scholar

    [3] Bon A F, Ombolo A, Biboum P M, Moutlen J M, Mboudou G E. 2022. Identification of hydrogeological features using remote sensing and electromagnetic methods in the hard–rock formations of the Cameroon coastal plain (Central Africa): Implications for water borehole location[J]. Scientific African, 17: 2468−2276.

    Google Scholar

    [4] Chen C D, Sun H F. 2020. Characteristic analysis and optimal survey area Definition for semi–airborne transient electromagnetics[J]. Journal of Applied Geophysics, 180: 104134. doi: 10.1016/j.jappgeo.2020.104134

    CrossRef Google Scholar

    [5] Chen Yixiang, Wei Jiyi, Yu Liping, Zhao Wei, Cui Lei, Li Liangjie. 2012. Discussion of South Guizhou karst region electrical sounding abnormal type and genesis[J]. Hydrogeology & Engineering Geology, 39(3): 17−22 (in Chinese with English abstract).

    Google Scholar

    [6] Erugu N, Sahebrao S, Subash C. 2022. Electrical geophysical techniques pin–pointing the bedrock fractures for groundwater exploration in granitic hard rocks of Southern India[J]. Journal of Applied Geophysics, 199: 104610. doi: 10.1016/j.jappgeo.2022.104610

    CrossRef Google Scholar

    [7] Fan Yonggang, Jia Dawei, Zhao Suozhi, Zhang Zhiguo, Xu Zhiqiang. 2018. The successful application of conventional resistivity sounding method to water prospecting in arid desert area of Alxa[J]. Geophysical and Geochemical Exploration, 42(5): 896−901 (in Chinese with English abstract).

    Google Scholar

    [8] Fardous M Z. 2022. Identification of groundwater bearing zones using geoelectrical and electromagnetic techniques at Tourah Area, South of Cairo–Egypt[J]. Journal of Geography, Environment and Earth Science International, 26(9): 1–16.

    Google Scholar

    [9] Gomo M. 2023. Use of electric potential difference in Audio Magnetotelluric (AMT) geophysics for groundwater exploration[J]. Groundwater for Sustainable Development, 20: 100864. doi: 10.1016/j.gsd.2022.100864

    CrossRef Google Scholar

    [10] Gomo M. 2024. Exploring deeper groundwater in a dolomite aquifer using telluric electric frequency selection method geophysical approach[J]. Groundwater for Sustainable Development, 26: 101265. doi: 10.1016/j.gsd.2024.101265

    CrossRef Google Scholar

    [11] Guo Shujun, Zhu Jiliang, Wang Chunhui, Ren Zhengwei, Ming Yuanyuan, Li Meng. 2020. Study on the joint application of electrical and seismic exploration in the investigation of fissure and karst cave in Fuling area[J]. CT Theory and Applications, 30(1): 49−59 (in Chinese with English abstract).

    Google Scholar

    [12] Guo Songwei, Yan Qiang. 2020. Application of transient electromagnetic methods in water exploration of the west of Ming'an Town in Wulategiangi, Inner Mongolia[J]. Science Technology and Engineering, 20(7): 2564−2572 (in Chinese with English abstract).

    Google Scholar

    [13] He Sheng, Jiang Houhui, Ma Wenxin. 2020. Application of five–pole electrical sounding method in water prospecting in Chaka Basin, Qinghai Province[J]. Journal of Hebei GEO University, 43(6): 36−39 (in Chinese with English abstract).

    Google Scholar

    [14] Huang Lishan, Hou Yijun, Chen Yuanrong, Jing Rongzhong, Wang Jianchao, Zhao Yi, Li Xuebiao, Pei Chao, Zeng Youqiang, Zeng Hui. 2022. Rapid and accurate positioning concealed fault using geophysical and geochemical techniques in cities and surrounding areas: A case study of Lingui District, Guilin City, Guangxi[J]. Geology in China, 49(3): 929−942 (in Chinese with English abstract).

    Google Scholar

    [15] Jiang Yuehua, Li Yun, Ge Weiya, Ye Nianjun, Feng Xiaoming, Gong Jianshi, Zhou Kaike, Hou Lili, Zhang Baosong, Zhao Muhua, Zhu Hongbing, Tong Changshui, Liu Lin. 2018. Determination of well drilling sites and methods in the drought areas of Gongyi, Henan Province during groundwater exploration[J]. East China Geology, 39(2): 142−150 (in Chinese with English abstract).

    Google Scholar

    [16] Jin Zhezhu, Ou Pengzhi, Yang Jingxun, Dong Bo, Zhang Bohua. 2022. Application of resistivity composite profile and IP sounding in water prospecting in the mountain area[J]. Jilin Geology, 41(2): 41−48 (in Chinese with English abstract).

    Google Scholar

    [17] Kasidi S, Ndatuwong L G, Kamureyina E. 2023. Application of integrated geophysical methods in groundwater exploration in Adamawa State University, Mubi[J]. Journal of Geography, Environment and Earth Science International, 12: 89–105.

    Google Scholar

    [18] Kang Fangping, Jiang Jianliang, Peng Jie, Cao Chuanghua, Yao Haipeng. 2020. Application of integrated geophysical method to water search in a poorslate region of Hunan province[J]. Chinese Journal of Engineering Geophysics, 17(2): 258−264 (in Chinese with English abstract). doi: 10.1093/jge/gxz104

    CrossRef Google Scholar

    [19] Li Fu, Deng Guoshi, Yuan Jianfei, Wang Dewei, Tang Yeqi, Zhou Yimin. 2019. Comprehensive geophysical model for water prospecting in fault fracture zone: A case study of water supply well siting at Gantianba village[J]. Carsologica Sinica, 38(3): 344−352 (in Chinese with English abstract).

    Google Scholar

    [20] Li Hua, Jiao Yanjie, Wu Wenxian, Yang Jian, Yang Junbo. 2011. A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J]. Hydrogeology and Engineering Geology, 38(5): 1−6 (in Chinese with English abstract).

    Google Scholar

    [21] Li Jingming. 1993. A new parameter of induced polarization method for water prospecting——rate of deviation[J]. Site Investigation Science and Technology, (6): 52−56 (in Chinese with English abstract).

    Google Scholar

    [22] Li Rongliang, Cao Zicai, Zhu Yanlong, Su Hailun, Duan Kai. 2018. Application of electrical methods to groundwater prospecting in Qingshuigou, Gansu[J]. Computing Techniques for Geophysical and Geochemical Exploration, 40(4): 495−505 (in Chinese with English abstract).

    Google Scholar

    [23] Li Wangming, Yi Qiang, Liu Shengkai, Xiao Liquan, Li Jun. 2020. An example of DC method for water exploration in the karst mountain water shortage area of northwest Hunan[J]. Geophysica and Geochemical Exploration, 44(6): 1294−1300 (in Chinese with English abstract).

    Google Scholar

    [24] Li Wei, Tang Cairui, Wei Liangshuai, Shu Qinfeng, Tao Junli, Tian Yinchuan, Chen Cailing, Luo Bing. 2022. Application of various geophysical prospecting method in red beds water exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 44(3): 353−360 (in Chinese with English abstract).

    Google Scholar

    [25] Li Xia, Chen Wenfang, Wan Liqin, Hou Lili, Wang Haigang, He Qingcheng, Wang Jinsheng, Qin Tongchun, Tian Xiaowei. 2018. Groundwater location in bedrock mountains with serious water scarcity using a combination of EH4 and symmetric quadrupole induced polarization[J]. Hydrogeology and Engineering Geology, 45(1): 23−29 (in Chinese with English abstract).

    Google Scholar

    [26] Li Xiu, Hu Weiming, Xue Guoqiang. 2021. 3D modeling of multi–radiation source semi–airborne transient electromagnetic response[J]. Chinese Journal of Geophysics, 64(2): 716−723 (in Chinese with English abstract).

    Google Scholar

    [27] Liang Jing, Wei Qifeng, Hong Juan, Zheng Shengye, Qin Yongcai, Yan Fusheng, Feng Yongxiong. 2016. Application of self–potential method to explore water in karst area[J]. Geotechnical Investigation & Surveying, 44(2): 68−78 (in Chinese with English abstract).

    Google Scholar

    [28] Liao Wenpeng, Zhu Tong, Huang Rihua, Zhang Zhilei. 2017. The application of comprehensive geophysical prospecting method in water exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 9(6): 768−774 (in Chinese with English abstract).

    Google Scholar

    [29] Liu Chunwei, Wang Zhong, Hu Caiping, Shi Yanfang, Yang Xiaohui, Liu Xiaotian, Han Yuying, Li Bohui. 2023. Application of a comprehensive geophysical exploration methods to waler exploration in magmatic rock mountainous areas with water shortage in Jiaodong Peninsula[J]. Geophysical and Geochemical Exploration, 47(2): 512−522 (in Chinese with English abstract).

    Google Scholar

    [30] Liu Shengbo, Liu Pan, Li Yiyong, Chen Changjing, Liu Lei. 2024. Detection research of multiple types of groundwater occurrence by electrical resistance tomography in Ganzhou area[J]. Chinese Journal of Engineering Geophysics, 21(2): 256−266 (in Chinese with English abstract).

    Google Scholar

    [31] Liu Wei, Gan Fuping, Zhou Qiyou, Zhang Wei. 2018. Research on forward simulation of multi–electrode spacing combined profile curves of typical karst water–rich structures[J]. Carsologica Sinica, 37(4): 602−607 (in Chinese with English abstract).

    Google Scholar

    [32] Ma Jianbin, Tang Xinguang, Xiang Kui. 2013. Study on the method of calculating rock permeability by using resistivity[J]. Journal of Yangtze University (Natural Science Edition), 10(10): 105−106,122 (in Chinese with English abstract).

    Google Scholar

    [33] Makhlouf I, Guellala R, Lasmar R B, Dkhaili N, Salmouna L, Chahtour E. 2024. Contribution to groundwater research in the world’s largest hot desert: Hydrogeophysical study for the apprehension of the Jurassic aquifer in the Tunisian ‘‘Sahara’’[J]. Natural Resources Research, 33(4): 1549−1571. doi: 10.1007/s11053-024-10364-y

    CrossRef Google Scholar

    [34] Meng Lishan, Zhang Xiangyuan, Liang Jiangang, Su Yongjun, Liu Hongwei. 2014. Application of electrical method in the groundwater prospecting in Neogene marlstone area in Xinxiang[J]. Geotechnical Investigation & Surveying, 42(1): 95−98 (in Chinese with English abstract).

    Google Scholar

    [35] Miner W J, Adamson J K, Hasbrouck J C, Monforte S P, Vera M R. 2022. Geophysical reconnaissance of the western basin of the Plaine du Nord aquifer, Haiti[J]. Hydrogeology Journal, 30(5): 1417−1432. doi: 10.1007/s10040-022-02490-9

    CrossRef Google Scholar

    [36] Muhammad S, Ehsan M I, Khalid P. 2022. Optimizing exploration of quality groundwater through geophysical investigations in district Pakpattan, Punjab, Pakistan[J]. Arabian Journal of Geosciences, 15(8): 721. doi: 10.1007/s12517-022-09990-8

    CrossRef Google Scholar

    [37] Ohenhen L O, Mayle M, Kolawole F, Ismail A, Atekwana E A. 2023. Exploring for groundwater in sub–Saharan Africa: Insights from integrated geophysical characterization of a weathered basement aquifer system, central Malawi[J]. Journal of Hydrology: Regional Studies, 47: 101433. doi: 10.1016/j.ejrh.2023.101433

    CrossRef Google Scholar

    [38] Ouyang Boluo, Yi Qiang, Lu Tao, Huang Chao, Shao Changsheng, Xiao Liquan, Liu Shengkai. 2022. Application of hydrogeological survey combined with direct current prospecting in groundwater search in Southern Jiangxi Province[J]. South China Geology, 38(2): 340−349 (in Chinese with English abstract).

    Google Scholar

    [39] Pan Jianwei, Zhan Jiacheng, Hong Tao, Wang Haihong, Li Qinze, Li Zhenyu. 2018. Combined use of surface Nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Bulletin of Geological Science and Technology, 37(3): 253−262 (in Chinese with English abstract).

    Google Scholar

    [40] Qi Licheng. 2024. Application of comprehensive geophysical exploration technology to groundwater exploration in carbonate rock area[J]. Groundwater, 46(3): 138−140,170 (in Chinese with English abstract).

    Google Scholar

    [41] Qu Lijun, Li Bo, Zhou Pei. 2017. The application of multiple geophysical methods to water exploration in the arid areas of central Hunan Province[J]. Geophysical and Geochemical Exploration, 41(5): 835−839 (in Chinese with English abstract).

    Google Scholar

    [42] Rustadi, Darmawan I, Haerudin N, Setiawan A, Suharno. 2022. Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia[J]. Journal of Groundwater Science and Engineering, 10(1): 10−18.

    Google Scholar

    [43] Song Xili, Song Peng, Tian Mingyang, Peng Yuming. 2012. Geophysical prospecting method in intrusive rocks area fight a drought to find water wells set[J]. Progress in Geophysics, 27(3): 1280−1286 (in Chinese with English abstract).

    Google Scholar

    [44] Su YongJun, Ma Zhen, Meng Lishan, Liang Jiangang, Zhang Guoli, Li Jianguo, Teng Fei. 2015. Application of high–density resistivity method and induced polarization method to determine a good well location in groundwater prospecting[J]. Geoscience, 29(2): 265−271 (in Chinese with English abstract).

    Google Scholar

    [45] Tang F, Lin F, Jin C, Deng G, Zhao H, Tie Y, Yu Q, Ren S, Ren G. 2020. Practical geological technologies facilitating poverty alleviation in Wumeng Mountain area[J]. China Geology, 3(3): 504−508. doi: 10.31035/cg2020055

    CrossRef Google Scholar

    [46] Tang Fu, Ma Fu An, Chen Bo, Peng Majun, Weng Dunxian, Feng Xiaobo. 2023. Application of high density electrical method on water finding in three different lithological strata in rocky mountain area of Guangxi[J]. Mineral Resources and Geology, 37(2): 327−336 (in Chinese with English abstract).

    Google Scholar

    [47] Tian Liaoxi, Wang Juwen, Feng Jianhong, Kang Liang. 2023. Hydrogeological conditions and water prospecting direction in water shortage area of Cretaceous basin in Longdong Loess Plateau[J]. Journal of Arid Land Resources and Environment, 37(4): 186−193 (in Chinese with English abstract).

    Google Scholar

    [48] Vargemezis G, Tsourlos P, Stampolidis A, Fikos I, Ballas D, Papadopoulos N. 2012. A focusing approach to ground water detection by means of electrical and EM methods: The case of Paliouri, Northern Greece[J]. Studia Geophysica et Geodaetica, 56(4): 1063−1078. doi: 10.1007/s11200-011-0444-0

    CrossRef Google Scholar

    [49] Wang Haihui, Shi Jing, Liu Wei, Li Dawei. 2012. Application of α track exploration method in searching base rock groundwater[J]. Jilin Geology, 31(3): 88−91 (in Chinese with English abstract).

    Google Scholar

    [50] Wang Huimin, Song Qilong. 2021. Application of controllable source audio frequency magneto telluric method in groundwater exploitation of mountain valley in Shunping County, Hebei Province[J]. Site Investigation Science and Technology, (4): 50−53,61 (in Chinese with English abstract).

    Google Scholar

    [51] Wang Hong, Zhang Yepeng, Cao Heng, Huang Chaoyu. 2019. The study on the effectiveness of geophysical methods to find water in red bed basin areas in eastern Hunan[J]. Computing Techniques for Geophysical and Geochemical Exploration, 41(5): 653−658 (in Chinese with English abstract).

    Google Scholar

    [52] Wang Ruifeng, Wen Laifu, Cheng Jiulong, Chen Zhi, Jiao Junjun, Shen Guoqiang. 2020. Joint detection of bedrock fissure water using high–density electrical method and transient electromagnetic method in Chengde area of Hebei China[J]. Journal of Earth Sciences and Environment, 42(6): 784−790 (in Chinese with English abstract).

    Google Scholar

    [53] Wang Wenjie, Hao Yi, Bo Haijun, Xu Haoqing, Li Yongli, Mao Lei, Liu Yongxin, Yuan Shuai. 2021. A case analysis of multielectrode resistivity method for determining a well location in groundwater prospecting in the ore concentration area of Guyang County, Baotou City[J]. Geophysical and Geochemical Exploration, 45(4): 869−881 (in Chinese with English abstract).

    Google Scholar

    [54] Wang Z, Wang L, Shen J, Nie Z, Meng L, Cao L, Wei S, Zeng X. 2021. Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau[J]. China Geology, 4(3): 421−432.

    Google Scholar

    [55] Wu Xin, Xue Guoqiang, Chen Weiying, Shi Jinjing. 2023. Research on key technologies of the low–noise system for Semi–airborne electromagnetic method[J]. Chinese Journal of Geophysics, 66(9): 3904−3913 (in Chinese with English abstract).

    Google Scholar

    [56] Xi Zhenzhu, Long Xia, Zhou Sheng, Huang Long, Song Gang, Hou Haitao, Wang Liang. 2016. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 59(9): 3428−3435 (in Chinese with English abstract).

    Google Scholar

    [57] Xue Guoqiang, Wu Xin, Chen Weiying. 2023. Research of the Short–offset TEM (SOTEM) system[J]. Chinese Journal of Geophysics, 66(8): 3514−3523 (in Chinese with English abstract).

    Google Scholar

    [58] Xue Shengli, Ling Dandan. 2019. Application of the induced polarization sounding method to the survey of shallow groundwater in the Yanan area[J]. Geology and Exploration, 55(6): 1463−1472 (in Chinese with English abstract).

    Google Scholar

    [59] Yan Guocai, Xian Penghui, Qiu Nianguang. 2020. Study on short offset transient electromagnetic detection technology for low–resistance electrical sources in deep mine[J]. Coal Science and Technology, 48(6): 171−176 (in Chinese with English abstract).

    Google Scholar

    [60] Yang Qinglian. 2010. Application of five–pole vertical electrical sounding in search karst water in limestone areas of Longyan District[J]. Shandong Land and Resources, 26(9): 43−45 (in Chinese with English abstract).

    Google Scholar

    [61] Yang Tianchun, Liang Jing, Cheng Hui, Cao Shujin, Dong Shaoyu, Gong Yufei. 2018. The effect and the anomaly analysis of shallow groundwater exploration based on the frequency selection method of natural electric field[J]. Geophysical and Geochemical Exploration, 42(6): 1194−1200 (in Chinese with English abstract).

    Google Scholar

    [62] Zhan Shaoquan, Dai Shikun, Li Aiyong, Chen Yuhan, Wang Daoli. 2022 Test result of the holographic electromagnetic exploration method in Dayangshu Basi[J]. Mineral resources and geology, 36(6): 1190–1195 (in Chinese with English abstract).

    Google Scholar

    [63] Zhang Biao, Liu Liangzhi, Ni Jinxin, Liu Jiangshan. 2015. The application of comprehensive geophysical prospecting method to water exploration in the granite severe water shortage region[J]. Chinese Journal of Engineering Geophysics, 12(4): 501−507 (in Chinese with English abstract).

    Google Scholar

    [64] Zhang Dishuo, Yu Changchun, Wu Chengping, Qiao Chungui. 2022. Application of airborne transient electromagnetic method in the delineation of aquifer stratum in Balinzuoqi, Inner Mongolia[J]. Geological Bulletin of China, 41(Z1): 436−445 (in Chinese with English abstract).

    Google Scholar

    [65] Zhang Jin, Weng Aihua, Zhao Jianliang, Zhang Qiudong, Zheng Dongcai. 2014. Application of comprehensive geophysical prospecting to water discovery[J]. Ground Water, 36(3): 110−112,134 (in Chinese with English abstract).

    Google Scholar

    [66] Zhang Qinghui, Tian Zhongbin, Lin Jun, Li Dongsheng, Ji Yanju, Ma Yulong, Jia Wei. 2019. Application of time domain electrical source ground airborne electromagnetic system in goaf water exploration[J]. Journal of China Coal Society, 44(8): 2509−2515 (in Chinese with English abstract).

    Google Scholar

    [67] Zhang Shuoning, Yu Guo, He Zhanxiang. 2023. Progress on joint inversion of electromagnetic constraints combined with multiple methods and multiple information[J]. Oil Geophysical Prospecting, 58(6): 1522−1534 (in Chinese with English abstract).

    Google Scholar

    [68] Zhang Yepeng, Huang Chaoyu, Chen Yuxuan, Yang Tianchun. 2023. Application research of frequency selection method of telluric electricity field for drought resistant water prospecting in mountain area[J]. Mineral Resources and Geology, 37(4): 788−793 (in Chinese with English abstract).

    Google Scholar

    [69] Zheng Zhijie, Zeng Jie, Gan Fuping, Chen Jili, and Lu Xiuhua. 2024. Application of comprehensive geophysical prospecting method to water detection in the clastic rock area of Dalubian village, Xuanwei, Yunnan Province[J]. Carsologica Sinica, 43(2): 432−440 (in Chinese with English abstract).

    Google Scholar

    [70] Zhou Lei, Cao Chuanghua, Deng Zhuan, Tan Jialiang, Long Xia. 2019. Case study of geophysical prospecting water under the condition of limited site in urban areas[J]. Urban Geology, 14(1): 97−102 (in Chinese with English abstract).

    Google Scholar

    [71] Zhu Xiaoquan, Li Ye, Zhu Hongtao. 2019. Application of comprehensive electrical method to water exploration in a goldmining area of Beishan in Gansu[J]. Chinese Journal of Engineering Geophysics, 16(6): 878−889 (in Chinese with English abstract).

    Google Scholar

    [72] 陈贻祥, 韦吉益, 喻立平, 赵伟, 崔雷, 李良杰. 2012. 黔南岩溶石山区电测深法异常类型及其成因探讨[J]. 水文地质工程地质, 39(3): 17−22.

    Google Scholar

    [73] 邓在刚, 朱春名, 李汤伟. 2019. EH4电磁系统在川南严重干旱地区找水中的应用[J]. 四川地质学报, 39(S1): 171−175.

    Google Scholar

    [74] 樊永刚, 贾大为, 赵锁志, 张治国, 徐志强. 2018. 常规电阻率测深法在阿拉善干旱荒漠区找水中的成功应用[J]. 物探与化探, 42(5): 896−901.

    Google Scholar

    [75] 高级, 王利宏, 莫亮台, 陈卫, 姚松均, 孙峰, 徐昭杰. 2013. 地震亮点技术在西部干旱区找水技术研究[J]. 能源技术与管理, 38(3): 153−155. doi: 10.3969/j.issn.1672-9943.2013.03.061

    CrossRef Google Scholar

    [76] 郭淑君, 朱继良, 王春辉, 任政委, 明圆圆, 李梦. 2021. 电震联合法在涪陵裂隙溶洞调查中的应用研究[J]. CT理论与应用研究, 30(1): 49−59.

    Google Scholar

    [77] 郭嵩巍, 闫强. 2020. 瞬变电磁法在内蒙古乌拉特前旗明安镇西找水工程中的应用[J]. 科学技术与工程, 20(7): 2564−2572.

    Google Scholar

    [78] 何胜, 蒋厚辉, 马文鑫. 2020. 五极纵轴电测深法在青海茶卡盆地找水中的应用[J]. 河北地质大学学报, 43(6): 36−39.

    Google Scholar

    [79] 黄兰珍, 方兴付. 1980. 五极纵轴直流电测深法的理论研究及应用[J]. 物化探电子计算技术, (2): 3−26.

    Google Scholar

    [80] 黄理善, 侯一俊, 陈远荣, 敬荣中, 王建超. 2022. 基于物探–化探技术快速精确定位评价城市及周边隐伏断层——以广西桂林市临桂区为例[J]. 中国地质, 49(3): 929−942.

    Google Scholar

    [81] 姜月华, 李云, 葛伟亚, 叶念军, 冯小铭, 龚建师, 周铠锷, 侯莉莉, 张宝松, 赵牧华, 朱红兵, 仝长水, 刘林. 2018. 河南巩义抗旱地下水井位确定和钻探方法[J]. 华东地质, 39(2): 142−150.

    Google Scholar

    [82] 金哲洙, 曲鹏志, 杨京勋, 董博, 张博华. 2022. 联合剖面法与激电测深法在山区找水中的应用[J]. 吉林地质, 41(2): 41−48.

    Google Scholar

    [83] 康方平, 蒋建良, 彭杰, 曹创华, 姚海鹏. 2020. 综合物探方法在湖南某贫水板岩地区找水的应用研究[J]. 工程地球物理学报, 17(2): 258−264.

    Google Scholar

    [84] 李超男. 2023. 微动法在宿州岩溶区找水中的应用[J]. 西部探矿工程, 35(5): 171−174.

    Google Scholar

    [85] 李富, 邓国仕, 袁建飞, 王德伟, 唐业旗, 周一敏. 2019. 断层破碎带综合地球物理找水模式——以干田坝村探采结合井为例[J]. 中国岩溶, 38(3): 344−352.

    Google Scholar

    [86] 李华, 焦彦杰, 吴文贤, 杨剑, 杨俊波. 2011. 西南岩溶地区找水的地球物理方法探讨[J]. 水文地质工程地质, 38(5): 1−6.

    Google Scholar

    [87] 李金铭. 1993. 激电找水的新参数——偏离度[J]. 勘察科学技术, (6): 52−56.

    Google Scholar

    [88] 李金铭. 1998. 激发极化法方法技术指南[M]. 北京: 地质出版社.

    Google Scholar

    [89] 李荣亮, 曹自才, 朱彦龙, 苏海伦, 段凯. 2018. 电法在甘肃清水沟地下水勘查中的应用[J]. 物探化探计算技术, 40(4): 495−505.

    Google Scholar

    [90] 李望明, 易强, 刘声凯, 肖利权, 李俊. 2020. 湘西北岩溶石山缺水地区直流电法找水实例[J]. 物探与化探, 44(6): 1294−1300.

    Google Scholar

    [91] 李维, 唐彩瑞, 魏良帅, 舒勤峰, 陶俊利, 田银川, 陈彩玲, 罗兵. 2022. 多种物探方法在“红层”找水中的应用[J]. 物探化探计算技术, 44(3): 353−360.

    Google Scholar

    [92] 李霞, 陈文芳, 万利勤, 侯丽丽, 王海刚, 何庆成, 王金生, 秦同春, 田小维. 2018. EH4和对称四极激发极化联合技术的严重缺水基岩山区找水研究[J]. 水文地质工程地质, 45(1): 23−29.

    Google Scholar

    [93] 李貅, 胡伟明, 薛国强. 2021. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 64(2): 716−723.

    Google Scholar

    [94] 梁竞, 韦启锋, 洪卷, 郑盛业, 秦永才, 闫福生, 冯永雄. 2016. 自然电场法在岩溶地区找水打井中的应用[J]. 工程勘察, 44(2): 68−78.

    Google Scholar

    [95] 廖文鹏, 朱通, 黄日华, 张志磊. 2017. 综合物探方法在水资源勘察中的应用[J]. 物探化探计算技术, 9(6): 768−774.

    Google Scholar

    [96] 刘春伟, 王重, 胡彩萍, 时彦芳, 杨晓辉, 刘小天, 韩玉英, 李波辉. 2023. 综合物探方法在胶东岩浆岩缺水山区找水中的应用[J]. 物探与化探, 47(2): 512−522.

    Google Scholar

    [97] 刘圣博, 刘盼, 黎义勇, 陈长敬, 刘磊. 2024. 高密度电法在赣南地区不同地下水赋存类型的探测研究[J]. 工程地球物理学报, 21(2): 256−266.

    Google Scholar

    [98] 刘伟, 甘伏平, 周启友, 张伟. 2018. 典型岩溶富水构造的多极距联合剖面曲线正演模拟研究[J]. 中国岩溶, 37(4): 602−607.

    Google Scholar

    [99] 马建斌, 唐新功, 向葵. 2013. 利用电阻率求取岩石渗透率的方法研究[J]. 长江大学学报(自然科学版), 10(10): 105−106,122.

    Google Scholar

    [100] 马瑞杰, 李天骄. 2017. 核磁共振技术在东北贫水地区找水中的应用[J]. 中国水运(下半月), 17(1): 260−261.

    Google Scholar

    [101] 孟利山, 张像源, 梁建刚, 苏永军, 刘宏伟. 2014. 电法勘探在新乡市新近系泥灰岩地区找水中的应用[J]. 工程勘察, 42(1): 95−98.

    Google Scholar

    [102] 欧阳波罗, 易强, 路韬, 黄超, 邵长生, 肖立权, 刘声凯. 2022. 水文地质调查结合直流电法在赣南地区找水中的应用[J]. 华南地质, 38(2): 340−349.

    Google Scholar

    [103] 潘剑伟, 占嘉诚, 洪涛, 王海红, 李钦泽. 2018. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技通报, 37(3): 253−262.

    Google Scholar

    [104] 祁利成. 2024. 综合物探技术在碳酸盐岩地区地下水勘查中的应用[J]. 地下水, 46(3): 138−140,170.

    Google Scholar

    [105] 屈利军, 李波, 周佩. 2017. 综合物探方法在湘中贫水山区找水中的应用[J]. 物探与化探, 41(5): 835−839.

    Google Scholar

    [106] 宋希利, 宋鹏, 田明阳, 彭玉明. 2012. 物探方法在侵入岩地区抗旱找水定井中的应用[J]. 地球物理学进展, 27(3): 1280−1286.

    Google Scholar

    [107] 苏永军, 马震, 孟利山, 梁建刚, 张国利, 李建国, 滕菲. 2015. 高密度电阻率法和激发极化法在抗旱找水定井位中的应用[J]. 现代地质, 29(2): 265−271.

    Google Scholar

    [108] 唐甫, 马富安, 陈博, 彭马俊, 翁敦贤, 冯小波. 2023. 高密度电法在广西大石山区三种不同岩性地层的找水应用[J]. 矿产与地质, 37(2): 327−336.

    Google Scholar

    [109] 田辽西, 王具文, 冯建宏, 康亮等. 2023. 陇东黄土高原白垩系盆地水文地质条件及缺水区找水方向[J]. 干旱区资源与环境, 37(4): 186−193.

    Google Scholar

    [110] 汪青松. 2004. 一种新的地下水资源物探评价方法——水量因子法及其应用效果, 地质、资源、环境与可持续发展[M]. 福建: 福建省地图出版社, 182–184.

    Google Scholar

    [111] 王海辉, 石晶, 刘伟, 李大伟. 2012. α径迹探测方法在寻找基岩地下水中的应用[J]. 吉林地质, 31(3): 88−91.

    Google Scholar

    [112] 王会敏, 宋启龙. 2021. 可控源音频大地电磁法在河北顺平山间谷地找水中的应用[J]. 勘察科学技术, (4): 50−53,61.

    Google Scholar

    [113] 王红, 张叶鹏, 曹恒, 黄朝宇. 2019. 湘东地区红层盆地找水物探方法有效性试验研究[J]. 物探化探计算技术, 41(5): 653−658.

    Google Scholar

    [114] 王瑞丰, 温来福, 程久龙, 陈志, 焦俊俊, 申国强. 2020. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报, 42(6): 784−790.

    Google Scholar

    [115] 王文杰, 郝一, 薄海军, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 2021. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 45(4): 869−881.

    Google Scholar

    [116] 武欣, 薛国强, 陈卫营, 石金晶. 2023. 半航空电磁法全流程低噪声关键技术研究[J]. 地球物理学报, 66(9): 3904−3913.

    Google Scholar

    [117] 席振铢, 龙霞, 周胜, 黄龙, 宋刚, 侯海涛, 王亮. 2016. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 59(9): 3428−3435.

    Google Scholar

    [118] 薛国强, 武欣, 陈卫营. 2023. 短偏移瞬变电磁探测系统研究[J]. 地球物理学报, 66(8): 3514−3523.

    Google Scholar

    [119] 薛胜利, 凌丹丹. 2019. 激电测深在延安地区浅层地下水调查评价中的应用[J]. 地质与勘探, 55(6): 1463−1472.

    Google Scholar

    [120] 闫国才, 鲜鹏辉, 仇念广. 2020. 深井低阻体电性源短偏移距瞬变电磁探测技术研究[J]. 煤炭科学技术, 48(6): 171−176.

    Google Scholar

    [121] 杨庆镰. 2010. 五极纵轴测深法在龙岩灰岩地区寻找岩溶水的应用[J]. 山东国土资源, 26(9): 43−45.

    Google Scholar

    [122] 杨天春, 梁竞, 程辉, 曹书锦, 董绍宇, 宫玉菲. 2018. 天然电场选频法的浅层地下水勘探效果与异常分析[J]. 物探与化探, 42(6): 1194−1200.

    Google Scholar

    [123] 詹少全, 戴世坤, 李爱勇, 陈予涵, 王导丽. 2022. 全息电磁法在大杨树盆地勘探方法试验成果认识[J]. 矿产与地质, 36(6): 1190−1195.

    Google Scholar

    [124] 张彪, 刘良志, 倪进鑫, 刘江山. 2015. 综合物探方法在花岗岩严重缺水地区找水勘查中的应用[J]. 工程地球物理学报, 12(4): 501−507.

    Google Scholar

    [125] 张迪硕, 于长春, 吴成平, 乔春贵. 2022. 航空瞬变电磁法在内蒙古巴林左旗地区圈定含水地层中的应用[J]. 地质通报, 41(Z1): 436−445.

    Google Scholar

    [126] 张晋, 翁爱华, 赵建粮, 张秋冬, 郑栋材. 2014. 综合物探方法在应急抗旱找水中的应用[J]. 地下水, 36(3): 110−112,134.

    Google Scholar

    [127] 张庆辉, 田忠斌, 林君, 黎东升, 嵇艳鞠. 2019. 时域电性源地空电磁系统在煤炭采空积水区勘查中的应用[J]. 煤炭学报, 44(8): 2509−2515.

    Google Scholar

    [128] 张朔宁, 喻国, 何展翔. 2023. 多方法多信息电磁联合约束反演方法研究进展[J]. 石油地球物理勘探, 58(6): 1522−1534.

    Google Scholar

    [129] 张叶鹏, 黄朝宇, 陈钰轩, 杨天春. 2023. 基于天然电场选频法在山区抗旱找水中的应用研究[J]. 矿产与地质, 37(4): 788−793.

    Google Scholar

    [130] 郑智杰, 曾洁, 甘伏平, 陈吉礼, 卢秀华. 2024. 综合物探方法在碎屑岩地区找水中的应用——以云南宣威大路边村为例[J]. 中国岩溶, 43(2): 432−440.

    Google Scholar

    [131] 周磊, 曹创华, 邓专, 谭佳良, 龙霞. 2019. 城镇有限场地条件下的物探找水试验[J]. 城市地质, 14(1): 97−102.

    Google Scholar

    [132] 朱晓泉, 李烨, 朱洪涛. 2019. 综合电法在甘肃北山某金矿区找水中的应用[J]. 工程地球物理学报, 16(6): 878−889.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(16) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint