2025 Vol. 52, No. 4
Article Contents

ZHANG Na, SHI Zeming, ZOU Chengjie, ZHU Yinghai, ZHAO Kai, ZHOU Zhaoyu. 2025. Characteristics, current research status, and development prospects of mineral fertilizers[J]. Geology in China, 52(4): 1313-1324. doi: 10.12029/gc20231017001
Citation: ZHANG Na, SHI Zeming, ZOU Chengjie, ZHU Yinghai, ZHAO Kai, ZHOU Zhaoyu. 2025. Characteristics, current research status, and development prospects of mineral fertilizers[J]. Geology in China, 52(4): 1313-1324. doi: 10.12029/gc20231017001

Characteristics, current research status, and development prospects of mineral fertilizers

    Fund Project: Supported by the National Natural Science Foundation of China (No.41373120).
More Information
  • Author Bio: ZHANG Na, female, born in 1992, Ph.D., mainly engaged in mine environmental geochemistry and mineralogical process tracking in contaminated environments; E-mail: zhangna9215@126.com
  • This paper is the result of agricultural geological survey engineering.

    Objective

    The discovery and application of mineral fertilizers have made significant contributions in many aspects, such as providing nutrients to the soil to improve yields and meet the increasing demand for food.

    Methods

    This paper systematically collects and organizes research findings on mineral fertilizers, discussing their characteristics, current research status, and future development prospects. By combining the classification of mineral fertilizers both domestically and internationally, as well as their applications in soil improvement and agricultural production, this paper explores the environmental impact of mineral fertilizers and proposes improved fertilization techniques for environmental sustainability.

    Results

    This review primarily entails the following understandings: (1) Listing the classification of mineral fertilizers to provide the latest knowledge on their composition; (2) Describing the current research status of mineral fertilizers to understand their importance and limitations; (3) Reducing the environmental impact of mineral fertilizers and proposing improved fertilization techniques for environmental sustainability.

    Conclusions

    Excessive use of mineral fertilizers can result in the production of pollutants that negatively impact environmental sustainability. Therefore, when using mineral fertilizers, it is important to follow the principles of scientific fertilization and implement precision fertilization.

  • 加载中
  • [1] Abou-el-Seoud I I, Abdel−Megeed A. 2012. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions[J]. Saudi Journal of Biological Sciences, 19(1): 55−63. doi: 10.1016/j.sjbs.2011.09.001

    CrossRef Google Scholar

    [2] Adnan M, Shah Z, Fahad S, Arif M, Alam M, Khan I A, Mian I A, Basir A, Ullah H, Arshad M, Rahman I−U, Saud S, Ihsan M Z, Jamal Y, Amanullah, Hammad H M, Nasim W. 2017. Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in Alkaline soils[J]. Scientific Reports, 7(1): 16131. doi: 10.1038/s41598-017-16537-5

    CrossRef Google Scholar

    [3] Alewell C, Ringeval B, Ballabio C, Robinson D A, Panagos P, Borrelli P. 2010. Global phosphorus shortage will be aggravated by soil erosion[J]. Nature Communications, 11(1): 4546.

    Google Scholar

    [4] Almeida E B, Da Silva A d S, Figueiredo J B, Amorim W M de, Pellon L H C. 2018. The new cultural history as a methodology proposed for research in the nursing history field / A nova história cultural como proposta metodológica para pesquisas no campo da história da enfermagem[J]. Revista de Pesquisa Cuidado é Fundamental Online, 10(1): 130−136.

    Google Scholar

    [5] Aluoch S O, Li Z, Li X, Hu C, Mburu D M, Yang J, Xu Q, Yang Y, Su H. 2022 Effect of mineral N fertilizer and organic input on maize yield and soil water content for assessing optimal N and irrigation rates in Central Kenya[J]. Field Crops Research, 277: 108420.

    Google Scholar

    [6] Basak B B, Sarkar B, Maity A, Chari M S, Banerjee A, Biswas D R. 2023. Low-grade silicate minerals as value−added natural potash fertilizer in deeply weathered tropical soil[J]. Geoderma, 433: 116433. doi: 10.1016/j.geoderma.2023.116433

    CrossRef Google Scholar

    [7] Blackwell M, Darch T, Haslam R. 2019. Phosphorus use efficiency and fertilizers: future opportunities for improvements[J]. Frontiers of Agricultural Science and Engineering, 6(4): 332.

    Google Scholar

    [8] Bijay S, Sapkota T B. 2023. The Effects of Adequate and Excessive Application Of Mineral Fertilizers on The Soil[M]. Goss M J; Oliver M(eds.). Encyclopedia of Soils in the Environment (Second Edition). Oxford: Academic Press, 369−381.

    Google Scholar

    [9] Blum J, Melfi A J, Montes C R, Gomes T M. 2013. Nitrogen and phosphorus leaching in a tropical Brazilian soil cropped with sugarcane and irrigated with treated sewage effluent[J]. Agricultural Water Management, 117: 115−122. doi: 10.1016/j.agwat.2012.11.010

    CrossRef Google Scholar

    [10] Bonmatı́ A, Flotats X. 2003. Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion[J]. Waste Management, 23(3): 261−272.

    Google Scholar

    [11] Cai S, Liu B, Li J, Zhang Y, Zeng Y, Wang Y, Liu T. 2022. Biochemical analysis and toxicity assessment of utilization of argon oxygen decarbonization slag as a mineral fertilizer for tall fescue (Festuca arundinacea Schreb) planting[J]. Sustainability, 14(15): 9286. doi: 10.3390/su14159286

    CrossRef Google Scholar

    [12] Chao X, Zhang T, Lyu G, Chen Y, Zhao Q, Yang X, Cheng F. 2022. Research on the mechanism of sodium separation in bauxite residue synergy preparation of potassium-containing compound fertilizer raw materials by the hydrothermal method[J]. Journal of Environmental Management, 317: 115359. doi: 10.1016/j.jenvman.2022.115359

    CrossRef Google Scholar

    [13] Chen G, Shi L. 2016. A multi-element mineral conditioner: A supplement of essential cations for red soil and crops growth[J]. Clean Soil Air Water, 44(12): 1690−1699. doi: 10.1002/clen.201500684

    CrossRef Google Scholar

    [14] Chen Yun, Jiang Dengdeng, Yang Kunhua, Zhu Xin, Kong Lingya, Li Xuwei, Deng Shaopo. 2022. Pollution characteristics and environmental risks of ammonia nitrogen in retired nitrogen fertilizer plant sites[J]. China Environmental Science, 42(7): 3265−3275 (in Chinese with English abstract).

    Google Scholar

    [15] Cordeiro C F d S, Rodrigues D R, Echer F R. 2022. Cover crops and controlled-release urea decrease need for mineral nitrogen fertilizer for cotton in sandy soil[J]. Field Crops Research, 276: 108387. doi: 10.1016/j.fcr.2021.108387

    CrossRef Google Scholar

    [16] Cordell D, Drangert J-O, White S. 2009. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 19(2): 292−305. doi: 10.1016/j.gloenvcha.2008.10.009

    CrossRef Google Scholar

    [17] Costantini E A C, Mocali S. 2022. Soil health, soil genetic horizons and biodiversity[J]. Journal of Plant Nutrition and Soil Science, 185(1): 24−34. doi: 10.1002/jpln.202100437

    CrossRef Google Scholar

    [18] Dhaliwal S S, Sharma V, Shukla A K, Singh J, Verma V, Kaur M, Singh P, Rehal J. 2022. Assessment of optimum mineral zinc fertilizer rate for quantitative and qualitative production of sugarcane in north-western India[J]. Journal of Trace Elements and Minerals, 2: 100021. doi: 10.1016/j.jtemin.2022.100021

    CrossRef Google Scholar

    [19] Fei C, Zhang S, Wei W, Liang B, Li J, Ding X. 2020. Straw and optimized nitrogen fertilizer decreases phosphorus leaching risks in a long-term greenhouse soil[J]. Journal of Soils and Sediments, 20(3): 1199−1207.

    Google Scholar

    [20] Ferreira G W, Lourenzi C R, Comin J J, Loss A, Girotto E, Ludwig M P, Freiberg J A, Oliveira Camera D de, Marchezan C, Palermo N M, Scopel G, Thoma A L S, Charopem A B, Moura-Bueno J M, Drescher G L, Brunetto G. 2023. Effect of organic and mineral fertilizers applications in pasture and no-tillage system on crop yield, fractions and contaminant potential of Cu and Zn[J]. Soil and Tillage Research, 225: 105523. doi: 10.1016/j.still.2022.105523

    CrossRef Google Scholar

    [21] Gao Youhui, Jiang Chunyan, Hu Yuegao, Wang Xiaofen. 2021. Effects of different fertilizer treatments on nutrient absorption and distribution in organic Astragalus[J]. Chinese Journal of Eco-Agriculture, 29(3): 453−464 (in Chinese with English abstract).

    Google Scholar

    [22] Gong H, Meng F, Wang G, Hartmann T E, Feng G, Wu J, Jiao X, Zhang F. 2022. Toward the sustainable use of mineral phosphorus fertilizers for crop production in China: From primary resource demand to final agricultural use[J]. The Science of the total environment, 804: 150183. doi: 10.1016/j.scitotenv.2021.150183

    CrossRef Google Scholar

    [23] Guo Qun. 2019. Soil acidification induced by nitrogen addition and its responses to water addition in Inner Mongolia Temperate Steppe, China[J]. Chinese Journal of Applied Ecology, 30(10): 3285−3291 (in Chinese with English abstract).

    Google Scholar

    [24] Hao T, Zhu Q, Zeng M, Shen J, Shi X, Liu X, Zhang F, Vries W de. 2019. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system[J]. Plant and Soil, 434(1): 167−184.

    Google Scholar

    [25] Ibrahim A, Abaidoo R C, Fatondji D, Opoku A. 2015. Hill placement of manure and fertilizer micro-dosing improves yield and water use efficiency in the Sahelian low input millet-based cropping system[J]. Field Crops Research, 180: 29−36. doi: 10.1016/j.fcr.2015.04.022

    CrossRef Google Scholar

    [26] Jabborova D, Sulaymanov K, Sayyed R Z, Alotaibi S H, Enakiev Y, Azimov A, Jabbarov Z, Ansari M J, Fahad S, Danish S, Datta R. 2021. Mineral fertilizers improves the quality of turmeric and soil[J]. Sustainability, 13(16): 9437.

    Google Scholar

    [27] Jarvie H P, Sharpley A N, Flaten D, Kleinman P J A. 2019. Phosphorus mirabilis: Illuminating the past and future of phosphorus stewardship[J]. Journal of Environmental Quality, 48(5): 1127–1132.

    Google Scholar

    [28] Khatri I, Garg A. 2022. Potash recovery from synthetic potassium rich wastewater and biomethanated distillery effluent using tartaric acid as a recyclable precipitant[J]. Environmental Technology & Innovation, 28: 102841.

    Google Scholar

    [29] Kumar S, Prasad S, Yadav K K, Shrivastava M, Gupta N, Nagar S, Bach Q-V, Kamyab H, Khan S A, Yadav S, Malav L C. 2019. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches——A review[J]. Environmental Research, 179: 108792. doi: 10.1016/j.envres.2019.108792

    CrossRef Google Scholar

    [30] Lan Chengyun, Shu Rui, Yao Tiantian, Li Xiaolong, Yue Linxu, Cang Chuanjiang, Guan Xiaohong, Wang Laiwen, Liu Shaojun, Shen Guoming. 2016. The application status of mineral fertilizer in China agricultural production[J]. Journal of Anhui Agricultural Sciences, 44(35): 143−146 (in Chinese with English abstract).

    Google Scholar

    [31] Leal R M P, Firme L P, Herpin U, Da Fonseca A F, Montes C R, dos Santos Dias, Carlos Tadeu, Melfi A J. 2010. Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater[J]. Agricultural Water Management, 97(2): 271−276.

    Google Scholar

    [32] Li Q, Li S, Xiao Y, Zhao B, Wang C, Li B, Gao X, Li Y, Bai G, Wang Y, Yuan D. 2019. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012[J]. Catena, 175: 278−285. doi: 10.1016/j.catena.2018.12.025

    CrossRef Google Scholar

    [33] Liu H, Hao Z, Yuan Y, Li C, Zhang J. 2022. Application of mineral phosphorus fertilizer influences rhizosphere chemical and biological characteristics[J]. Archives of Agronomy and Soil Science, 69(5): 771−784.

    Google Scholar

    [34] Li Xingping, Hu Zhaoping, Liu Yang, Yang Lei. 2016. Research review on mineral soil conditioner[J]. Shandong Chemical Industry, 45(24): 48−50 (in Chinese with English abstract).

    Google Scholar

    [35] Liu Gengling, Li Xuhua, Qin Daozhu. 1989. The effects of long-term application of sulfate fertilizers on soil properties and rice growth[J]. Scientia Agricultura Sinica, (3): 50−57 (in Chinese with English abstract).

    Google Scholar

    [36] Liu Jianming, Han Cheng, Liu Shanke. 2014. Potassium, silicon and calcium multi-element microporous mineral fertilizer−integrated mineral technology for soil and fertilizer[J]. China Agricultural and Trade, (23): 23(in Chinese with English abstract).

    Google Scholar

    [37] Liu S H, Ji X H, Xie Y H, Jiang J, Bocharnikova E, Matichenkov V. 2016 Prospective for remediation and purification of wastes from Xikuangshan mine by using Si-based substances[J]. Journal of Environmental Management, 172: 77–81.

    Google Scholar

    [38] Liu Zhenxing. 1989. Study of the interlayer potassium release of soil minerals through kinetic methods[J]. Fujian Journal of Agricultural Sciences, (1): 78−85 (in Chinese with English abstract).

    Google Scholar

    [39] Lollato R P, Figueiredo B M, Dhillon J S, Arnall D B, Raun W R. 2019. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments[J]. Field Crops Research, 236: 42−57. doi: 10.1016/j.fcr.2019.03.005

    CrossRef Google Scholar

    [40] Lompo F, Bationo A, Sedogo M P, Bado V B, Hien V, Ouattara B. 2018. Role of local agro-minerals in mineral fertilizer recommandations for crops: Examples of some West Africa phosphate rocks[M]. Cham: Springer International Publishing, 157-180.

    Google Scholar

    [41] Lü B, Zhao Z, Deng X, Fang C, Dong B, Zhang B. 2022. Sustainable and clean utilization of coal gangue: Activation and preparation of silicon fertilizer[J]. Journal of Material Cycles and Waste Management, 24(4): 1579−1590. doi: 10.1007/s10163-022-01426-5

    CrossRef Google Scholar

    [42] Ma J F, Yamaji N. 2015. A cooperative system of silicon transport in plants[J]. Trends in Plant Science, 20(7): 435−442. doi: 10.1016/j.tplants.2015.04.007

    CrossRef Google Scholar

    [43] Madejón P, Domínguez M T, Girón I, Burgos P, López-Fernández M T, Porras Ó G, Madejón E. 2022 Assessment of the phytoremediation effectiveness in the restoration of uranium mine tailings[J]. Ecological Engineering, 180: 106669.

    Google Scholar

    [44] Maity A, Marathe R A, Sarkar A, Basak B B. 2022. Phosphorus and potassium supplementing bio−mineral fertilizer augments soil fertility and improves fruit yield and quality of pomegranate[J]. Scientia Horticulturae, 303: 111234. doi: 10.1016/j.scienta.2022.111234

    CrossRef Google Scholar

    [45] Marafon A C, Endres L. 2013 Silicon: Fertilization and nutrition in higher plants[J]. Amazon Journal of Agricultural and Environmental Sciences, 56(4): 380–388.

    Google Scholar

    [46] Meharg C, Meharg A A. 2015. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?[J]. Environmental and Experimental Botany, 120: 8−17. doi: 10.1016/j.envexpbot.2015.07.001

    CrossRef Google Scholar

    [47] Paradelo R, Virto I, Chenu C. 2015. Net effect of liming on soil organic carbon stocks: A review[J]. Agriculture, Ecosystems & Environment, 202: 98–107.

    Google Scholar

    [48] Pérez-López R, Nieto J M, López-Coto I, Aguado J L, Bolívar J P, Santisteban M. 2010. Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment[J]. Applied Geochemistry, 25(5): 705−715. doi: 10.1016/j.apgeochem.2010.02.003

    CrossRef Google Scholar

    [49] Poffenbarger H J, Barker D W, Helmers M J, Miguez F E, Olk D C, Sawyer J E, Six J, Castellano M J. 2017. Maximum soil organic carbon storage in Midwest U. S. cropping systems when crops are optimally nitrogen−fertilized[J]. PLoS One, 12(3): e0172293. doi: 10.1371/journal.pone.0172293

    CrossRef Google Scholar

    [50] Pypers P, Bimponda W, Lodi−Lama J P, Lele B, Mulumba R, Kachaka C, Boeckx P, Merckx R, Vanlauwe B. 2012. Combining mineral fertilizer and green manure for increased, profitable cassava production[J]. Agronomy Journal, 104(1): 178−187. doi: 10.2134/agronj2011.0219

    CrossRef Google Scholar

    [51] Reháková M, Čuvanová S, Dzivák M, Rimár J, Gaval’ová Z. 2004. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type[J]. Current Opinion in Solid State and Materials Science, 8(6): 397−404. doi: 10.1016/j.cossms.2005.04.004

    CrossRef Google Scholar

    [52] Rockström J, Steffen W, Noone K, Persson Å, Chapin F S, Lambin E F, Lenton T M, Scheffer M, Folke C, Schellnhuber H J, Nykvist B, Wit C A de, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder P K, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R W, Fabry V J, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J A. 2009. A safe operating space for humanity[J]. Nature, 461(7263): 472−475. doi: 10.1038/461472a

    CrossRef Google Scholar

    [53] Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A. 2013. Long−term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(45): 18185−18189.

    Google Scholar

    [54] Sheng Dinghong, Zhang Jingning, Li Xiaojun, Du Xin, Xie Chengwei. 2023. Study on preparation and application of coal gangue fertilizer[J]. Applied Chemical Industry, 52(3): 960−963 (in Chinese with English abstract).

    Google Scholar

    [55] Shen H, Xu Z H, Yan X L. 2001. Effect of fertilization on oxidizable carbon, microbial biomass carbon, and mineralizable carbon under different agroecosystems[J]. Communications in Soil Science and Plant Analysis, 32(9/10): 1575−1588. doi: 10.1081/CSS-100104214

    CrossRef Google Scholar

    [56] Shuliko N N, Khamova O F, Timokhin A Y, Boiko V S, Tukmacheva E V, Krempa A. 2022. Influence of long−term intensive use of irrigated meadow-chernozem soil on the biological activity and productivity of the arable layer[J]. Scientific Reports, 12(1): 14672. doi: 10.1038/s41598-022-18639-1

    CrossRef Google Scholar

    [57] Siddique S. 2019. Sodium status of soil, forages, and small ruminants of Punjab, Pakistan[J]. Pure and Applied Biology, 8(3): 1950−1961.

    Google Scholar

    [58] Siebielec G, Chaney R L, Kukier U. 2007. Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration[J]. Plant and Soil, 299(1): 117−130.

    Google Scholar

    [59] Šimanský V, Jonczak J, Horváthová J, Igaz D, Aydın E, Kováčik P. 2022. Does long-term application of mineral fertilizers improve physical properties and nutrient regime of sandy soils[J]. Soil and Tillage Research, 215: 105224. doi: 10.1016/j.still.2021.105224

    CrossRef Google Scholar

    [60] Sun A W, Zhang W F, Du F, Gao L W, Zhang F S, Chen X P. 2009. China’s development strategy on potash resources and fertilizer[J]. Modern Chemical Industry, 29(9): 10−16.

    Google Scholar

    [61] Sun Q, Ruan Y, Chen P, Wang S, Liu X, Lian B. 2019. Effects of mineral-organic fertilizer on the biomass of green Chinese cabbage and potential carbon sequestration ability in karst areas of Southwest China[J]. Acta Geochimica, 38(3): 430−439. doi: 10.1007/s11631-019-00320-6

    CrossRef Google Scholar

    [62] Tao L, Wen X, Li H, Huang C, Jiang Y, Liu D, Sun B. 2021. Influence of manure fertilization on soil phosphorous retention and clay mineral transformation: Evidence from a 16-year long-term fertilization experiment[J]. Applied Clay Science, 204: 106021. doi: 10.1016/j.clay.2021.106021

    CrossRef Google Scholar

    [63] Tian D, Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 10(2): 24019. doi: 10.1088/1748-9326/10/2/024019

    CrossRef Google Scholar

    [64] Tian Zhengyun, Wu Xiongwei, Wu Yuanyuan, Wei Jianan, Bai He, Gu Jiangxin. 2022. Nitric oxide emissions from Chinese upland cropping systems and mitigation strategies: A meta-analysis[J]. Environmental Science, 43(11): 5131−5139 (in Chinese with English abstract).

    Google Scholar

    [65] Worrall F, Howden N J K, Burt T P. 2015. Evidence for nitrogen accumulation: the total nitrogen budget of the terrestrial biosphere of a lowland agricultural catchment[J]. Biogeochemistry, 123(3): 411−428. doi: 10.1007/s10533-015-0074-7

    CrossRef Google Scholar

    [66] Xu Canxiao. 1991. Agricultural utilization of adsorptive minerals abroad[J]. Multipurpose Utilization of Mineral Resources, (1): 28−31 (in Chinese with English abstract).

    Google Scholar

    [67] Xu Jingyong. 1983. Take the path of combining organic agriculture with inorganic agriculture[J]. Seeker, (4): 61–63(in Chinese with English abstract).

    Google Scholar

    [68] Xu Ruiwei. 1965. Ammoniation treatment of mineral coal and fertilizer efficiency of ammoniated coal[J]. Acta Pedologica Sinica, (2): 194−207 (in Chinese with English abstract).

    Google Scholar

    [69] Yan Z, Chen S, Li J, Alva A, Chen Q. 2016. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses[J]. Journal of Environmental Management, 181: 26−35.

    Google Scholar

    [70] Yanthan L, Singh A K, Singh V B. 2020. Effect of INM on yield, quality and uptake of N, P and K by ginger[J]. Agropedology, 20(1): 74−79.

    Google Scholar

    [71] Zhai Yonggong. 1996. Non-metallic mineral resources and modern agricultural production[J]. World Agriculture, (8): 31−33 (in Chinese with English abstract).

    Google Scholar

    [72] Zhang S, Zhang H, Cai J, Zhang X, Zhang J, Shao J. 2018. Evaluation and prediction of cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar[J]. Energy & Fuels, 32(4): 4469−4477.

    Google Scholar

    [73] Zhang Xinbao, Wang Shijie, Cao Jianhua, Wang Kelin, Meng Tianyou, Bai Xiaoyong. 2010. Characteristics of water loss and soil erosion and some scientific problems on karst rocky desertification in Southwest China karst area[J]. Carsologica Sinica, 29(3): 274−279 (in Chinese with English abstract).

    Google Scholar

    [74] Zhao X Q, Chen R F, Shen R F. 2014. Coadaptation of plants to multiple stresses in acidic soils[J]. Soil Science, 179(10/11): 503−513. doi: 10.1097/SS.0000000000000086

    CrossRef Google Scholar

    [75] 陈云, 姜登登, 阳昆桦, 祝欣, 孔令雅, 李旭伟, 邓绍坡. 2022. 氮肥企业退役地块氨氮污染及其风险研究[J]. 中国环境科学, 42(7): 3265−3275. doi: 10.3969/j.issn.1000-6923.2022.07.030

    CrossRef Google Scholar

    [76] 高游慧, 江春艳, 胡跃高, 王小芬. 2021. 不同肥料处理对有机黄芪养分吸收与分配的影响[J]. 中国生态农业学报(中英文), 29(3): 453−464.

    Google Scholar

    [77] 郭群. 2019. 氮添加对内蒙古温带典型草原土壤的酸化效应及水分的影响[J]. 应用生态学报, 30(10): 3285−3291.

    Google Scholar

    [78] 兰成云, 舒锐, 姚甜甜, 李晓龙, 岳林旭, 臧传江, 关小红, 王来文, 刘少军, 申国明. 2016. 矿物肥料在我国农业生产上的应用现状[J]. 安徽农业科学, 44(35): 143−146. doi: 10.3969/j.issn.0517-6611.2016.35.050

    CrossRef Google Scholar

    [79] 李兴平, 胡兆平, 刘阳, 杨蕾. 2016. 矿物型土壤调理剂研究综述[J]. 山东化工, 45(24): 48−50. doi: 10.3969/j.issn.1008-021X.2016.24.018

    CrossRef Google Scholar

    [80] 刘更另, 李绪花, 秦道珠. 1989. 长期施用硫酸盐肥料对土壤性质和水稻生长的影响[J]. 中国农业科学, (3): 50−57. doi: 10.3321/j.issn:0578-1752.1989.03.001

    CrossRef Google Scholar

    [81] 刘建明, 韩成, 刘善科. 2014. 钾硅钙多元素微孔矿物肥——土壤-肥料一体化矿物技术[J]. 中国农资, (23): 23.

    Google Scholar

    [82] 刘振兴. 1989. 用动力学方法研究土壤矿物层间钾的释放[J]. 福建省农科院学报, (1): 78−85.

    Google Scholar

    [83] 盛定红, 张景宁, 李小军, 杜鑫, 谢承卫. 2023. 煤矸石肥料的制备及应用研究[J]. 应用化工, 52(3): 960−963. doi: 10.3969/j.issn.1671-3206.2023.03.059

    CrossRef Google Scholar

    [84] 田政云, 吴雄伟, 吴媛媛, 魏佳楠, 白鹤, 顾江新. 2022. 中国旱作农田一氧化氮排放及减排: Meta分析[J]. 环境科学, 43(11): 5131−5139.

    Google Scholar

    [85] 徐灿校. 1991. 国外吸附性矿物的农肥应用[J]. 矿产综合利用, (1): 28−31.

    Google Scholar

    [86] 翟永功. 1996. 非金属矿产资源与现代化农业生产[J]. 世界农业, (8): 31−33.

    Google Scholar

    [87] 许经勇. 1983. 走有机农业与无机农业相结合的道路[J]. 求索, (4): 61−63.

    Google Scholar

    [88] 徐瑞薇. 1965. 矿物煤的氨化处理和氨化煤的肥效[J]. 土壤学报, (2): 194−207.

    Google Scholar

    [89] 张信宝, 王世杰, 曹建华, 王克林, 孟天友, 白晓永. 2010. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题[J]. 中国岩溶, 29(3): 274−279. doi: 10.3969/j.issn.1001-4810.2010.03.009

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(24) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint