2025 Vol. 52, No. 4
Article Contents

LI Cong, HUANG Fengcun, WANG Zimeng, YIN Fengxiang, CAO Jian, LIAO Qi, XU Xuesheng, GUO Jun. 2025. Ecological risk assessment and source analysis of heavy metals in sediments of Dongting Lake[J]. Geology in China, 52(4): 1381-1394. doi: 10.12029/gc20240528002
Citation: LI Cong, HUANG Fengcun, WANG Zimeng, YIN Fengxiang, CAO Jian, LIAO Qi, XU Xuesheng, GUO Jun. 2025. Ecological risk assessment and source analysis of heavy metals in sediments of Dongting Lake[J]. Geology in China, 52(4): 1381-1394. doi: 10.12029/gc20240528002

Ecological risk assessment and source analysis of heavy metals in sediments of Dongting Lake

    Fund Project: Supported by the project of China Geological Survey (No.DD20230478), Natural Science Foundation of Hunan Province (No.2024JJ7620) and Key Research and Development Project of Hunan Province (No.2023SK2066).
More Information
  • Author Bio: LI Cong, male, born in 1995, assistant engineer, engaged in heavy metal pollution prevention and control; E-mail: 448557091@qq.com
  • Corresponding author: GUO Jun, male, born in 1989, senior engineer, engaged in environmental geochemistry; E-mail: Xiafeng8093@163.com.
  • This paper is the result of geological survey engineering.

    Objective

    Dongting Lake, the second largest freshwater lake in China, has experienced increased heavy metal accumulation due to surrounding mining activities and chemical metallurgy. Understanding the characteristics and sources of heavy metal pollution in Dongting Lake is crucial for effective prevention, control and remediation efforts.

    Methods

    In August 2023, 37 surface sediment samples were collected from four main inflow rivers of Dongting Lake. Eight heavy metals and their physicochemical indicators were measured. The pollution characteristics were evaluated using sediment quality guidelines (SQG). The potential ecological risk index method was used to identify the ecological risk of sediments in the area. The sources and contribution rates of the heavy metals were analyzed using the Positive Matrix Factorization (PMF) model and correlation analysis. Redundancy analysis (RDA) was used to explore the morphological characteristics of heavy metals in sediments.

    Results

    The ecological risk of heavy metals in the sediments of the Dongting Lake water system is relatively high, Cd contributed the most to ecological risk (75.1%), followed by Hg (17.2%).with the Xiangjiang and Zijiang river basins exhibiting higher heavy metal pollution risks. Based on the PMF model and regional characteristics, four potential sources of heavy metal pollution in the sediments were identified: agricultural sources (42.7%), atmospheric deposition sources (16.1%), natural sources (21.8%) and metal smelting sources (19.5%). The RDA results showed that the heavy metals in the sediments of the four drainage basins were mainly Fe−Mn combined.

    Conclusion

    According to RDA and related analyses, it is indicated that the content of heavy metals such as Cd in the lake area sediments is mainly controlled by Fe and Mn oxides. In the next step of environmental remediation and pollution control, the oxide characteristics of iron and manganese can be utilized to effectively control and treat heavy metal pollution.

  • 加载中
  • [1] Chen Chunxiao, Jiang Xia, Zheng Binghui, Zhao Zheng, Zhan Yuzhu. 2013. Heavy metals in sediment of Lake Taihu’sZhushan Bay: Chemical speciation and risk evaluation[J]. Environmental Science Technology, 36(6): 177−182 (in Chinese with English abstract).

    Google Scholar

    [2] Chen H Z, Wang J G, Chen J M. 2016. Assessment of heavy metal contamination in the surface sediments: A reexamination into the offshore environment in China[J]. Marine Pollution Bulletin, 113: 132−140. doi: 10.1016/j.marpolbul.2016.08.079

    CrossRef Google Scholar

    [3] Deng Xudong. 2023. Study on the Effect and Mechanism of Manganese Modified Biochar and Iron Manganese Oxide On Heavy Metal Contaminated Sediment Remediation[D]. Handan: Hebei University of Engineering, 1−76 (in Chinese with English abstract).

    Google Scholar

    [4] Fang Xiaohong, Peng Bo, Song Zhaoliang, Tan Changyin, Wan Dajuan, Wang Xin, Yan Chuanyun, Xie Yiting, Tu Xianglin. 2019. Heavy metal contamination in bed sediments from the four inlets of Xiangjiang, Zijiang, Yuanjiang, and Lishui rivers to Dongting Lake, China[J]. Geochimica, 48(4): 378−394 (in Chinese with English abstract).

    Google Scholar

    [5] Fang Xiaohong, Peng Bo, Zhang Kun, Yang Zixuan, Xiao Yao, Xie Weicheng, Yan Chuanyun, Xie Yiting, Tan Changyin, Wan Dajuan, Wang Xin. 2018. Geochemical study on evolution of heavy-metal contamination developed in bed sediments from the Yuanjiang River inlet to Dongting Lake, China[J]. Acta Scientiae Circumstantiae, 38(7): 2586−2598 (in Chinese with English abstract).

    Google Scholar

    [6] Fang Xiaohong, Peng Bo, Zhang Kun, Zeng Dengzhi, Kuang Xiaoliang, Wu Beijuan, Tan Changyin, Wang Xin. 2016. Heavy metal contamination of bed sediments in inlet area of the lowermost Yuanjiang River, Hunan province of China[J]. Geographical Research, 35(10): 1887−1898 (in Chinese with English abstract).

    Google Scholar

    [7] Farkas A, Erratico C, Vigano L. 2007. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po[J]. Chemosphere, 68(4): 761−768. doi: 10.1016/j.chemosphere.2006.12.099

    CrossRef Google Scholar

    [8] Gan Y, Huang X, Li S, Liu N, Li Y C, Freidenreich A, Wang W, Wang R, Dai J. 2019. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta[J]. Journal of Cleaner Production, 221: 98−107.

    Google Scholar

    [9] Guo Juan. 2011. Experimental Study on Heavy Metals Adsorption or Release from Sediments of East Dongting Lake[D]. Changsha: Changsha University of Science & Technology, 1−76 (in Chinese with English abstract).

    Google Scholar

    [10] Hakanson L. 1980. An ecological risk index for aquatic pollution control asediment logical apprach[J]. Waster Research, 14(8): 975−986.

    Google Scholar

    [11] Hu R, Zhou X, Wang Y, Fang Y. 2019. Survey of atmospheric heavy metal deposition in Suqian using moss contamination[J]. Human and Ecological Risk Assessment, 26(7): 1−15.

    Google Scholar

    [12] Jiang Zhichao. 2023. Spatial Distribution Characteristics and Migration Simulation of Heavy Metals in Non−ferrous Smelting Site and the Surrounding Soils[D]. Changsha: South University, 1−197 (in Chinese with English abstract).

    Google Scholar

    [13] Jin D R, Lee C H, Kim C K, Moon S D, Huh I A, Kim S, Park M S, Lee J H. 2022. Development and validation of freshwater sediment quality assessment guidelines for trace elements in Korea[J]. Environmental Engineering Research, 27(4): 200643.

    Google Scholar

    [14] Koelmans A A, Luklema L. 1992. Sorption of 1, 2, 3, 4-tetrachlorobenzene and cadmium to sediments and suspended solids in Lake Volkerak/Zoom[J]. Water Research, 26(3): 327−337. doi: 10.1016/0043-1354(92)90030-8

    CrossRef Google Scholar

    [15] Li F, Huang J, Zeng G, Yuan X, Li X, Liang, J, Wang X, Tang X, Bai B. 2013. Spatial risk assessment and sources identification of heavy metals in surface sediments from the dongting lake, middle China[J]. Journal of Geochemical Exploration, 132: 75−83.

    Google Scholar

    [16] Li Fenfang, Li Liqiang, Fu Zhe, Yin Yuying, Liu Yan. 2017. Pollution characteristics and ecological risk of heavy metals in the surface sediments of the inlets of Dongting Lake, China[J]. Geochimica, 46(6): 580−589 (in Chinese with English abstract).

    Google Scholar

    [17] Li He, Wang Shuhang, Che Feifei, Jiang Xia, Niu Yong. 2023. Mate analysis of heavy metal pollution in sediments of Chaohu Lake, Dongting Lake and Poyang Lake[J]. China Environment Science, 43(2): 831−842 (in Chinese with English abstract).

    Google Scholar

    [18] Liu Chunlei, Cao Shengwei, Li Yasong, Zhang Yuanjing, Li Jianfeng, Li Jing, Hong Bingyi. 2023. Distribution and sources of heavy metals in bottom sediments of the Xiamen Bay, Fujian Province and its effects on ecological environment[J]. Geology in China, 52(1): 232−245 (in Chinese with English abstract).

    Google Scholar

    [19] Lv J S. 2019. Multivariate receptor models and robust geostatisties to estimate source apportionment of heavy metals in soils[J]. Environmental Pollution, 244: 72−83. doi: 10.1016/j.envpol.2018.09.147

    CrossRef Google Scholar

    [20] Macdonald D D, Ingersoll C G, Berger T A. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems[J]. Archives of Environmental Contamination and Toxicology, 39(1): 20−31. doi: 10.1007/s002440010075

    CrossRef Google Scholar

    [21] Ozcan H K, Demir G, Nemlioglu S. 2007. Heavy metal concentrations of atmospheric ambient deposition dust in lstanbul−Bosphorus Bridge tollhouses[J]. Journal of Residuals Science & Technology, 4(1): 55−59.

    Google Scholar

    [22] Paatero P. 1997. Least squares formulation of robust non−negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 37(1): 23−35. doi: 10.1016/S0169-7439(96)00044-5

    CrossRef Google Scholar

    [23] Peng B, Tang X, Yu C, Tu X. 2011. Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P. R. China): Implications on sources of trace metals[J]. Environmental Earth Sciences, 64(5): 1455−1473. doi: 10.1007/s12665-011-0969-0

    CrossRef Google Scholar

    [24] Peng Bo, Tang Xiaoyan, Yu Changxun, Tan Changyin, Tu Xianglin, Liu Qian, Yang Kesu, Xiao Min, Xu Jingzhe. 2011. Heavy metal contamination of inlet sediments of the Xiangjiang River and Pb isotopic geochemical implication[J]. Acta Geologica Sinica, 85(2): 282−299 (in Chinese with English abstract).

    Google Scholar

    [25] Qian Y, Zheng M H, Gao L R, Zhang B, Liu W B, Jiao W H, Xiao K. 2005. Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People’s Republic of China[J]. Bulletin of Environmental Contamination and Toxicology, 75(1): 204−210. doi: 10.1007/s00128-005-0739-3

    CrossRef Google Scholar

    [26] Shi Changyi, Liang Meng, Feng Bin. 2016. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 41(2): 234−251 (in Chinese with English abstract).

    Google Scholar

    [27] Sun Kuokai, Hou Qingye, Yang Zhongfang, Yu Tao, Wang Jiaxin. 2023. Distribution characteristics and risk assessment of heavy metals in river sediments of the Pearl River delta[J]. Chinese Journal of Ecology, 44(1): 175−184 (in Chinese with English abstract).

    Google Scholar

    [28] Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844−851. doi: 10.1021/ac50043a017

    CrossRef Google Scholar

    [29] Tong Ting. 2005. Element concentrations in river delta sediments and mineral resources potential in the drainage basin: A case study in the Xiangjiang, Zishui Yuanjiang, and Lishui Rivers basins[J]. Quaternary Sciences, 25(3): 298−305 (in Chinese with English abstract).

    Google Scholar

    [30] Wang Chenglong, Zou Xinqing, Zhao Yifei, Li Baojie. 2016. Source apportionment and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water from Yangtze River, China: Based on PMF Model[J]. Environmental Science, 37(10): 3789−3797 (in Chinese with English abstract).

    Google Scholar

    [31] Wang Fei, Qiu Ling, Shen Yujun, Ge Yihong, Hou Yueqing. 2015. Investigation and analysis of heavy metal contents from livestock feed and manure in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(5): 261−267 (in Chinese with English abstract).

    Google Scholar

    [32] Wang Xin, Qiao Shuqing, Gao Jingjing, Zhu Aimei, Bu Wenrui, Guo Jingtian. 2013. Distribution patterns of heavy metals in surface sediments and environmental quality assessment on the adjacent sea area of Xiaomai Island[J]. Marine Science Bulletin, 32(3): 287−295 (in Chinese with English abstract).

    Google Scholar

    [33] Wu Songze, Wang Dongyan, Li Wenbo, Wang Xingjia, Yan Zhuoran. 2022. Risk zoning of heavy metals in a peri-urban area in the black soil farmland based on agricultural products[J]. Environmental Science, 43(1): 454−462 (in Chinese with English abstract).

    Google Scholar

    [34] Xia Wenjian, Zhang Lifang, Liu Zengbing, Zhang Wenxue, Lan Xianjin, Liu Xiumei, Liu Jia, Liu Guangrong, Li Zuzhang, Wang Ping. 2021. Effects of long−term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil[J]. Environmental Science, 42(5): 2469−2479 (in Chinese with English abstract).

    Google Scholar

    [35] Xie Yinan, Ouyang Meifeng, Huang Daizhong, Ou Fuping, Tian Qi, Zhang Yi, Liu Yan. 2017. Pollution characteristics, sources and ecological risk of heavy metals in sediments from dongting lake and its lake inlets[J]. Environmental Chemistry, 36(10): 2253−2264.

    Google Scholar

    [36] Yalcin M G, Ilhan S. 2008. Multivariate analyses to determine the origin of potentially harmful heavy metals in beach and dune sediments from Kizkalesi Coast (Mersin), Turkey[J]. Bulletin of Environmental Contamination Toxicology, 81(1): 57−68. doi: 10.1007/s00128-008-9461-2

    CrossRef Google Scholar

    [37] Yang Fan, Luo Hongxue, Zhong Yanxia, Wang Youqi, Bai Yiru. 2021. Spatial distribution characteristics, source apportionment, and risk assessment of topsoil PAHs in the core area of the Ningdong energy and chemical industry base[J]. Environmental Science, 42(5): 2490−2501 (in Chinese with English abstract).

    Google Scholar

    [38] Yang S Y, He M J, Zhi Y Y, Chang S X, Gu B J, Liu X M, Xu J M. 2019. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment international, 133: 105239.

    Google Scholar

    [39] Yu G B, Liu Y, Yu S, Wu S C, Leung A O W, Luo X S, Xu B, Li H B, Wong M H. 2011. Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments[J]. Chemosphere, 85(6): 1080−1087. doi: 10.1016/j.chemosphere.2011.07.039

    CrossRef Google Scholar

    [40] Zhang Guanggui. 2015. Pollution characteristics, sources and ecological risk of heavy metals in surface sediments from Dongting Lake[J]. Environmental Monitoring in China, 31(6): 58−64 (in Chinese with English abstract).

    Google Scholar

    [41] Zhang H, Jiang Y, Ding M, Xie Z. 2017. Level, source identification, and risk analysis of heavy metal in surface sediments from river−lake ecosystems in the Poyang Lake, China[J]. Environmental Science and Pollution Research International, 24(27): 21902−21916. doi: 10.1007/s11356-017-9855-y

    CrossRef Google Scholar

    [42] Zhao Liang, Liang Yunping, Chen Qian, Xu Qian, Jing Hongwei. 2020. Spatial distribution, contamination assessment, and sources of heavy metals in the urban green space soils of a city in North China[J]. Environmental Science, 41(12): 5552−5561 (in Chinese with English abstract).

    Google Scholar

    [43] Zhu Yunlong, Jiang Jiahu, Sun Zhandong, Huang Qun, Wang Hongjuan, Zhou Yunkai. 2008. Character and assessment of heavy metals in the sediments from Lake Dongting[J]. Lake Science, 20(4): 477−485 (in Chinese with English abstract).

    Google Scholar

    [44] 陈春霄, 姜霞, 郑丙辉, 赵铮, 战玉柱. 2013. 太湖竺山湾沉积物重金属形态分析及风险评价[J]. 环境科学与技术, 36(6): 177−182. doi: 10.3969/j.issn.1003-6504.2013.06.036

    CrossRef Google Scholar

    [45] 邓旭东. 2023. 锰改性生物炭与铁锰氧化物对重金属污染沉积物修复效果与机理探究[D]. 邯郸: 河北工程大学, 1−76.

    Google Scholar

    [46] 方小红, 彭渤, 宋照亮, 谭长银, 万大娟, 王欣, 颜川云, 谢依婷, 涂湘林. 2019. 洞庭湖“四水”入湖河床沉积物重金属污染特征[J]. 地球化学, 48(4): 378−394.

    Google Scholar

    [47] 方小红, 彭渤, 张坤, 杨梓璇, 肖瑶, 谢伟城, 颜川云, 谢依婷, 谭长银, 万大娟, 王欣. 2018. 沅江入湖河床沉积物重金属污染演化地球化学分析[J]. 环境科学学报, 38(7): 2586−2598.

    Google Scholar

    [48] 方小红, 彭渤, 张坤, 曾等志, 匡晓亮, 吴蓓娟, 谭长银, 王欣. 2016. 沅江下游入湖段河床沉积物重金属污染特征[J]. 地理研究, 35(10): 1887−1898.

    Google Scholar

    [49] 郭娟. 2011. 东洞庭湖沉积物中重金属吸附与释放规律研究[D]. 长沙: 长沙理工大学, 1−76.

    Google Scholar

    [50] 姜智超. 2023. 有色冶炼场地及周边土壤重金属空间分布特征与迁移模拟[D]. 长沙: 中南大学, 1−197.

    Google Scholar

    [51] 李芬芳, 李利强, 符哲, 尹宇莹, 刘妍. 2017. 洞庭湖水系入湖口表层沉积物中重金属的污染特征与生态风险[J]. 地球化学, 46(6): 580−589. doi: 10.3969/j.issn.0379-1726.2017.06.008

    CrossRef Google Scholar

    [52] 李贺, 王书航, 车霏霏, 姜霞, 牛勇. 2023. 巢湖、洞庭湖、鄱阳湖沉积物重金属污染及来源的Meta分析[J]. 中国环境科学, 43(2): 831−842. doi: 10.3969/j.issn.1000-6923.2023.02.036

    CrossRef Google Scholar

    [53] 刘春雷, 曹胜伟, 李亚松, 张媛静, 李剑锋, 李静, 洪炳义. 2023. 福建厦门湾底质沉积物重金属分布特征、来源及其对生态环境的影响[J]. 中国地质, 52(1): 232−245.

    Google Scholar

    [54] 彭渤, 唐晓燕, 余昌训, 谭长银, 涂湘林, 刘茜, 杨克苏, 肖敏, 徐婧喆. 2011. 湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪[J]. 地质学报, 85(2): 282−299.

    Google Scholar

    [55] 史长义, 梁萌, 冯斌. 2016. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 41(2): 234−251.

    Google Scholar

    [56] 孙阔凯, 侯青叶, 杨忠芳, 余涛, 王佳鑫. 2025. 珠江三角洲水系沉积物重金属元素分布特征及风险评价[J]. 生态学杂志, 44(1): 175−184.

    Google Scholar

    [57] 童霆. 2005. 河口三角洲元素含量与矿产资源——以湘资沅澧为例[J]. 第四纪研究, 25(3): 298−305. doi: 10.3321/j.issn:1001-7410.2005.03.005

    CrossRef Google Scholar

    [58] 王成龙, 邹欣庆, 赵一飞, 李宝杰. 2016. 基于PMF模型的长江流域水体中多环芳烃来源解析及生态风险评价[J]. 环境科学, 37(10): 3789−3797.

    Google Scholar

    [59] 王飞, 邱凌, 沈玉君, 葛一洪, 侯月卿. 2015. 华北地区饲料和畜禽粪便中重金属质量分数调查分析[J]. 农业工程学报, 31(5): 261−267. doi: 10.3969/j.issn.1002-6819.2015.05.036

    CrossRef Google Scholar

    [60] 王昕, 乔淑卿, 高晶晶, 朱爱美, 卜文瑞, 郭敬天. 2013. 小麦岛附近海域表层沉积物重金属分布特征及环境评价[J]. 海洋通报, 32(3): 287−295.

    Google Scholar

    [61] 吴松泽, 王冬艳, 李文博, 王兴佳, 闫卓冉. 2022. 农产品视角的城郊黑土地农田重金属风险分区[J]. 环境科学, 43(1): 454−462.

    Google Scholar

    [62] 夏文建, 张丽芳, 刘增兵, 张文学, 蓝贤瑾, 刘秀梅, 刘佳, 刘光荣, 李祖章, 王萍. 2021. 长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J]. 环境科学, 42(5): 2469−2479.

    Google Scholar

    [63] 谢意南, 欧阳美凤, 黄代中, 欧伏平, 田琪, 张屹, 刘妍. 2017. 洞庭湖及其入湖口沉积物中重金属的污染特征、来源与生态风险[J]. 环境化学, 36(10): 2253−2264. doi: 10.7524/j.issn.0254-6108.2017020303

    CrossRef Google Scholar

    [64] 杨帆, 罗红雪, 钟艳霞, 王幼奇, 白一茹. 2021. 宁东能源化工基地核心区表层土壤中多环芳烃的空间分布特征、源解析及风险评价[J]. 环境科学, 42(5): 2490−2501.

    Google Scholar

    [65] 张光贵. 2015. 洞庭湖表层沉积物中重金属污染特征、来源与生态风险[J]. 中国环境监测, 31(6): 58−64. doi: 10.3969/j.issn.1002-6002.2015.06.013

    CrossRef Google Scholar

    [66] 赵靓, 梁云平, 陈倩, 徐谦, 荆红卫. 2020. 中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J]. 环境科学, 41(12): 5552−5561.

    Google Scholar

    [67] 祝云龙, 姜加虎, 孙占东, 黄群, 王红娟, 周云凯. 2008. 洞庭湖沉积物中重金属污染特征与评价[J]. 湖泊科学, 31(4): 477−485. doi: 10.3321/j.issn:1003-5427.2008.04.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(5)

Article Metrics

Article views(12) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint