2025 Vol. 52, No. 4
Article Contents

CUI Xiaodan, REN Jinghua, LIAO Qilin, WANG Yuanyuan, WANG Yimin, ZHOU Qiang, HUANG Biao. 2025. Geological distribution, provenance, and utilization strategies of soil selenium in Tongshan District, Xuzhou City, China[J]. Geology in China, 52(4): 1395-1407. doi: 10.12029/gc20240121002
Citation: CUI Xiaodan, REN Jinghua, LIAO Qilin, WANG Yuanyuan, WANG Yimin, ZHOU Qiang, HUANG Biao. 2025. Geological distribution, provenance, and utilization strategies of soil selenium in Tongshan District, Xuzhou City, China[J]. Geology in China, 52(4): 1395-1407. doi: 10.12029/gc20240121002

Geological distribution, provenance, and utilization strategies of soil selenium in Tongshan District, Xuzhou City, China

    Fund Project: Supported by pilot project for Mineral-land Integration of Jiangsu Province (No.3220220039) and open projects of Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources (No.GTST2021-013).
More Information
  • Author Bio: CUI Xiaodan, female, born in 1990, master, senior engineer, engaged in the development and application research of characteristic and high-quality land resources; E-mail: panzhu24677@163.com
  • Corresponding author: HUANG Biao, male, born in 1962, professor, engaged in soil geochemistry research; E-mail: bhuang@issas.ac.cn.
  • This paper is the result of agricultural geological survey engineering.

    Objective

    Liuxin Town and Maocun Town in Tongshan District, Xuzhou City, have drawn attention due to the elevated levels of soil selenium (Se). We elucidate the distribution of Se-enriched zones and identify the underlying sources.

    Methods

    A comprehensive sampling was conducted, including 3067 surface soil samples, 3 vertical soil profiles, 4 atmospheric dry deposition samples, 8 sets of irrigation water and sediment samples, 4 coal gangue samples, and 1 fly ash sample.

    Results

    The surface soil Se concentrations ranged from 0.08 to 15.80 mg/kg, with an average of 0.57 mg/kg and a coefficient of variation (CV) of 1.14, indicating strong spatial heterogeneity. Significant Se enrichment was observed in the soil surface layer, atmospheric dry deposition, and river sediments, primarily driven by coal-related anthropogenic activities. These included Se volatilization and fly ash dispersal during coal combustion, Se leaching and migration from accumulated fly ash and coal gangue, discharge of mining and washing wastewater, and land reclamation in coal mining subsidence areas, etc. Point-source Se hotspots were linked to open-pit coal gangue stockpiles and coal-fired atmospheric emissions, whereas non-point-source was mainly attributed to hydrological transport. For instance, in the areas of Liuwu-Dazhuang-Maocun-Tanshan village corridor, high-Se fly ash was transported via runoff through river networks, subsequently entering farmland soils via irrigation. A comprehensive evaluation of Se-enriched cultivated land resources revealed that there were 8145.61 hectares of Se-enriched area, of which premium Se-enriched land accounted for 79.39% of the total area, and the estimated total selenium resource in the topsoil was 13.34 tons, indicating significant potential for agricultural development and utilization.

    Conclusions

    The present study provided foundational data to support the exploitation and utilization of Se-enriched soils in the study area. Future efforts should focus on monitoring selenium levels in agricultural products and human dietary intake, while promoting selenium industrial upgrading through optimized land-use planning, technological innovation, policy incentives, brand establishment, financial support, and resource management.

  • 加载中
  • [1] Chen Jinping, Jiang Zepu, Liang Panxia, Liao Qing, Liu Yongxian, Pan Liping, Xing Ying, Zeng Chengcheng. 2019. Research advances in the effects of rainfall on soil selenium migration and transformation[J]. Chinese Journal of Ecology, 38(6): 1909−1915 (in Chinese with English abstract).

    Google Scholar

    [2] Clarke L B. 1993. The fate of trace elements during coal combustion and gasification: an overview[J]. Fuel, 72(6): 731−736. doi: 10.1016/0016-2361(93)90072-A

    CrossRef Google Scholar

    [3] Compilation Committee of Atlas of Endemic Diseases and Environment of the People’ s Republic of China. 1989. Atlas of Endemic Diseases and Environment of the People’ s Republic of China[M]. Beijing: Science Press, 1−93 (in Chinese).

    Google Scholar

    [4] Cui Longpeng, Bai Jianfeng, Shi Yonghong, Yan Shilong, Huang Wenhui, Tang Xiuyi. 2004. Heavy metals in soil contaminated by coal mining activity[J]. Acta Pedologica Sinica, 41(6): 896−904 (in Chinese with English abstract).

    Google Scholar

    [5] Cui Xiaodan, Hua Ming, Huang Shunsheng, Liao Qilin, Xu Weiwei, Ren Jinghua, Huang Biao. 2023. Spatial distribution of surface soil selenium and its influential factors in a typical selenium−enriched area in Jiangsu Province, China[J]. Journal of Agro−Environment Science, 42(11): 2472−2482 (in Chinese with English abstract).

    Google Scholar

    [6] Ding Chenlong, He Jinxian, Cheng Xiaoxue, Huang Cheng, Wu Hongchen. 2022. Geochemical characteristics of Se-Hg-Cd-Pb elements and ecological risk assessment at farmland in Liuxin district of Xuzhou City[J]. Mineral Resources and Geology, 36(5): 1056−1066 (in Chinese with English abstract).

    Google Scholar

    [7] Dong Jihong, Yu Min, Zhao Yindi, Zhang Yu, Toyohisa Fujita. 2012. Research on the distribution and spectral characteristics of heavy metal content in reclaimed soil of mining areas: A case study of Liuxin mining district in Xuzhou City[J]. Journal of China University of Mining & Technology, 41(5): 827−832 (in Chinese with English abstract).

    Google Scholar

    [8] Fordyce F M. 2013. Selenium Deficiency and Toxicity in the Environment[M]. London: Elsevier, 375−416.

    Google Scholar

    [9] Güleç N, Günal B, Erler A. 2001. Assessment of soil and water contamination around an ash-disposal site: A case study from the Seyitömer coal-fired power plant in western Turkey[J]. Environmental Geology, 40(3): 331−344. doi: 10.1007/s002540000228

    CrossRef Google Scholar

    [10] Han Xiao, Zhou Yue, Wu Wenliang, Meng Fanqiao. 2018. Selenium contents of farmland soils and their relationship with main soil properties in Fengcheng, Jiangxi[J]. Journal of Agro-Environment Science, 37(6): 1177−1183 (in Chinese with English abstract).

    Google Scholar

    [11] He B, Liang L N, Jiang G B. 2002. Distributions of arsenic and selenium in selected Chinese coal mines[J]. Science of the Total Environment, 296(1/3): 19−26. doi: 10.1016/S0048-9697(01)01136-6

    CrossRef Google Scholar

    [12] Hou Qingye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Parameters in China[M]. Bejing: Geological Publishing House (in Chinese).

    Google Scholar

    [13] Hu Zhenqi, Qi Jiazhong, Si Jitao. 2003. Contamination and assessment of heavy metals in fly ash reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 19(2): 214−218 (in Chinese with English abstract).

    Google Scholar

    [14] Hua Ming, Huang Shunsheng, Liao Qilin, Feng Jinshun, Jin Yang, Wu Xinmin, Zhu Baiwan, Zhang Xiangyun. 2009. Assessment of selenium environmental pollution in agricultural soil in vicinity of coal fly ash reservoir[J]. Soils, 41(6): 880−885 (in Chinese with English abstract).

    Google Scholar

    [15] Li Minghui, Zhang Xiaorong, Du Guoqiang, Tao Chunjun, Wu Zheng. 2023. Geochemical characteristics and biological effect of soil selenium in the Xianyu area, Shitai County of Anhui Province[J]. East China Geology, 44(2): 186−196 (in Chinese with English abstract).

    Google Scholar

    [16] Li Qiquan, Yue Tianxiang, Fan Zemeng, Du Zhengping, Chen Chuanfa, Lu Yimin. 2010. Spatial simulation of topsoil TN at the national scale in China[J]. Geographical Research, 29(11): 1981−1992 (in Chinese with English abstract).

    Google Scholar

    [17] Liang Lina, He Bin, Jiang Guibin. 2001. Determination of total selenium in coals by hydride generation atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 20(1): 31−33 (in Chinese with English abstract).

    Google Scholar

    [18] Liao Qilin, Cui Xiaodan, Huang Shunsheng, Huangbiao, Ren Jinghua, Gu Xueyuan, Fan Jian, Xu Hongting. 2020. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province[J]. Geology in China, 47(6): 1813−1825 (in Chinese with English abstract).

    Google Scholar

    [19] Liao Qilin, Cui Xiaodan, Ren Jinghua, He Xinxing, Fan Jian, Li Wenbo, Wang Ziyi, Zhou Qiang. 2019. Selenium distribution in soil and utilization potential of Se-rich land resources in Jiangsu Province[J]. Journal of Geology, 43(4): 639−651 (in Chinese with English abstract).

    Google Scholar

    [20] Liao Qilin, Hua Ming, Feng Jinshun, Jin Yang, Wu Xinmin, Yan Chaoyang, Zhu Baiwan. 2007. Natural Se-rich tea in local Se-rich soils in southern Jiangsu[J]. Geology in China, 34(2): 347−353 (in Chinese with English abstract).

    Google Scholar

    [21] Liu Peitao, Cui Longpeng, Shen Weixing, Bai Jianfeng. 2008. Determination of environmental trace elements in soils surrounding coal fly ash landfill pond and risk[J]. Journal of Agro-Environment Science, 27(1): 207−211 (in Chinese with English abstract).

    Google Scholar

    [22] Lu Hua, Min Wang, Jiang Su, Lu Yi, Gou Fugang, Cai Tianlu. 2023. Analysis of impact of coal gangue leaching on surrounding water in Pangzhuang coal mine[J]. The Adminstration and Techinique of Environmental Monitoring, 35(2): 64−67 (in Chinese with English abstract).

    Google Scholar

    [23] Morawska L, Zhang J F. 2002. Combustion sources of particles. 1. Health relevance and source signatures[J]. Chemosphere, 49(9): 1045−1058. doi: 10.1016/S0045-6535(02)00241-2

    CrossRef Google Scholar

    [24] Rayman M P. 2008. Food-chain selenium and human health: emphasis on intake[J]. British Journal of Nutrition, 100(2): 254−268. doi: 10.1017/S0007114508939830

    CrossRef Google Scholar

    [25] Spallholz J E. 1994. On the nature of selenium toxicity and carcinostatic activity[J]. Free Radical Biology and Medicine, 17(1): 45−64. doi: 10.1016/0891-5849(94)90007-8

    CrossRef Google Scholar

    [26] Tu Chunlin, Yang Kun, He Chengzhong, Zhang Liankai, Li Bo, Wei Zong, Jiang Xin, Yang Minghua. 2023. Sources and risk assessment of heavy metals in sediments of small watersheds in typical coal mining areas of Eastern Yunnan[J]. Geology in China, 50(1): 206−221 (in Chinese with English abstract).

    Google Scholar

    [27] Wang Lei. 2012. Selenium in Chinese Coal: Distribution, Mode of Occurrence and Environmental Geochemistry[D]. Hefei: University of Science and Technology of China, 1−143 (in Chinese with English abstract).

    Google Scholar

    [28] Wang S S, Liang D L, Wang D, Wei W, Fu D D, Lin Z Q. 2012. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L. ) under field conditions in Shaanxi Province, China[J]. Science of the Total Environment, 427/428: 159−164.

    Google Scholar

    [29] Wei Hao, Wei Xiaofeng, Wang Jingbin, Zhu Sujia, Yang Fan, Liang Zhao, Tian Xiaoxia, Li Wei, Jia Wenru, Yu Kaining. 2024. Geochemical characteristics, geological genesis and ecological environment evaluation of soil selenium in Chengde, Hebei Province[J]. Geology in China, 51(4): 1290−1303 (in Chinese with English abstract).

    Google Scholar

    [30] Wen Mingzhong, Xu Wendong. 2010. Mobility and release of hazardous trace elements in coal-fired power plant[J]. Journal of China Coal Society, 35(9): 1518−1523 (in Chinese with English abstract).

    Google Scholar

    [31] World Health Organization. 2004. Vitamin and Mineral Requirements in Human Nutrition, 2nd Edition[M]. Geneva, Switzerland: World Health Organization, 194−216.

    Google Scholar

    [32] Xu K K, Sun H W, Xie W, He F Q, Liu X Y, Sun K, He S F, Wu X Y, Gong P H, Machumu G. 2025. Characteristics of B, Zn and Se in stream sediments of Tanzania and their agricultural applications[J]. China Geology, DOI: 10.31035/cg2022049.

    Google Scholar

    [33] Zhang J Y, Ren D Y, Zhu Y M, Chou C L, Zeng R S, Zheng B S. 2004. Mineral matter and potentially hazardous trace elements in coals from Qianxi fault depression Area in southwestern Guizhou, China[J]. International Journal of Coal Geology, 57(1): 49−61. doi: 10.1016/j.coal.2003.07.001

    CrossRef Google Scholar

    [34] Zhang Junying, Ren Deyi, Xu Dewei, Zhao Fenghua. 1999. Advances in the studies of selenium in coal[J]. Coal Geology & Exploration, 27(2): 14−18 (in Chinese with English abstract).

    Google Scholar

    [35] Zhang Xiuzhi, Wei Jing, Ge Xiuzhen, Wang Zhijun, Xie Weiming. 2012. Geochemical distribution and genesis of Se and associated elements in soil of Kailuan coal field[J]. Research of Environmental Sciences, 25(10): 1140−1147 (in Chinese with English abstract).

    Google Scholar

    [36] Zhang Ying, Liu Guijian, Zheng Liugen, Chou Chenlin, Qi Cuicui. 2007. Environmental geochemistry of selenium in Chinese coal[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 26(4): 389−398 (in Chinese with English abstract).

    Google Scholar

    [37] Zhao Yan, Luan Wenlou, Guo Haiquan, Cai Kui, Ma Zhongshe, Dun Yanran. 2021. Characteristics, causes and ecological environment health evaluation of Selenium-enriched soil in Gaocheng District of Shijiazhuang City, Hebei Province[J]. Geology in China, 48(3): 764−776 (in Chinese with English abstract).

    Google Scholar

    [38] Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil-crop system in different tillage types and ecological health risk assessment[J]. Geology in China, 48(3): 708−720 (in Chinese with English abstract).

    Google Scholar

    [39] Zhu J M, Zheng B S. 2001. Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei Province, China[J]. Applied Geochemistry, 16(11/12): 1333−1344.

    Google Scholar

    [40] 陈锦平, 江泽普, 梁潘霞, 廖青, 刘永贤, 潘丽萍, 邢颖, 曾成城. 2019. 降雨对土壤硒迁移转化的影响研究进展[J]. 生态学杂志, 38(6): 1909−1915.

    Google Scholar

    [41] 崔龙鹏, 白建峰, 史永红, 颜事龙, 黄文辉, 唐修义. 2004. 采矿活动对煤矿区土壤中重金属污染研究[J]. 土壤学报, 41(6): 896−904. doi: 10.3321/j.issn:0564-3929.2004.06.009

    CrossRef Google Scholar

    [42] 崔晓丹, 华明, 黄顺生, 廖启林, 许伟伟, 任静华, 黄标. 2023. 江苏典型富硒区表层土壤硒空间分布及影响因素分析[J]. 农业环境科学学报, 42(11): 2472−2482. doi: 10.11654/jaes.2023-0120

    CrossRef Google Scholar

    [43] 丁晨龙, 何金先, 程晓雪, 黄成, 吴泓辰. 2022. 徐州柳新地区耕地土壤Se-Hg-Cd-Pb元素地球化学特征与生态风险评估[J]. 矿产与地质, 36(5): 1056−1066.

    Google Scholar

    [44] 董霁红, 于敏, 赵银娣, 张珏, Toyohisa Fujita. 2012. 矿区复垦土壤重金属含量分布与光谱特征研究——以徐州市柳新矿区为例[J]. 中国矿业大学学报, 41(5): 827−832.

    Google Scholar

    [45] 韩笑, 周越, 吴文良, 孟凡乔. 2018. 富硒土壤硒含量及其与土壤理化性状的关系——以江西丰城为例[J]. 农业环境科学学报, 37(6): 1177−1183. doi: 10.11654/jaes.2017-1375

    CrossRef Google Scholar

    [46] 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社.

    Google Scholar

    [47] 胡振琪, 戚家忠, 司继涛. 2003. 不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J]. 农业工程学报, 19(2): 214−218.

    Google Scholar

    [48] 华明, 黄顺生, 廖启林, 冯金顺, 金洋, 吴新民, 朱佰万, 张祥云. 2009. 粉煤灰堆场附近农田土壤硒环境污染评价[J]. 土壤, 41(6): 880−885. doi: 10.3321/j.issn:0253-9829.2009.06.005

    CrossRef Google Scholar

    [49] 李明辉, 张笑蓉, 杜国强, 陶春军, 吴正. 2023. 安徽石台仙寓地区土壤硒地球化学特征及生物效应[J]. 华东地质, 44(2): 186−196.

    Google Scholar

    [50] 李启权, 岳天祥, 范泽孟, 杜正平, 陈传法, 卢毅敏. 2010. 中国表层土壤全氮的空间模拟分析[J]. 地理研究, 29(11): 1981−1992.

    Google Scholar

    [51] 梁立娜, 何滨, 江桂斌. 2001. 氢化物发生−原子荧光光谱法测定煤样中的硒[J]. 岩矿测试, 20(1): 31−33.

    Google Scholar

    [52] 廖启林, 崔晓丹, 黄顺生, 黄标, 任静华, 顾雪元, 范健, 徐宏婷. 2020. 江苏富硒土壤元素地球化学特征及主要来源[J]. 中国地质, 47(6): 1813−1825. doi: 10.12029/gc20200617

    CrossRef Google Scholar

    [53] 廖启林, 崔晓丹, 任静华, 贺新星, 范健, 李文博, 汪子意, 周强. 2019. 江苏土壤硒分布特征及富硒土地资源开发利用潜力[J]. 地质学刊, 43(4): 639−651. doi: 10.3969/j.issn.1674-3636.2019.04.017

    CrossRef Google Scholar

    [54] 廖启林, 华明, 冯金顺, 金洋, 吴新民, 颜朝阳, 朱伯万. 2007. 苏南局部富硒土壤及其天然富硒茶叶初步研究[J]. 中国地质, 34(2): 347−353. doi: 10.3969/j.issn.1000-3657.2007.02.018

    CrossRef Google Scholar

    [55] 刘培陶, 崔龙鹏, 沈卫星, 白建峰. 2008. 粉煤灰堆放场土壤环境微量元素分析与风险评价[J]. 农业环境科学学报, 27(1): 207−211.

    Google Scholar

    [56] 陆华, 闵望, 姜素, 卢毅, 苟富刚, 蔡田露. 2023. 庞庄煤矿煤矸石淋溶液对周边水体影响分析[J]. 环境监测管理与技术, 35(2): 64−67.

    Google Scholar

    [57] 涂春霖, 杨坤, 和成忠, 张连凯, 李博, 魏总, 姜昕, 杨明花. 2023. 滇东典型煤矿区小流域沉积物重金属来源及风险评价[J]. 中国地质, 50(1): 206−221.

    Google Scholar

    [58] 王蕾. 2012. 中国煤中硒的分布、赋存状态和环境地球化学研究[D]. 合肥: 中国科学技术大学, 1−143.

    Google Scholar

    [59] 魏浩, 卫晓锋, 王京彬, 朱苏加, 杨帆, 梁钊, 田晓霞, 李炜, 贾文茹, 于开宁. 2024. 河北承德地区土壤硒元素地球化学特征、地质成因及其生态环境评价[J]. 中国地质, 51(4): 1290−1303.

    Google Scholar

    [60] 闻明忠, 徐文东. 2010. 燃煤电厂中有害微量元素迁移释放[J]. 煤炭学报, 35(9): 1518−1523.

    Google Scholar

    [61] 张军营, 任德贻, 许德伟, 赵峰华. 1999. 煤中硒的研究现状[J]. 煤田地质与勘探, 27(2): 14−18.

    Google Scholar

    [62] 张秀芝, 魏静, 葛秀珍, 王志军, 谢伟明. 2012. 开滦矿区煤伴生元素土壤地球化学分布模式及成因[J]. 环境科学研究, 25(10): 1140−1147.

    Google Scholar

    [63] 张莹, 刘桂建, 郑刘根, Chou Chenlin, 齐翠翠. 2007. 中国煤中硒的环境地球化学[J]. 矿物岩石地球化学通报, 26(4): 389−398.

    Google Scholar

    [64] 赵燕, 栾文楼, 郭海全, 蔡奎, 马忠社, 敦妍冉. 2021. 河北省石家庄市藁城区富硒土壤特征、成因与生态环境健康评价[J]. 中国地质, 48(3): 764−776.

    Google Scholar

    [65] 中华人民共和国地方病与环境图集编纂委员会. 1989. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1−93.

    Google Scholar

    [66] 朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤−农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708−720.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(13) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint