2025 Vol. 52, No. 4
Article Contents

LI Xiaodan, WANG Chunlian, HUANG Keke, SHEN Lijian, YOU Chao, JIANG Huihui, ZHAO Yuxin. 2025. Distribution, origin, industrial application status and prospecting prospect of gypsum in China[J]. Geology in China, 52(4): 1247-1267. doi: 10.12029/gc20240404004
Citation: LI Xiaodan, WANG Chunlian, HUANG Keke, SHEN Lijian, YOU Chao, JIANG Huihui, ZHAO Yuxin. 2025. Distribution, origin, industrial application status and prospecting prospect of gypsum in China[J]. Geology in China, 52(4): 1247-1267. doi: 10.12029/gc20240404004

Distribution, origin, industrial application status and prospecting prospect of gypsum in China

    Fund Project: Supported by the National Science Foundation of China (No.U20A2092, No.42002106, No.41907262, No.41502089), Central Public−interest Scientific Institution Basal Research Fund (No.KK2005, No.KK2322) and the project of China Geological Survey (No.DD20230056).
More Information
  • Author Bio: LI Xiaodan, female, born in 1999, master candidate, mainly engaged in the study of sedimentary; E-mail: 1394421890@qq.com
  • Corresponding author: WANG Chunlian, male, born in 1983, researcher, mainly engaged in sedimentology and mineral deposit research; E-mail: wangchunlian321@163.com
  • This paper is the result of mineral exploration engineering.

    Objective

    Gypsum is one of the dominant nonmetallic minerals with large reserves and wide distribution in China, and its application is very wide. It is significant to summarize and analyse the distribution, source, application and prospect of Chinese gypsum for sustainable use.

    Methods

    Starting from the types, temporal and spatial distribution and application of gypsum deposits, this paper summarizes the previous research results and collects relevant data, systematically combs the resource reserves and mine output of gypsum in China, and provides the background knowledge for searching for new gypsum deposits.

    Results

    In 2022, the retained reserves of gypsum resources in China will be 1.758 billion tons, with the largest reserves in Anhui Province. The deposit types are sedimentary, epigenetic and hydrothermal gypsum and anhydrite deposits, among which sedimentary deposits are the main ones. China's gypsum resources are mainly used in building materials, industry, agriculture and medical industries. The regeneration and utilization of gypsum can help alleviate the tense situation of gypsum resources in our country. However, the problems caused by the use of industrial by−product gypsum can not be ignored, so we should also pay attention to the development, utilization and protection of natural gypsum.

    Conclusions

    The formation of gypsum deposits is mainly controlled by climate, provenance and structure. Closed and semi-closed basins, arid and semi-arid climatic conditions and sufficient materials promote the formation of gypsum deposits. Qilian metallogenic belt, Tianshan−Beishan metallogenic belt, West Kunlun Altun metallogenic belt and middle and lower Yangtze metallogenic belt are important metallogenic prospect areas of gypsum in China.

  • 加载中
  • [1] Bai Shouchang. 1984. Triassic gypsum prospecting direction in the middle and lower reaches of Yangtze River[J]. Non–metallic Mines, (4): 1−4 (in Chinese).

    Google Scholar

    [2] Bain R J. 1990. Diagenetic, nonevaporative origin for gypsum[J]. Geology, 18(5): 447−450. doi: 10.1130/0091-7613(1990)018<0447:DNOFG>2.3.CO;2

    CrossRef Google Scholar

    [3] Charola A E, Pühringer J, Steiger M. 2007. Gypsum: A review of its role in the deterioration of building materials[J]. Environmental Geology, 52: 339−352. doi: 10.1007/s00254-006-0566-9

    CrossRef Google Scholar

    [4] Chen Guofang, Xie Feiyue. 2007. Discussion on genesis of gypsum deposit in Xishan, Taiyuan[J]. Taiyuan Science and Technology, (10): 77−78 (in Chinese).

    Google Scholar

    [5] Deng Yangyang, Chen Congxin, Xia Kaizong, Zheng Xianwei. 2019. Cause analysis of surface collapse in western Chengchao Iron Mine[J]. Journal of Rock and Soil Mechanics, 40(2): 743−758 (in Chinese with English abstract).

    Google Scholar

    [6] Dong Bin. 1990. Brief analysis of hydrogeological conditions and their effects in the Wutong gypsum mining area, Shimen County[J]. Hunan Geology, 9(2): 62−67 (in Chinese with English abstract).

    Google Scholar

    [7] Duan Qingkui, Dong Wenliang, Wang Huiqin, Wang Liming. 2001. Research and development of α–type ultra–high strength gypsum (K–type gypsum)[J]. Non–metallic Mines, (3): 26−27 (in Chinese).

    Google Scholar

    [8] Fang Ming, Yang Zaixi, Xu Jialin, Leng Fangrui. 2022. Geological characteristics of gypsum ore in Yingcheng Paste mining area, Hubei Province[J]. Chinese Science and Technology Journal Database (Full–text Edition) Engineering and Technology, (8): 65−68 (in Chinese with English abstract).

    Google Scholar

    [9] Fantilli A P, Jóźwiak–Niedźwiedzka D, Denis P. 2021. Bio–fibres as a reinforcement of gypsum composites[J]. Materials, 14(17): 4830. doi: 10.3390/ma14174830

    CrossRef Google Scholar

    [10] Gao K, Wang F, Zhang M, Zhang J, Jiao D, Xu Q, Guan J, Zhang X, Liu Z, Zhang Z. 2021. High–strength and multi–functional gypsum with unidirectionally porous architecture mimicking wood[J]. Chemical Engineering Journal Advances, 7: 100114. doi: 10.1016/j.ceja.2021.100114

    CrossRef Google Scholar

    [11] Gong Daxing. 2016. The Triassic Salt–forming Environment, Potash–forming Conditions and Genetic Mechanism in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 1–152 (in Chinese with English abstract).

    Google Scholar

    [12] Guan Shaozeng, Jiang Zonglong, Wei Dongyan, Yang Liping, Xuan Zhiqiang, Chen Yancheng, Cui Tianxiu, Liu Zhenmin, Deng Xiaolin, Yin Xuemin. 1996. Plate tectonics and salt minerals in China[J]. Chemical Mineral Geology, 18(2): 2−10 (in Chinese with English abstract).

    Google Scholar

    [13] Guo Dajiang, Yuan Yunfa, Hu Haoran, Zhang Bing. 2010. Properties of desulfurized gypsum and its application in Portland cement[J]. Bulletin of Silicate, 29(2): 357−360 (in Chinese with English abstract).

    Google Scholar

    [14] Hao Rui'e, Xing Xiangfen, Peng Mingzhang, Zhu Limin, Du Xiaoliang, Liu Haiyan, Li Xiaojing, Wang Meng. 2023. Analysis of engineering geological conditions in Dawenkou Gypsum mine, Shandong Province[J]. Coal Geology of China, 35(8): 17−25 (in Chinese with English abstract).

    Google Scholar

    [15] Hua Zhexin. 2018. Distribution of gypsum deposits and analysis of typical deposits in China[J]. Natural Science (Abstract Edition), (2): 222−223 (in Chinese).

    Google Scholar

    [16] Huang Bin. 2005. Experience of Professor Xu Fuye in treating exogenous hyperthermia with gypsum[J]. Chinese Journal of Emergency Medicine, (9): 868 (in Chinese).

    Google Scholar

    [17] Jia R, Wang Q, Feng P. 2021. A comprehensive overview of fibre–reinforced gypsum–based composites (FRGCs) in the construction field[J]. Composites Part B: Engineering, 205: 108540. doi: 10.1016/j.compositesb.2020.108540

    CrossRef Google Scholar

    [18] Jiang Chunzhi, Dong Fengzhi. 2016. Comprehensive utilization and research progress of industrial by–product gypsum[J]. Shandong Chemical Industry, 45(9): 42−44,47 (in Chinese with English abstract).

    Google Scholar

    [19] Lai Ruijuan. 2017. Geochemical Characteristics and Development Mechanism of Gypsum (Rock) Minerals in the Jinding Baicaofao Strontium Deposit, Lanping, Northwest Yunnan[D]. Kunming: Kunming University of Science and Technology, 1–109 (in Chinese with English abstract).

    Google Scholar

    [20] Li Ailing. 2004 Research progress on the development and utilization of Run–gypsum[J]. Mineral Resources and Geology, (5): 498–501 (in Chinese with English abstract).

    Google Scholar

    [21] Li Qilin, Zhang Xiaolin, Li Zuowu, Zhang Lei. 2022. Geological characteristics and genetic analysis of Kuerchu gypsum mine in Xinjiang[J]. China Non–metallic Mineral Industry Guide, (4): 53−57 (in Chinese with English abstract).

    Google Scholar

    [22] Li Wei, Gui Qing, Zhu Qiaoqiao, Zheng Xianwei, Zhang Zhiyuan, Han Yingxiao. 2016. Multiple episodes of mineralization in the Chengchao iron deposit, southeastern Hubei: Evidence from magnetite[J]. Acta Petrologica Sinica, 32(2): 471−492 (in Chinese with English abstract).

    Google Scholar

    [23] Li Yichen. 2019. Development status and trend of gypsum industry[J]. Sulfuric Acid Industry, (11): 1−7,13 (in Chinese with English abstract).

    Google Scholar

    [24] Li Z X, Wang X, Yan W L, Ding L N, Liu J X, Wu Z S, Huang H. 2023. Physical and mechanical properties of gypsum–based composites reinforced with basalt, glass, and PVA fibers[J]. Journal of Building Engineering, 64: 105640. doi: 10.1016/j.jobe.2022.105640

    CrossRef Google Scholar

    [25] Liu Chenglin, Xuan Zhiqiang, Cao Yangtong, Wang Licheng, Wang Chunlian, Zhao Yanjun, Zhang Hua. 2015. Exploration for potassium in the Chinese landmass: potassic formation and model in the East Tethys Domain of China[J]. Chemical and Mineral Geology, (4): 193−197 (in Chinese with English abstract).

    Google Scholar

    [26] Liu H, Tan X, Li Y, Cao J, Luo B. 2018. Occurrence and conceptual sedimentary model of Cambrian gypsum–bearing evaporites in the Sichuan Basin, SW China[J]. Geoscience Frontiers, 9: 1179−1191. doi: 10.1016/j.gsf.2017.06.006

    CrossRef Google Scholar

    [27] Liu S, Liu W, Jiao F, Qin W Q, Yang C R. 2021. Production and resource utilization of flue gas desulfurized gypsum in China: A review[J]. Environmental Pollution, (5): 117799.

    Google Scholar

    [28] Liu Weihong, Li Xiangxi, Zhang Ying. 1993. An approach to the controlling factors of the carboniferous gypsum deposits in central Hunan[J]. Sedimentary Geology and Tethyan Geology, 13(4): 12−18 (in Chinese with English abstract).

    Google Scholar

    [29] Liu Xiao, Liu Chaoyang, Fan Tianjia, Zhang Xiuyun, Weng Hongbo, Zhang Huan. 2020. Geological characteristics and genesis of the Yuanjiazhuang gypsum deposit, Henan Province[J]. China Industrial Minerals Journal, (3): 37−41 (in Chinese with English abstract).

    Google Scholar

    [30] Lu Zhicheng. 1983. Genetic types of gypsum deposits in China[J]. Geological Review, 29(5): 457 (in Chinese).

    Google Scholar

    [31] Luo Dayou. 1985. Cambrian gypsum deposit in Liaoji Marine Deposit[J]. Mineral Deposit Geology, 4(3): 85−94 (in Chinese with English abstract).

    Google Scholar

    [32] Luo Shuwen, Li Po, Chen Weihai, Wei Yuelong, Ouyang Zhihong, Deng Yadong, Qin Xingming. 2019. Phylogenetic mechanism and evolution of Shuanghe Karst Cave in Suiyang, Guizhou[J]. Journal of Chongqing Normal University (Natural Science Edition), 36(1): 111−118,144 (in Chinese with English abstract).

    Google Scholar

    [33] Lü Xianhe, Gao Tingchen, Chen Junkui, Chen Ruibao, Cheng Xingguo, Hu Xiaochuan, Cai Zhongming. 2011. Geological characteristics of gypsum deposit and its indicative significance for sulfide deposit[J]. Chinese Journal of Geology, 35(1): 11−14 (in Chinese with English abstract).

    Google Scholar

    [34] Maiti S, Jain N, Malik J, Baliyan A. 2023. Light weight plasters containing vermiculite and FGD gypsum for sustainable and energy efficient building construction materials[J]. Journal of The Institution of Engineers (India): Series A, 104(3): 603−614. doi: 10.1007/s40030-023-00736-7

    CrossRef Google Scholar

    [35] Ma Zhiqiang. 2000. Development and utilization of gypsum resources in Ningxia[J]. China Non–Metallic Mineral Industry Guide, (6): 31−34 (in Chinese with English abstract).

    Google Scholar

    [36] Mesić M, Brezinščak L, Zgorelec Ž, Perčin A, Šestak I, Bilandžija D, Trdenić M, Lisac H. 2016. The application of phosphogypsum in agriculture[J]. Agriculturae Conspectus Scientificus, 81(1): 7−13.

    Google Scholar

    [37] Pedreño–Rojas M A, Fořt J, Černý R. 2020. Life cycle assessment of natural and recycled gypsum production in the Spanish context[J]. Journal of Cleaner Production, 253: 120056. doi: 10.1016/j.jclepro.2020.120056

    CrossRef Google Scholar

    [38] Pei Yongwan, Lu Jie. 2007. Geological characteristics of Tokioling gypsum deposit in Liaoyang City[J]. China Non–metallic Mineral Industry Guide, (4): 59−62 (in Chinese with English abstract).

    Google Scholar

    [39] Qin Shouping, Gao Mingbo, Zhu Guoqing, Chen Zhiqiang, Qin Wenjing. 2008. Geological characteristics and genetic analysis of Wujiaxinzhuang gypsum mine in Wenkou Basin, Taian[J]. Shandong Land and Resources, 24(4): 29−32 (in Chinese with English abstract).

    Google Scholar

    [40] Qin Zhi’an, Li Junjian. 2005. Geological characteristics of the Non-metal ore deposits in Circum–Bohai–Sea Region[J]. Geological Survey and Research, 28(4): 265−271 (in Chinese with English abstract).

    Google Scholar

    [41] Schmalz R F. 1969. Deep–water evaporite deposition: A genetic model[J]. AAPG Bulletin, 53(4): 798−823.

    Google Scholar

    [42] Shi Houli, Zhang Peng, Jiang Yunyun 2016. Geochemical characteristics of evaporite in Dawenkou Basin, Shandong Province and its indication for potassium discovery[J]. Shandong Land and Resources, 32(6): 41–45 (in Chinese with English abstract).

    Google Scholar

    [43] Song Chenzhen. 2009. Characteristics of carbonate rocks and gypsum prospecting in Tonkin Ling Gypsum deposit, Liaoning Province[J]. Liaoning Building Materials, (5): 13−14 (in Chinese).

    Google Scholar

    [44] Song Xugen, Liu Xiumin, Chen Congxin, Zheng Xianwei, Xia Kaizong, Yang Kuoyu, Chen Shan. 2018. Preliminary study on surface subsidence mechanism and deformation law of goaf in western mining area of Chengchao Iron Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 37(A2): 4262−4273 (in Chinese with English abstract).

    Google Scholar

    [45] Sultana R, Rashedi A, Khanam T, Jeong B, Hosseinzadeh–Bandbafha H, Hussain M. 2022. Life cycle environmental sustainability and energy assessment of timber wall construction: A comprehensive overview[J]. Sustainability, 14(7): 4161. doi: 10.3390/su14074161

    CrossRef Google Scholar

    [46] Tao Weiping. 1983. Triassic gypsum deposit in Marine deposits in China[J]. Acta Geologica Sinica, (2): 172−183 (in Chinese with English abstract).

    Google Scholar

    [47] Tao J, Wu L, Liu X, Zhang H, Xu Y, Gu W, Li Y. 2019. Effects of continuous application flue–gas desulfurization gypsum and brackish ice on soil chemical properties and maize growth in a saline soil in coastal area of China[J]. Soil Science and Plant Nutrition, 65(1): 82−89. doi: 10.1080/00380768.2018.1531355

    CrossRef Google Scholar

    [48] Wang B, Pan Z, Du Z, Cheng H, Cheng F. 2019. Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction[J]. Journal of Hazardous Materials, 369: 236−243. doi: 10.1016/j.jhazmat.2019.02.002

    CrossRef Google Scholar

    [49] Wang Wenkai, Xu Guoming, Song Xiaobo, Long Ke, Chen Ying. 2017. Origin of gypsum salt and its oil–gas significance in Minikoupo Formation, Sichuan Basin[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 44(6): 697−707 (in Chinese with English abstract).

    Google Scholar

    [50] Wang Y, Wang Z, Liang F, Liang F, Jing, X, Feng W. 2021. Application of flue gas desulfurization gypsum improves multiple functions of saline–sodic soils across China[J]. Chemosphere, 277: 130345. doi: 10.1016/j.chemosphere.2021.130345

    CrossRef Google Scholar

    [51] Wang Yanting, Liu Yankui, Wang Dong, Yu Chao. 2014. Geological characteristics and genetic analysis of Wangzhuang Section of Dawenkou Gypsum mine, Tai 'an[J]. China Non–metallic Mineral Industry Guide, (5): 42−44,62 (in Chinese with English abstract).

    Google Scholar

    [52] Wang Ziju, Li Qiang, Li Zongcheng. 2003. Mineral product demand prediction and development suggestions for gypsum mineral resource potential evaluation in Dawenkou Basin, Tai'an City, Shandong Province[J]. Shandong Land and Resources, (5): 23−25 (in Chinese with English abstract).

    Google Scholar

    [53] Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth–Science Reviews, 98: 217−268.

    Google Scholar

    [54] Warren J K. 2016. Evaporites: A Geological Compendium[M]. Switzerland: Springer.

    Google Scholar

    [55] Wen Huaguo, Huo Fei, Guo Pei, Ning Meng, Liang Jintong, Zhong Yijiang, Su Zhongtang, Xu Wenli, Liu Sibing, Wen Longbin, Jiang Huachuan. 2021. Research progress and prospect of dolomite–evaporite symbiotic system[J]. Journal of Sedimentology, 39(6): 1321−1343 (in Chinese with English abstract).

    Google Scholar

    [56] Wu Yun. 2019. Geological Characteristics, Genesis and Metallogenic Prediction of the Gypsum Deposits in Liaoning Province[D]. Changchun: Jilin University, 1–105 (in Chinese with English abstract).

    Google Scholar

    [57] Xiao J, Lu T, Zhuang Y, Jin H. 2022. A novel process to recover gypsum from phosphogypsum[J]. Materials, 15(5): 1944. doi: 10.3390/ma15051944

    CrossRef Google Scholar

    [58] Xie F Q, Wu Q H, Wang L D, Shi Z X, Zhang C, Liu B, Wang C, Shu Z X, Di H. 2019. Passive continental margin basins and the controls on the formation of evaporites: A case study of the Gulf of Mexico Basin[J]. Carbonates & Evaporites, 34(2): 405−418.

    Google Scholar

    [59] Xie F Q, Sun Y H, Wu J Z, Jia W J. 2021. Nature and formation of evaporites in the passive continental margin period of the Sichuan Basin, China: a review[J]. Arabian Journal of Geosciences, 14(14): 1−13.

    Google Scholar

    [60] Xie Lili, Meng Fanwei, Zhuo Qigong, Zhang Guoquan. 2023. Geochemical characteristics and genesis of lithic salt in Dawenkou Basin, Shandong Province[J]. Salt Lake Research, 31(3): 59−68 (in Chinese with English abstract).

    Google Scholar

    [61] Xu Xingguo, Xiong Changquan. 1987. Preliminary analysis on preservation and hydration conditions of Lower Middle Triassic gypsum deposit in eastern Sichuan[J]. Building Materials Geology, (2): 20−24 (in Chinese).

    Google Scholar

    [62] Xue Ping. 1985. Study on some metallogenic regularity of Middle Ordovician gypsum deposit in North China[J]. China Non–metallic Mineral Industry Guide, (4): 26−31,16 (in Chinese).

    Google Scholar

    [63] Xue Wu. 1986. Preliminary study on the spatiotemporal distribution and metallogenic characteristics of gypsum minerals in China[J]. China Non–metallic Mineral Industry Guide, (4): 31−35 (in Chinese).

    Google Scholar

    [64] Yang B, Dong Y, Wang B N, Yang M M, Yang C J. 2019. A mild alcohol–salt route to synthesize α–hemihydrate gypsum microrods from flue gas desulfurization gypsum in large scale[J]. Materials Research Express, 6(4): 045507. doi: 10.1088/2053-1591/aafc0e

    CrossRef Google Scholar

    [65] Yang Hui. 2022. Functions and research progress of common pharmaceutical nonmetallic minerals[J]. Chinese Non–metallic Mineral Industry Guide, (4): 1−3,7 (in Chinese).

    Google Scholar

    [66] Yang Zaiyin. 2021. Utilization status of industrial by–product gypsum in China and prospects for the 14th Five–Year Plan[J]. Sulfuric Acid Industry, (7): 1−4,23 (in Chinese).

    Google Scholar

    [67] Yin T T, Li S J. 2022. Application of sulfur isotopes for analyzing the sedimentary environment of evaporite in low–altitude intermountain basins: A case study on the Kumishi basin, Northwest China[J]. Carbonates & Evaporites, 37(1): 1−13.

    Google Scholar

    [68] Zhang Fanfan, Chen Chao, Zhang Xixing, Xiang Lixue. 2017. Performance characteristics and application analysis of gypsum from different sources[J]. Inorganic Salt Industry, 49(8): 10−13 (in Chinese with English abstract).

    Google Scholar

    [69] Zhang Lianqiang, Zhang Huan. 2018. Geological characteristics and metallogenic regularity of gypsum deposits in Liaoyang Basin, Liaoning Province[J]. China Non–metallic Mineral Industry Guide, (1): 47−50 (in Chinese).

    Google Scholar

    [70] Zhang Shaoyun, Zhou Zhongfa, Tian Zhonghui. 2017. Environmental significance of water chemical characteristics of gypsum geode under paste salt layer[J]. Science Technology and Engineering, 17(16): 13−20 (in Chinese with English abstract).

    Google Scholar

    [71] Zheng Tao. 2013. Status quo of gypsum mineral resources in China[J]. Heilongjiang Science and Technology Information, (23): 115 (in Chinese).

    Google Scholar

    [72] Zheng Tao, Wen Canguo. 2013. Metallogenic analysis of Cambrian gypsum in Northeast China[J]. Private Science and Technology, (9): 35 (in Chinese).

    Google Scholar

    [73] Zheng Ximin, Yang Liu, Yi Dinghong, Wang Pu. 2019. Paleogene gypsum and its sulfur isotope distribution in western Qaidam Basin[J]. Sedimentary and Tethian Geology, 39(4): 65−70 (in Chinese with English abstract).

    Google Scholar

    [74] Zhou J, Li X, Zhao Y, Shu Z, Wang Y, Zhang Y, Shen X. 2020. Preparation of paper–free and fiber–free plasterboard with high strength using phosphogypsum[J]. Construction and Building Materials, 243: 118091. doi: 10.1016/j.conbuildmat.2020.118091

    CrossRef Google Scholar

    [75] Zhu Meng. 2015. Discussion on geological origin of salt deposits in Dawenkou Basin, Shandong Province[J]. Shandong Land and Resources, 31(1): 27−30 (in Chinese with English abstract).

    Google Scholar

    [76] 白寿昌. 1984. 长江中下游三叠纪石膏找矿方向[J]. 非金属矿, (4): 1−4.

    Google Scholar

    [77] 陈国芳, 谢飞跃. 2007. 太原西山石膏矿床成因探讨[J]. 太原科技, (10): 77−78.

    Google Scholar

    [78] 邓洋洋, 陈从新, 夏开宗, 郑先伟. 2019. 程潮铁矿西区地表塌陷成因分析[J]. 岩土力学, 40(2): 743−758.

    Google Scholar

    [79] 董斌. 1990. 石门县上五通石膏矿区水文地质条件及其作用浅析[J]. 湖南地质, 9(2): 62−67.

    Google Scholar

    [80] 段庆奎, 董文亮, 王惠琴, 王立明. 2001. α型超高强石膏(K型石膏)研究与开发[J]. 非金属矿, (3): 26−27. doi: 10.3969/j.issn.1000-8098.2001.03.010

    CrossRef Google Scholar

    [81] 方明, 杨载熙, 徐加林, 冷方睿. 2022. 湖北省应城膏矿区石膏矿地质特征[J]. 中文科技期刊数据库(全文版)工程技术, (8): 65−68.

    Google Scholar

    [82] 龚大兴. 2016. 四川盆地三叠纪成盐环境、成钾条件及成因机制[D]. 成都: 成都理工大学, 1–152.

    Google Scholar

    [83] 关绍曾, 江宗龙, 魏东岩, 杨流平, 宣之强, 陈延成, 崔天秀, 刘振敏, 邓小林, 尹学敏. 1996. 中国板块构造与盐类矿产[J]. 化工矿产地质, 18(2): 2−10.

    Google Scholar

    [84] 郭大江, 袁运法, 胡浩然, 张冰. 2010. 脱硫石膏性能研究及其在普通硅酸盐水泥中的应用[J]. 硅酸盐通报, 29(2): 357−360.

    Google Scholar

    [85] 郝瑞娥, 邢香粉, 彭明章, 朱礼敏, 杜小亮, 刘海燕, 李晓静, 王猛. 2023. 山东大汶口石膏矿区工程地质条件分析[J]. 中国煤炭地质, 35(8): 17−25. doi: 10.3969/j.issn.1674-1803.2023.08.04

    CrossRef Google Scholar

    [86] 化志新. 2018. 中国石膏矿分布规律及典型矿床分析[J]. 自然科学(文摘版), (2): 222−223.

    Google Scholar

    [87] 黄彬. 2005. 徐富业教授应用石膏治疗外感高热经验撷要[J]. 中国中医急症杂志, (9): 868.

    Google Scholar

    [88] 姜春志, 董风芝. 2016. 工业副产石膏的综合利用及研究进展[J]. 山东化工, 45(9): 42−44,47. doi: 10.3969/j.issn.1008-021X.2016.09.017

    CrossRef Google Scholar

    [89] 来瑞娟. 2017. 滇西北兰坪金顶白草坪锶矿床石膏(岩)矿物地球化学特征及发育机制[D]. 昆明: 昆明理工大学, 1–109.

    Google Scholar

    [90] 李爱玲. 2004. 天然石膏及其开发利用研究进展[J]. 矿产与地质, 18(5): 498−501. doi: 10.3969/j.issn.1001-5663.2004.05.020

    CrossRef Google Scholar

    [91] 李奇林, 张小林, 李作武, 张磊. 2022. 新疆库尔楚石膏矿地质特征及成因分析[J]. 中国非金属矿工业导刊, (4): 53−57. doi: 10.3969/j.issn.1007-9386.2022.04.014

    CrossRef Google Scholar

    [92] 李伟, 桂青, 朱乔乔, 郑先伟, 张志远, 韩颖霄. 2016. 鄂东南程潮铁矿多世代叠加成矿作用: 磁铁矿证据[J]. 岩石学报, 32(2): 471−492.

    Google Scholar

    [93] 李逸晨. 2019. 石膏行业的发展现状及趋势[J]. 硫酸工业, (11): 1−7,13. doi: 10.3969/j.issn.1002-1507.2019.11.001

    CrossRef Google Scholar

    [94] 刘成林, 宣之强, 曹养同, 王立成, 王春连, 赵艳军, 张华. 2015. 探索中国陆块找钾—中国东特提斯域成钾作用及模式[J]. 化工矿产地质, (4): 193−197. doi: 10.3969/j.issn.1006-5296.2015.04.001

    CrossRef Google Scholar

    [95] 刘卫红, 李耀西, 张瑛. 1993. 湘中石炭纪石膏矿床的控制因素探讨[J]. 岩相古地理, 13(4): 12−18.

    Google Scholar

    [96] 刘晓, 刘朝阳, 范天甲, 张秀云, 翁红波, 张焕. 2020. 河南袁家庄石膏矿矿床地质特征及成因[J]. 中国非金属矿工业导刊, (3): 37−41. doi: 10.3969/j.issn.1007-9386.2020.03.011

    CrossRef Google Scholar

    [97] 卢志诚. 1983. 中国石膏矿床成因类型[J]. 地质论评, 29(5): 457. doi: 10.3321/j.issn:0371-5736.1983.05.038

    CrossRef Google Scholar

    [98] 罗大有. 1985. 辽吉海积寒武纪石膏矿床[J]. 矿床地质, 4(3): 85−94.

    Google Scholar

    [99] 罗书文, 李坡, 陈伟海, 韦跃龙, 欧阳志宏, 邓亚东, 覃星铭. 2019. 贵州绥阳双河溶洞系统发育机理与演化研究[J]. 重庆师范大学学报(自然科学版), 36(1): 111−118,144.

    Google Scholar

    [100] 吕宪河, 高廷臣, 陈俊魁, 陈瑞宝, 程兴国, 胡小川, 蔡仲明. 2011. 石膏矿床的地质特征及对硫化矿床的指示意义[J]. 地质学刊, 35(1): 11−14. doi: 10.3969/j.issn.1674-3636.2011.01.11

    CrossRef Google Scholar

    [101] 马智强. 2000. 宁夏石膏资源开发利用[J]. 中国非金属矿工业导刊, (6): 31−34. doi: 10.3969/j.issn.1007-9386.2000.06.011

    CrossRef Google Scholar

    [102] 裴永万, 芦杰. 2007. 辽阳市东京陵石膏矿床地质特征[J]. 中国非金属矿工业导刊, (4): 59−62. doi: 10.3969/j.issn.1007-9386.2007.04.021

    CrossRef Google Scholar

    [103] 秦守萍, 高明波, 朱国庆, 陈志强, 秦文静. 2008. 泰安汶口盆地吴家新庄石膏矿地质特征及成因分析[J]. 山东国土资源, 24(4): 29−32. doi: 10.3969/j.issn.1672-6979.2008.04.015

    CrossRef Google Scholar

    [104] 覃志安, 李俊建. 2005. 环渤海地区非金属矿地质特征[J]. 地质调查与研究, 28(4): 265−271.

    Google Scholar

    [105] 石厚礼, 张鹏, 姜赟赟. 2016. 山东省大汶口盆地蒸发岩地球化学特征及找钾标志[J]. 山东国土资源, 32(6): 41−45. doi: 10.3969/j.issn.1672-6979.2016.06.007

    CrossRef Google Scholar

    [106] 宋春振. 2009. 辽宁东京陵石膏矿床碳酸盐岩特征与石膏找矿[J]. 辽宁建材, (5): 13−14. doi: 10.3969/j.issn.1009-0142.2009.05.005

    CrossRef Google Scholar

    [107] 宋许根, 刘秀敏, 陈从新, 郑先伟, 夏开宗, 杨括宇, 陈山. 2018. 程潮铁矿西区采空区地表塌陷机制与变形规律初探[J]. 岩石力学与工程学报, 37(A2): 4262−4273.

    Google Scholar

    [108] 陶维屏. 1983. 中国海积三叠纪石膏矿床[J]. 地质学报, (2): 172−183.

    Google Scholar

    [109] 王文楷, 许国明, 宋晓波, 隆轲, 陈颖. 2017. 四川盆地雷口坡组膏盐岩成因及其油气地质意义[J]. 成都理工大学学报(自然科学版), 44(6): 697−707.

    Google Scholar

    [110] 王艳婷, 刘彦奎, 王东, 于超. 2014. 泰安市大汶口石膏矿王庄矿段地质特征及成因分析[J]. 中国非金属矿工业导刊, (5): 42−44, 62. doi: 10.3969/j.issn.1007-9386.2014.05.014

    CrossRef Google Scholar

    [111] 王自具, 李强, 李宗成. 2003. 山东省泰安市大汶口盆地石膏矿资源潜力评价矿产品需求预测及开发建议[J]. 山东国土资源, (5): 23−25. doi: 10.3969/j.issn.1672-6979.2003.05.015

    CrossRef Google Scholar

    [112] 文华国, 霍飞, 郭佩, 甯濛, 梁金同, 钟怡江, 苏中堂, 徐文礼, 刘四兵, 温龙彬, 蒋华川. 2021. 白云岩—蒸发岩共生体系研究进展及展望[J]. 沉积学报, 39(6): 1321−1343.

    Google Scholar

    [113] 吴贇. 2019. 辽宁省石膏矿地质特征、成因及成矿预测[D]. 长春: 吉林大学, 1–105.

    Google Scholar

    [114] 谢丽丽, 孟凡巍, 卓勤功, 张国权. 2023. 山东大汶口盆地石盐地球化学特征及其成因[J]. 盐湖研究, 31(3): 59−68. doi: 10.12119/j.yhyj.202303008

    CrossRef Google Scholar

    [115] 徐兴国, 熊昌铨. 1987. 川东下中三叠统石膏矿床的保存和水化条件初步分析[J]. 建材地质, (2): 20−24.

    Google Scholar

    [116] 薛平. 1985. 华北中奥陶世石膏矿床的某些成矿规律研究[J]. 中国非金属矿工业导刊, (4): 26−31,16.

    Google Scholar

    [117] 薛武. 1986. 我国石膏矿产时空分布概况及成矿特点初探[J]. 中国非金属矿工业导刊, (4): 31−35.

    Google Scholar

    [118] 杨辉. 2022. 常见药用非金属矿物的功能及研究进展[J]. 中国非金属矿工业导刊, (4): 1−3,7. doi: 10.3969/j.issn.1007-9386.2022.04.001

    CrossRef Google Scholar

    [119] 杨再银. 2021. 中国工业副产石膏利用现状及“十四五”展望[J]. 硫酸工业, (7): 1−4,23.

    Google Scholar

    [120] 张凡凡, 陈超, 张西兴, 相利学. 2017. 不同来源石膏的性能特点与应用分析[J]. 无机盐工业, 49(8): 10−13.

    Google Scholar

    [121] 张连强, 张欢. 2018. 辽宁省辽阳盆地石膏矿地质特征及成矿规律[J]. 中国非金属矿工业导刊, (1): 47−50. doi: 10.3969/j.issn.1007-9386.2018.01.015

    CrossRef Google Scholar

    [122] 张绍云, 周忠发, 田衷珲. 2017. 膏盐层下石膏晶洞水化学特征的环境指示意义[J]. 科学技术与工程, 17(16): 13−20. doi: 10.3969/j.issn.1671-1815.2017.16.003

    CrossRef Google Scholar

    [123] 郑涛. 2013. 中国石膏矿产资源现状[J]. 黑龙江科技信息, (23): 115.

    Google Scholar

    [124] 郑涛, 文灿国. 2013. 东北寒武纪石膏成矿分析[J]. 民营科技, (9): 35. doi: 10.3969/j.issn.1673-4033.2013.09.034

    CrossRef Google Scholar

    [125] 郑希民, 杨柳, 易定红, 王朴. 2019. 柴达木盆地西部古近系石膏及其硫同位素分布特征[J]. 沉积与特提斯地质, 39(4): 65−70.

    Google Scholar

    [126] 朱猛. 2015. 山东省大汶口盆地盐类矿床的地质成因探讨[J]. 山东国土资源, 31(1): 27−30. doi: 10.3969/j.issn.1672-6979.2015.01.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(7)

Article Metrics

Article views(49) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint