2025 Vol. 52, No. 4
Article Contents

LIAO Zihui, WANG Chunlian, HUANG Keke, XU Yaxin, YOU Chao, CHEN Zhenhong. 2025. Distribution, types, applications and prospecting of kaolin deposits in China[J]. Geology in China, 52(4): 1230-1246. doi: 10.12029/gc20231215002
Citation: LIAO Zihui, WANG Chunlian, HUANG Keke, XU Yaxin, YOU Chao, CHEN Zhenhong. 2025. Distribution, types, applications and prospecting of kaolin deposits in China[J]. Geology in China, 52(4): 1230-1246. doi: 10.12029/gc20231215002

Distribution, types, applications and prospecting of kaolin deposits in China

    Fund Project: Supported by Basic Research Funds for Public Welfare Research Institutes at the Central Level (No.KK2005, No.KK2322) and the projects of China Geological Survey (No.DD20230056, No.DD20190606, No.DD20221684, No.DD20230291).
More Information
  • Author Bio: LIAO Zihui, female, born in 2000, master candidate, mainly engaged in sedimentology; E-mail: 1732952602@qq.com
  • Corresponding author: WANG Chunlian, male, born in 1983, doctor, researcher, mainly engaged in sedimentology and mineral deposit research; E-mail: wangchunlian312@163.com
  • This paper is the result of mineral exploration engineering.

    Objective

    Kaolin, as a non-metallic mineral resource, is one of the most important and abundant mineral deposits in the world, which has important value in many fields such as ceramics, rubber, biomedicine, etc. However, with the expansion of its application fields, China is facing challenges such as rising kaolin prices, technological bottlenecks in deep processing and utilization, and high dependence on imported high-quality resources. Therefore, it is particularly important to study the distribution, genesis type, metallogenic regularity and processing and application of kaolin.

    Methods

    Based on the published or released kaolin mineral data, this paper comprehensively sorts out the characteristics, current utilization and future application prospects of typical kaolin deposits in various types.

    Results

    Global kaolin resources are abundant, with proven reserves of about 32 billion tons, with kaolin resources in more than 60 countries and regions such as the United States, the United Kingdom, Brazil, China, etc., and kaolin minerals have been found in 26 provinces (cities and districts) in China. Kaolinite minerals can be divided into kaolinite, halloysite, dickite and pearl clay.The types of kaolin deposits in China are usually classified into weathering, hydrothermal alteration and sedimentary types, which are further divided into 6 subtypes, and in the latest research, kaolin deposits are classified into 4 genesis types, 8 genesis subtypes and 12 deposit types. As a "key mineral" in China, kaolin is widely used in environmental protection, new energy, new materials, biomedicine and other strategic emerging industries and traditional fields.

    Conclusions

    The formation of kaolin deposits is affected by many factors, mainly by the comprehensive influence of sedimentary environment, ore-forming host rock and geotectonic evolution, and also by the influence of climate and lithogenic afterlife. The North China land mass metallogenic province, Yangzi metallogenic province and South China metallogenic province are important mineralization prospect areas for kaolin in China. The future development direction of kaolin includes improvement of processing technology, surface modification, removal of harmful impurities, nanotechnology and antimicrobial material technology.

  • 加载中
  • [1] Araujo E D, Silva K R, Grilo J P, Macedo D A, Santana L N, Neves G A. 2022. Dielectric properties of steatite ceramics produced from talc and kaolin wastes[J]. Materials Research, 25: e20210428.

    Google Scholar

    [2] Awad M E, López-Galindo A, Setti M, El-Rahmany M M, Iborra, C V. 2017. Kaolinite in pharmaceutics and biomedicine[J]. International Journal of Pharmaceutics, 533(1): 34−48. doi: 10.1016/j.ijpharm.2017.09.056

    CrossRef Google Scholar

    [3] Bian Xia, Ye Yingchun, Liu Kai, Li Xiaozhao, Fan Zhuyi, Guo Guangze, Zhang Wei. 2023. The influence of soil properties on the stabilization strength of engineering slurry and its micro-mechanism[J]. Acta Geoscientica Sinica, 45(1): 123−130 (in Chinese with English abstract).

    Google Scholar

    [4] Bonina F P, Giannossi M L, Medici L, Puglia C, Summa V, Tateo F. 2007. Adsorption of salicylic acid on bentonite and kaolin and release experiments[J]. Applied Clay Science, 36(1/3): 77−85.

    Google Scholar

    [5] Boulis S, Attia A. 1994. Mineralogical and chemical composition of Carboniferous and Cretaceous kaolins from a number of localities in Egypt[C]//1st International Symposium on Industrial Application of Clays, 99−127.

    Google Scholar

    [6] Bukalo N N, Ekosse G I, Odiyo J, Ogola J. 2020. Geochemistry and possible industrial applications of cretaceous—tertiary kaolins of the Douala Sub—Basin, Cameroon[J]. Periodico di Mineralogia, 89: 225−242.

    Google Scholar

    [7] Cao Jian, Zhang Yijie, Hu Wenxuan, Zhang Yueqian, Tang Yong, Yao Suping, Tao Guoliang. 2005. Developing characteristics of kaolinite in central Junggar Basin and their effectonthe reservoir quality[J]. Acta Mineralogica Sinica, 25(4): 367−373.

    Google Scholar

    [8] Carretero M I, Gomes C, Tateo F. 2006. Clays and human health[J]. Developments in Clay Science, 1: 717−741.

    Google Scholar

    [9] Carretero M I, Pozo M, Martín—Rubí J A, Pozo E, Maraver F. 2010. Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas[J]. Applied Clay Science, 48: 506−515. doi: 10.1016/j.clay.2010.02.016

    CrossRef Google Scholar

    [10] Chen P Y, Lin M L, Zheng Z. 1997. On the origin of the name kaolin and the kaolin deposits of the Kauling and Dazhou areas, Kiangsi, China[J]. Applied Clay Science, 12(1/2): 1−25.

    Google Scholar

    [11] Chen Zhengguo, Yan Lingya, Gao Shuxue. 2021. Analysis on the situation of strategic non—metallic mineral resources[J]. China Nonmetallic Minerals Industry, (2): 1−8 (in Chinese with English abstract).

    Google Scholar

    [12] Chen Zhiru, Yao Xingmao, Yin Xiangpeng. 2019. Preparation of kaolin based phase change thermal storage materials for solar thermal power plant[J]. Renewable energy resources, 37(3): 349−353 (in Chinese with English abstract).

    Google Scholar

    [13] Cheng Hongfei, Gao Yulong, Liang Shaoxian, Liu Qinfu. 2023. New genetic classification of kaolin deposits in China[J]. Journal of Earth Sciences and Environment, 45(5): 1110−1117 (in Chinese with English abstract).

    Google Scholar

    [14] Ding Shihui. 1996. Genesis and metallogenic model of karst−type kaolin ore deposit in Suzhou, Jiangsu Province[J]. Geology of Jiangsu, 20(2): 78−84 (in Chinese with English abstract).

    Google Scholar

    [15] Dill H G. 2016. Kaolin: Soil, rock and ore from the mineral to the magmatic, sedimentary and metamorphic environments[J]. Earth Science Reviews, 161: 16−129.

    Google Scholar

    [16] Fang Yesen, Fang Jinman, Xie Changsheng, Liao Zhijian. 1988. Kaolin from Jiepai, Hunan[J]. Silicate Bulletin, (5): 55−63 (in Chinese).

    Google Scholar

    [17] Feng Xueru, Deng Jian, Yan Weiping, Li Weisi. 2022. Development status and comprehensive utilization of kaolin[J]. Multipurpose Utilization of Mineral Resources, (6): 1−10 (in Chinese with English abstract).

    Google Scholar

    [18] Ganguly M, Tao Y, Lee B, Ariya P A. 2020. Natural kaolin: Sustainable technology for the instantaneous and energy-neutral recycling of anthropogenic mercury emissions[J]. Chemsuschem, 13(1): 165−172. doi: 10.1002/cssc.201902955

    CrossRef Google Scholar

    [19] Gan Changjiao, Gan Hui, Meng Zhiyun, Zhu Xiaoxia, Gu Ruolan, Wu Zhuona, Sun Wenzhong, Wang Donggen, Dou Guifang. 2017. Application of kaolin to hemostasis: Research progress [J]. Military Medicine Sciences. 41(2): 141−145(in Chinese with English abstract).

    Google Scholar

    [20] Guan Tielin. 1982. A discussion on the geological features and the origin of the kaolinite deposits of Xuyong type[J]. Mineral Deposits, (2): 69−79 (in Chinese with English abstract).

    Google Scholar

    [21] Harvey C C, Murray H H. 1997. Industrial clays in the 21st century: A perspective of exploration, technology and utilization[J]. Applied Clay Science, 11(5/6): 285−310.

    Google Scholar

    [22] Jarošová M, Staněk F. 2021. Spatial modelling of kaolin deposit demonstrated on the Jimlíkov—East deposit, Karlovy Vary, Czech Republic[J]. ISPRS International Journal of Geo-Information, 10(11): 788. doi: 10.3390/ijgi10110788

    CrossRef Google Scholar

    [23] Jiang Guilan, Zhang Zhijun, Xue Bing. 2014. Processing and Application of Kaolin [M]. Beijing: Chemical Industry Press, 1−223(in Chinese).

    Google Scholar

    [24] Jiang Zhidong, Li Changlong, Rao Yubin. 2019. Metallogenic geological characteristics and prospecting potential of Tangyin rock mass tourmaline kaolin[J]. Jiangxi Coal Technology, (4): 117−120 (in Chinese with English abstract).

    Google Scholar

    [25] Jiao Lixiang, Guo Jiapeng, Cheng Wei. 2021. Study on metallogenic characteristics and regularity of kaolin in Shandong Province[J]. Shandong Land and Resources, 37(1): 10−18 (in Chinese with English abstract).

    Google Scholar

    [26] Li Bingyun, Wang Sujian, Wang Zhaiming. 2000. Study on Kaolin rock deposit and its deep processing techniques in the northeastern margin of the Ordos Basin[J]. Non−Metallic Mining, (5): 33−36 (in Chinese).

    Google Scholar

    [27] Li Canhua, Fan Si. 1988. Origin and exploration of Suzhou kaolin deposits[J]. Geology of Jiangsu, 12(4): 13−18 (in Chinese with English abstract).

    Google Scholar

    [28] Li Xiaoguang. 2018. Self-adaptive Deformation of Kaolinite and the Structural Properties of Kaolinite Nanoscrolls[D]. Beijing: China University of Mining and Technology (Beijing), 1−131 (in Chinese with English abstract).

    Google Scholar

    [29] Li Xinmei, Wu Hashen, Zhang Dongyun, Bai Menglan, Chang Shan. 2013. The research progress of activated coal−bearing kaolinite in adsorption respect[J]. Inner Mongolia Petrochemical Industry, 39(21): 1−3 (in Chinese with English abstract).

    Google Scholar

    [30] Liang Shaoxian, Wang Shuili, Yao Gaihuan. 1995. Study of synsedimentary volcanic-ash-derived clayrock bandsin Carboniferous−Permian coal−bearing formation of North China[J]. Coal Geology of China, 7(1): 59−63 (in Chinese with English abstract).

    Google Scholar

    [31] Liu Jianguo. 2018. Application of kaolin in the production of rubber hose fillers [J]. Chemical Management, (2): 154, 156 (in Chinese).

    Google Scholar

    [32] Liu Linsong, Shi Songlin, Sun Junmin, Li Jintao, Wang Zhaoguo, Li Jiaxing, Liu Qinfu. 2022. Composition and origin of high−alumina coal in Jungar coalfield[J]. Journal of Mining Science and Technology, 7(1): 101−112 (in Chinese with English abstract).

    Google Scholar

    [33] López J M, Bauluz B, Fernández-Nieto C, Oliete A Y. 2005. Factors controlling the trace−element distribution in fine−grained rocks: the Albian kaolinite−rich deposits of the Oliete Basin (NE Spain)[J]. Chemical Geology, 214(1/2): 1−19.

    Google Scholar

    [34] Malek N A, Ramli N I. 2015. Characterization and antibacterial activity of cetylpyridinium bromide (CPB) immobilized on kaolinite with different CPB loadings[J]. Applied Clay Science, 109-110: 8−14.

    Google Scholar

    [35] Mallick S, Pattnaik S, Swain K, De P K, Saha A, Ghoshal G, Mondal A. 2008. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin[J]. European Journal of Pharmaceutics & Biopharmaceutics, 68(2): 346−351.

    Google Scholar

    [36] Murray H H. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview[J]. Applied Clay Science, 17(5/6): 207−221.

    Google Scholar

    [37] Murray H H. 2006. Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays[M]. Amsterdam: Elsevier, 1-180.

    Google Scholar

    [38] Nie Xiaoliang, Wang Longfei. 2020. Distribution and mineralization pattern of major weathered residual kaolinite ores in China[J]. China Metal Bulletin, (7): 59−60 (in Chinese).

    Google Scholar

    [39] Nzeugang A N, Ouahabi M E, Aziwo B, Mache J R, Mounton H M, Fagel N. 2018. Characterization of kaolin from Mankon, NW Cameroon[J]. Clay Minerals, 53(4): 563. doi: 10.1180/clm.2018.45

    CrossRef Google Scholar

    [40] Prasad M S, Reid K J, Murray H H. 1991. Kaolin: Processing, properties and applications[J]. Applied Clay Science, 6(2): 87−119. doi: 10.1016/0169-1317(91)90001-P

    CrossRef Google Scholar

    [41] Pruett R J. 2016. Kaolin deposits and their uses: Northern Brazil and Georgia, USA[J]. Applied Clay Science, 10: 3−13.

    Google Scholar

    [42] Qiao Wei, Zou Weixi, Chen Qiang. 2007. Development and application of flaked kaolinite[J]. Non-metallic Mines, 182(S1): 19−20 (in Chinese).

    Google Scholar

    [43] Qiu Ying, Wu Qisheng, Li Shuiping, Zhang Changsen. 2013. Preparation and thermal properties of binary organic/kaolin composites as shape stabilized phase change material for thermal energy storage[J]. Journal of Materials Science & Engineering, (2): 5(in Chinese with English abstract).

    Google Scholar

    [44] Raphalalani A, Ekosse G−I, Odiyo J, Ogola J, Bukalo N. 2019. Trace element and stable isotope geochemistry of Lwamondo and Zebediela Kaolins, Limpopo Province, South Africa: Implication for paleoenvironmental reconstruction[J]. Minerals, 9(2): 93. doi: 10.3390/min9020093

    CrossRef Google Scholar

    [45] Sousa D J, Varajão A, Yvon J, Costa, G M. 2007. Mineralogical, micromorphological and geochemical evolution of the kaolin facies deposit from the Capim region (northern Brazil)[J]. Clay Minerals, 42(1): 69−87.

    Google Scholar

    [46] Sun Yigao, Ai Bo, Yao Xiang, She Gang. 2018. Application of nanokaolin in the tire for mining truck[J]. New Chemical Materials, 46(9): 4(in Chinese with English abstract).

    Google Scholar

    [47] Tao Weiping, Yang Yaxiu, Chen Xinqiang. 1985. Genetic Types of Kaolin Deposits in China[C]//Committee of International Exchange Conference. Internationa Exchange Proceedings: 4, Geophysical and Geochemical Exploration. Beijing: Geological Publishing House, 299−309.

    Google Scholar

    [48] Tan D, Yuan P, Annabi−Bergaya F, Liu D, He H. 2014. High−capacity loading of 5−fluorouracil on the methoxy−modified kaolinite[J]. Applied Clay Science, 100: 60−65. doi: 10.1016/j.clay.2014.02.022

    CrossRef Google Scholar

    [49] Wang Denghong. 2019. Study on critical mineral resources: significance of research. determination of types, attributesresources, progress of prospecting: Problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 93(6): 1189−1209 (in Chinese with English abstract).

    Google Scholar

    [50] Wang Zufu, Liu Zhaoying, Gong Xiasheng. 1987. Halloysite from loulingbao, Beichuan district, Sichuan[J]. Journal of Chengdu College of Geology, (1): 21−30 (in Chinese with English abstract).

    Google Scholar

    [51] Wei Bo, Wu Xiaohuan, Liu Zhiyong, Peng Chunyan, Li Ke. 2020. Research on current situation of bentonite industry in foreign countries[J]. China Nonmetallic Minerals Industry, (3): 52−55 (in Chinese with English abstract).

    Google Scholar

    [52] Wu Junhua, Gong Min, Zhou Xuegui, Wang Chuan, Yang Ziwen, Luo Qing, Li Yanjun. 2023. Geochronology and sources of the giant Xiaokeng kaolin deposit in southern Jiangxi Province: Insight from U−Pb ages of zircon and monazite, and Hf isotopic compositions[J]. Earth Science, 48(9): 3245−3257 (in Chinese with English abstract).

    Google Scholar

    [53] Wu Yujie. 2021. Temporal-spatial Distribution Regularities of Kaolin Deposits in China[D]. Hefei: Hefei University of Technology, 1−93 (in Chinese with English abstract).

    Google Scholar

    [54] Xia Zheng. 1981. The formation and evolution of the weathering type of kaolin minerals at the Yangxi Suzhou county.[J]. Scientia Geologica Sinica, (4): 368−375, 415 (in Chinese with English abstract).

    Google Scholar

    [55] Xia Zheng, Zhang Ningke. 1986. Study of nacrite[J]. Scientia Geologica Sinica, (4): 365−370 (in Chinese with English abstract).

    Google Scholar

    [56] Xu Ningning, Zhang Shoupeng, Wang Yongshi, Qiu Longwei. 2022. Diagenesis and pore formation of the Upper Paleozoic tight sandstone in the northern area of the Ordos Basin[J]. Acta Sedimentologica Sinica, 40(2): 422−434 (in Chinese with English abstract).

    Google Scholar

    [57] Xu Zhigang, Chen Yuchuan, Wang Denghong, Chen Zhenghui. 2008. Scheme for the Division of Metallogenic Belts/Provinces in China [M]. Beijing: Geological Publishing House, 1−138 (in Chinese).

    Google Scholar

    [58] Yin Jiangning, Ding Jianhua, Chen Binghan, Liu Jiannan, Liu Xinxing. 2022. Metallogenic geological characteristics and mineral resources assessment of kaolin in China[J]. Geology in China, 49(1): 121−134 (in Chinese with English abstract).

    Google Scholar

    [59] Zhan Peimin, Yu Zhouping, Sun Binxiang, He Zhihai. 2019. Application and research progress of nano kaolin in cement−based materials[J]. Silicate Bulletin, 38(5): 1420−1424,1432 (in Chinese).

    Google Scholar

    [60] Zhang Hui. 1992. Shape−genesis types of the kaolinites in coal series[J]. Acta Mineralogica Sinica, 12(1): 53−57 (in Chinese with English abstract).

    Google Scholar

    [61] Zhang Yi, Diao Bo, Yu Jing, Fan Guanghui. 2016. Preparation and evaluation of Kaolin bamboo fiber hemostatic gauze[J]. South China Journal of Defense Medicine, 30(1): 9−13 (in Chinese with English abstract).

    Google Scholar

    [62] Zhang Long, Liu Chiyang, Lei Kaiyu, Sun Li, Cun Xiaoni, Du Fangpeng, Deng Hui. 2017. White bleached sandstone genesisand Paleo−weathered crust forming environment of the Jurassic Yanan Formation in the northeastern Ordos Basin[J]. Acta Geologica Sinica, 91(6): 1345−1359 (in Chinese with English abstract).

    Google Scholar

    [63] Zhang Bingshe, Xu Yong, Wang Jun, Zhang Zhihai, Gao Chunhua. 2013. Study on the relationship between the depositional environment and mineralization of Fugu kaolinite deposit in Shanghai Province[J]. Northwestern Geology, 46(2): 174−180 (in Chinese with English abstract).

    Google Scholar

    [64] Zhang Shugeng, Liu Xiaohu, Ding Jun. 2006. A tentative discussion on mineralogical characteristics and genesis of Xianrenwan halloysite type kaolin in Chenxi, Hunan[J]. Acta Petrologica et Mineralogica, (5): 433−439 (in Chinese with English abstract).

    Google Scholar

    [65] Zhao Fei, Zhang Zhixi, Wang Ningzu. 2019. Mineralogical characteristics and genetic analysis of halloysite from Upper Permian longtan formation in fengxiang district of Qianxi county, Guizhou Province[J]. Gansu Geology, 28(Z1): 41−47 (in Chinese with English abstract).

    Google Scholar

    [66] Zhao Shihuang, Song Huanxia, Zhao Guijun, Han Shuchen. 2015. Further utilization of material geological data in coal exploration−A case study of Haize miao and Duanzhai mine areas kaolin exploration in Fugu, Shaanxi[J]. Coal Geology of China, 27(7): 74−76 (in Chinese with English abstract).

    Google Scholar

    [67] Zheng Zhi, Lü Denden, Feng Moli, Feng Baohua, Jin Taiquan. 1983. Research on kaolin deposits in China [C]// Editorial Department of the Academy of Chinese Academy of Geological Sciences. Proceedings of Chinese Academy of Geological Sciences (1981). Beijing: Geological Publishing House, 86 (in Chinese with English abstract).

    Google Scholar

    [68] Zheng Zhi, Lü Daren, Jin Taiquan, Xia cheng, Chen Kaihui, Ji Surong. 1980. The origin of the name "Gaoling" and the earliest history of using kaolin in China [J]. Geological Review, (3): 272−273 (in Chinese).

    Google Scholar

    [69] Zheng Zhi, Lü Daren, Zhou Guoping. 1987. An investigation on the assemblage of geothermal alteration minerals and formation of the kaolin deposit in Tengchong geothermal area, Yunnan Province[C]//Bulletin of Institute of Mineral Deposits. Chinese Academy of Geologica Sciences, (20): 5−11(in Chinese with English abstract).

    Google Scholar

    [70] Zhou Guoping, Lin Yuchuan. 1991. Sedimentary−weatheering type kaolin deposits and their characteristics[J]. Mineral Deposits, (3): 272−282 (in Chinese with English abstract).

    Google Scholar

    [71] 卞夏, 叶迎春, 刘凯, 李晓昭, 樊朱益, 郭光泽, 张伟. 2024. 土性对工程泥浆固化强度影响规律及微观机理[J]. 地球学报, 45(1): 123−130.

    Google Scholar

    [72] 曹剑, 张义杰, 胡文瑄, 张越迁, 唐勇, 姚素平, 陶国亮. 2005. 油气储层自生高岭石发育特点及对物性的影响[J]. 矿物学报, 25(4): 367−373.

    Google Scholar

    [73] 程宏飞, 高宇龙, 梁绍暹, 刘钦甫. 2023. 中国高岭土(岩)矿床新成因分类[J]. 地球科学与环境学报, 45(5): 1110−1117.

    Google Scholar

    [74] 陈正国, 颜玲亚, 高树学. 2021. 战略性非金属矿产资源形势分析[J]. 中国非金属矿工业导刊, (2): 1−8.

    Google Scholar

    [75] 陈祉如, 姚兴茂, 尹翔鹏. 2019. 应用于太阳能热发电站的高岭土基相变储热材料的制备[J]. 可再生能源, 37(3): 349−353.

    Google Scholar

    [76] 丁世辉. 1996. 苏州岩溶型高岭土矿床的成因及成矿模式[J]. 江苏地质, 20(2): 78−84.

    Google Scholar

    [77] 方邺森, 方金满, 谢长生, 廖志坚. 1988. 湖南界牌高岭土[J]. 硅酸盐通报, (5): 55−63.

    Google Scholar

    [78] 冯雪茹, 邓建, 严伟平, 李维斯. 2022. 我国高岭土开发现状及综合利用进展[J]. 矿产综合利用, (6): 1−10. doi: 10.3969/j.issn.1000-6532.2022.06.001

    CrossRef Google Scholar

    [79] 干长姣, 甘慧, 孟志云, 朱晓霞, 顾若兰, 吴卓娜, 孙文种, 王东根, 窦桂芳. 2017. 高岭土的止血应用研究进展[J]. 军事医学, 41(2): 141−145.

    Google Scholar

    [80] 关铁麟. 1982. 叙永式高岭土矿床地质特征及其成因的探讨[J]. 矿床地质, (2): 69−79.

    Google Scholar

    [81] 姜桂兰, 张志军, 薛兵, 2014, 高岭土加工与应用[M]. 北京: 化学工业出版社, 1−223.

    Google Scholar

    [82] 姜智东, 李昌龙, 饶玉彬. 2019. 棠阴岩体电气石型高岭土成矿地质特征与找矿前景[J]. 江西煤炭科技, (4): 117−120.

    Google Scholar

    [83] 焦丽香, 郭加朋, 程伟. 2021. 山东高岭土矿成矿特征及成矿规律探讨[J]. 山东国土资源, 37(1): 10−18.

    Google Scholar

    [84] 李炳云, 王苏建, 王寨明. 2000. 鄂尔多斯盆地东北缘高岭岩矿及其深加工工艺研究[J]. 非金属矿, (5): 33−36.

    Google Scholar

    [85] 李灿华, 范斯. 1988. 苏州高岭土矿床成因及找矿远景探析[J]. 江苏地质, 12(4): 13−18.

    Google Scholar

    [86] 李晓光. 2018. 高岭石的自适应变形及其纳米卷结构研究[D]. 北京: 中国矿业大学(北京),1−131.

    Google Scholar

    [87] 李新梅, 吴哈申, 张冬云, 白孟兰, 长山. 2013. 改性煤系高岭土在吸附方面的研究进展[J]. 内蒙古石油化工, 39(21): 1−3.

    Google Scholar

    [88] 梁绍暹, 王水利, 姚改焕. 1995. 华北聚煤区火山灰蚀变粘土岩夹矸的研究[J]. 中国煤田地质, 7(1): 59−63.

    Google Scholar

    [89] 刘建国. 2018. 高岭土在生产橡胶管填料中的应用[J]. 化工管理, (2): 154, 156.

    Google Scholar

    [90] 刘霖松, 石松林, 孙俊民, 李锦涛, 王兆国, 李佳星, 刘钦甫. 2022. 准格尔煤田高铝煤物质组成及成因[J]. 矿业科学学报, 7(1): 101−112.

    Google Scholar

    [91] 孟宇航, 尚玺, 张乾, 杨华明. 2020. 高岭土的功能化改性及其战略性应用[J]. 矿产保护与利用, 39(6): 69−76.

    Google Scholar

    [92] 聂晓亮, 汪龙飞. 2020. 中国主要风化残积型高岭土矿分布及成矿模式[J]. 中国金属通报, (7): 59−60.

    Google Scholar

    [93] 乔炜, 邹伟曦, 陈强. 2007. 剥片高岭土的开发与应用[J]. 非金属矿, 182(S1): 19−20.

    Google Scholar

    [94] 仇影, 吴其胜, 黎水平, 张长森. 2013. 二元有机/煤系高岭土复合相变储能材料的制备及其热性能[J]. 材料科学与工程学报, (2): 5.

    Google Scholar

    [95] 孙义高, 艾博, 姚翔, 佘刚. 2018. 纳米高岭土在矿用卡车轮胎中的应用[J]. 化工新型材料, 46(9): 4.

    Google Scholar

    [96] 陶维屏, 杨雅秀, 陈欣强. 1985. 中国高岭土矿床成因类型[C]∥国际交流会议组委会. 国际交流学术论文集4: 物探与化探. 北京: 地质出版社, 299−309.

    Google Scholar

    [97] 王登红. 2019. 关键矿产的研究意义, 矿种厘定, 资源属性, 找矿进展, 存在问题及主攻方向[J]. 地质学报, 93(6): 1189−1209.

    Google Scholar

    [98] 王祖福, 刘兆莹, 龚夏生. 1987. 四川北川老林包的埃洛石[J]. 成都地质学院学报, (1): 21−30.

    Google Scholar

    [99] 魏博, 吴小缓, 彭春艳, 李渴, 刘志勇. 2020. 国外高岭土产业发展现状研究[J]. 中国非金属矿工业导刊, (3): 52−55.

    Google Scholar

    [100] 吴俊华, 龚敏, 周雪桂, 王川, 杨紫文, 罗青, 李艳军. 2023. 赣南小坑超大型高岭土矿床原岩时代及源区: 锆石及独居石U—Pb年代学及Hf同位素制约[J]. 地球科学, 48(9): 3245−3257.

    Google Scholar

    [101] 吴宇杰. 2021. 中国高岭土矿床时空分布规律[D]. 合肥: 合肥工业大学, 1−93.

    Google Scholar

    [102] 夏琤. 1981. 苏州阳西风化型高岭土矿物的形成与演化[J]. 地质科学, (4): 368−375, 415.

    Google Scholar

    [103] 夏琤, 张宁克. 1986. 珍珠石矿物的研究[J]. 地质科学, (4): 365−370.

    Google Scholar

    [104] 徐宁宁, 张守鹏, 王永诗, 邱隆伟. 2022. 鄂尔多斯盆地北部二叠系下石盒子组致密砂岩成岩作用及孔隙成因[J]. 沉积学报, 40(2): 422−434.

    Google Scholar

    [105] 徐志刚, 陈毓川, 王登红, 陈郑辉. 2008. 中国成矿区带划分方案[M]. 北京: 地质出版社, 1−138.

    Google Scholar

    [106] 阴江宁, 丁建华, 陈炳翰, 刘建楠, 刘新星. 2022. 中国高岭土矿成矿地质特征与资源潜力评价[J]. 中国地质, 49(1): 121−134.

    Google Scholar

    [107] 殷海荣, 武丽华, 陈福, 马亮, 亓丰源. 2006. 纳米高岭土的研究与应用[J]. 材料导报, 20(F05): 4.

    Google Scholar

    [108] 詹培敏, 于周平, 孙斌祥, 何智海. 2019. 纳米高岭土在水泥基材料中的应用与研究进展[J]. 硅酸盐通报, 38(5): 1420−1424, 1432.

    Google Scholar

    [109] 张龙, 刘池阳, 雷开宇, 孙莉, 寸小妮, 杜芳鹏, 邓辉. 2017. 鄂尔多斯盆地东北部侏罗纪延安组漂白砂岩成因及古风化壳形成环境探讨[J]. 地质学报, 91(6): 1345−1359.

    Google Scholar

    [110] 张炳社, 徐永, 王军, 张志海, 高春华. 2013. 陕西府谷高岭土矿沉积环境与成矿关系研究[J]. 西北地质, 46(2): 174−180.

    Google Scholar

    [111] 张慧. 1992. 煤系地区中高岭石的形态—成因类型[J]. 矿物学报, 12(1): 53−57.

    Google Scholar

    [112] 张术根, 刘小胡, 丁俊. 2006. 湖南辰溪仙人湾埃洛石型高岭土的矿物学特征与成因简析[J]. 岩石矿物学杂志, (5): 433−439.

    Google Scholar

    [113] 张宜, 刁波, 喻晶, 樊光辉. 2016. 高岭土竹纤维止血纱布的制备与评价[J]. 华南国防医学杂志, 30(1): 9−13.

    Google Scholar

    [114] 赵飞, 张志玺, 王宁祖, 张文斌. 2019. 贵州省黔西县枫香地区上二叠统龙潭组埃洛石矿物学特征及成因分析[J]. 甘肃地质, 28(Z1): 41−47.

    Google Scholar

    [115] 赵世煌, 宋焕霞, 赵桂军, 韩淑琛. 2015. 煤炭勘查实物地质资料的二次开发——以陕西府谷海则庙与段寨矿区高岭土矿勘查为例[J]. 中国煤炭地质, 27(7): 74−76. doi: 10.3969/j.issn.1674-1803.2015.07.18

    CrossRef Google Scholar

    [116] 郑直, 吕达人, 冯墨林, 冯宝华, 金太权. 1983. 中国高岭土矿床研究[C]//中国地质科学院院报编辑部. 中国地质科学院文集(1981). 北京: 地质出版社, 86.

    Google Scholar

    [117] 郑直, 吕达人, 金太权, 夏琤, 陈开惠, 姬素荣. 1980. “高岭“名称的来源及中国使用高岭土最早的历史[J]. 地质论评, (3): 272—273.

    Google Scholar

    [118] 郑直, 吕达人, 周国平. 1987. 云南腾冲地热区高岭土的形成和蚀变矿物组合特征[C]//矿床地质研究所. 中国地质科学院矿床地质研究所文集, (20): 5−11.

    Google Scholar

    [119] 周国平, 林毓川. 1991. 沉积—风化型高岭土矿床及其特征[J]. 矿床地质, (3): 272−282.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(8)

Article Metrics

Article views(33) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint