2025 Vol. 52, No. 2
Article Contents

LI Jiang, MA Zhenbo, YANG Yan, HUANG Jianhan, ZHANG Rongzhen, HAN Jiangwei. 2025. Reviews on apatite and its application in the field of ore deposit geology[J]. Geology in China, 52(2): 574-596. doi: 10.12029/gc20240313001
Citation: LI Jiang, MA Zhenbo, YANG Yan, HUANG Jianhan, ZHANG Rongzhen, HAN Jiangwei. 2025. Reviews on apatite and its application in the field of ore deposit geology[J]. Geology in China, 52(2): 574-596. doi: 10.12029/gc20240313001

Reviews on apatite and its application in the field of ore deposit geology

    Fund Project: Supported by the National Nature Science Foundation of China (No.41702098, No.41902079).
More Information
  • Author Bio: LI Jiang, male, born in 1989, doctor, engineer, mainly engaged in the mineral exploration and regional metallogenic research; E−mail: lijiang@cug.edu.cn
  • Corresponding author: HUANG Jianhan, born in 1990, doctor, lecturer, mainly engaged in the deposit geology and mineral chemistry; E−mail: huangjianhan@ncwu.edu.cn
  • This paper is the result of mineral exploration engineering.

    Objective

    Apatite is a mineral commonly present in igneous, metamorphic, and sedimentary rocks. Its crystal structure can host various elements such as Sr, Mn, REEs, U, Th, F, Cl, and others. Apatite's chemical composition is dictated by magma and hydrothermal processes, which makes it a subject of interest for many researchers.

    Methods

    This paper reviews common methods and the latest research achievements of apatite in mineralogy, isotope chronology, deposit geochemistry, artificial intelligence, and exploration indication.

    Results

    Elemental (e.g., Sr, Y, and REEs) and Sr−Nd isotopic compositions of magmatic apatite can help identify the source of its parental magma. Elements such as Ce, Eu, Ga, and Mn can indicate the oxidation state of the magma, while F and Cl can be used to estimate the volatile content of the melt. The U−Pb isotope system of apatite can record the crystallization age of its host rock. Low−temperature thermochronology is often used to study the degree of denudation after ore deposit formation. Hydrothermal apatite's structure and composition bear information about the fluid, which can indicate the fluid source, properties, and other information related to magmatic−hydrothermal mineralization processes. Artificial intelligence techniques such as machine learning can process massive amounts of apatite data to discriminate rock types and deposit types.

    Conclusions

    Apatite is a mineral that is crucial for studying mineral deposits and exploring ore deposits. Future researches should focus on the relationship between hydrothermal apatite and the metallogenic process. Additionally, combining artificial intelligence with apatite analyses to trace the diagenetic and metallogenic process is a promising avenue for further study.

  • 加载中
  • [1] Azadbakht Z, Lentz D, Mcfarlane C. 2018. Apatite chemical compositions from Acadian−related granitoids of New Brunswick, Canada: Implications for petrogenesis and metallogenesis[J]. Minerals, 8(12): 598. doi: 10.3390/min8120598

    CrossRef Google Scholar

    [2] Barfod G H, Krogstad E J, Frei R, Albarède F. 2005. Lu−Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu−Hf isotopic closure in metamorphic apatite[J]. Geochimica et Cosmochimica Acta, 69(7): 1847−1859. doi: 10.1016/j.gca.2004.09.014

    CrossRef Google Scholar

    [3] Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration; trace−element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76(1): 45−69. doi: 10.1016/S0375-6742(02)00204-2

    CrossRef Google Scholar

    [4] Belousova E A, Walters S, Griffin W L, O'Reilly S Y, Allen C M. 2001. Trace−element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland[J]. Australian Journal of Earth Sciences, 48(4): 603−619. doi: 10.1046/j.1440-0952.2001.00879.x

    CrossRef Google Scholar

    [5] Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry; a potential indicator mineral for exploring covered porphyry copper deposits[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 111(6): 1397−1410. doi: 10.2113/econgeo.111.6.1397

    CrossRef Google Scholar

    [6] Boyce J W, Liu Y, Rossman G R, Guan Y, Eiler J M, Stolper E M, Taylor L A. 2010. Lunar apatite with terrestrial volatile abundances[J]. Nature, 466(7305): 466−469. doi: 10.1038/nature09274

    CrossRef Google Scholar

    [7] Boyce J W, Tomlinson S M, McCubbin F M, Greenwood J P, Treiman A H. 2014. The lunar apatite paradox[J]. Science, 344(6182): 400−402. doi: 10.1126/science.1250398

    CrossRef Google Scholar

    [8] Boynton W V. 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[M]. Developments in Geochemistry, Henderson P, Elsevier. 2, 63−114.

    Google Scholar

    [9] Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas?[J]. Lithos, 384−385: 105900.

    Google Scholar

    [10] Cao M J, Evans N J, Hollings P, Cooke D R, Mcinnes B I A, Qin K Z. 2021. Apatite texture, composition, and O−Sr−Nd isotope signatures record magmatic and hydrothermal fluid characteristics at the Black Mountain porphyry deposit, Philippines[J]. Economic Geology, 116(5): 1189−1207. doi: 10.5382/econgeo.4827

    CrossRef Google Scholar

    [11] Cao M J, Evans N J, Qin K Z, Danišík M, Li G M, Mcinnes B I A. 2019. Open apatite Sr isotopic system in low−temperature hydrous regimes[J]. Journal of Geophysical Research: Solid Earth, 124(11): 11192−11203. doi: 10.1029/2019JB018085

    CrossRef Google Scholar

    [12] Cao M J, Hollings P, Evans N J, Cooke D R, Mcinnes B I A, Zhao K D, Qin K Z, Li D F, Sweet G. 2020. In situ elemental and Sr isotope characteristics of magmatic to hydrothermal minerals from the Black Mountain porphyry deposit, Baguio District, Philippines[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 115(4): 927−944. doi: 10.5382/econgeo.4701

    CrossRef Google Scholar

    [13] Cao M J, Li G M, Qin K Z, Seitmuratova E Y, Liu Y. 2012. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization[J]. Resource Geology, 62(1): 63−83. doi: 10.1111/j.1751-3928.2011.00180.x

    CrossRef Google Scholar

    [14] Chen M H, Leon B, Liao X, Zhang Z Q, Li Q L. 2019. Hydrothermal apatite SIMS Th/Pb dating; constraints on the timing of low temperature hydrothermal Au deposits in Nibao, SW China[J]. Lithos, 324−325: 418−428.

    Google Scholar

    [15] Chen N, Pan Y M, Weil J A. 2002. Electron paramagnetic resonance spectroscopic study of synthetic fluorapatite: Part I. Local structural environment and substitution mechanism of Gd3+ at the Ca2 site[J]. American Mineralogist, 87: 37−46. doi: 10.2138/am-2002-0105

    CrossRef Google Scholar

    [16] Chen W T, Zhou M F, Gao J F. 2014. Constraints of Sr isotopic compositions of apatite and carbonates on the origin of Fe and Cu mineralizing fluids in the Lala Fe−Cu−(Mo, LREE) deposit, SW China[J]. Ore Geology Reviews, 61: 96−106. doi: 10.1016/j.oregeorev.2014.01.008

    CrossRef Google Scholar

    [17] Chen Xiaocui, Mao Kainan, Yang Wei, Yang Wu, Yan Jun, Li Peng, Jiang Hai. 2023. The indicative significance of apatite geochemical characteristics on tin metallogenic capacity of granite: A case study of the Xiaolonghe tin deposit in the Tengchong−Lianghe tin belt, western Yunnan[J]. Acta Geologica Sinica, 97(11): 3846−3860 (in Chinese with English abstract).

    Google Scholar

    [18] Chen Y, Liu J G, Chen L L, Zhao H L. 2025. Mesozoic multi−direction collision tectonic evolution of the Ordos Basin, China: Insights from the detrital zircon and apatite (U−Th)/He analyses[J]. China Geology, 8(1): 141−158.

    Google Scholar

    [19] Chew D M, Petrus J A, Kamber B S. 2014. U−Pb LA−ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 363: 185−199. doi: 10.1016/j.chemgeo.2013.11.006

    CrossRef Google Scholar

    [20] Chew D M, Spikings R A. 2015. Geochronology and thermochronology using apatite; Time and temperature, lower crust to surface[J]. Elements (Quebec), 11(3): 189−194. doi: 10.2113/gselements.11.3.189

    CrossRef Google Scholar

    [21] Chew D M, Spikings R A. 2021. Apatite U−Pb thermochronology: A review[J]. Minerals, 11(10): 1095. doi: 10.3390/min11101095

    CrossRef Google Scholar

    [22] Chu M, Wang K, Griffin W L, Chung S, O Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology, 50(10): 1829−1855. doi: 10.1093/petrology/egp054

    CrossRef Google Scholar

    [23] Chung C, You C, Schopf J W, Takahata N, Sano Y. 2020. NanoSIMS U−Pb dating of fossil−associated apatite crystals from Ediacaran (~570 Ma) Doushantuo Formation[J]. Precambrian Research, 349: 105564. doi: 10.1016/j.precamres.2019.105564

    CrossRef Google Scholar

    [24] Cooke D R, Wilkinson J J, Baker M, Agnew P, Phillips J, Chang Z, Chen H, Wilkinson C C, Inglis S, Hollings P, Zhang L, Gemmell J B, White N C, Danyushevsky L, Martin H. 2020. Using mineral chemistry to aid exploration; a case study from the Resolution porphyry Cu−Mo deposit, Arizona[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 115(4): 813−840. doi: 10.5382/econgeo.4735

    CrossRef Google Scholar

    [25] Coulson I M, Dipple G M, Raudsepp M. 2001. Evolution of HF and HCl activity in magmatic volatiles of the gold−mineralized Emerald Lake Pluton, Yukon Territory, Canada[J]. Mineralium Deposita, 36(6): 594−606. doi: 10.1007/s001260100191

    CrossRef Google Scholar

    [26] Dawson J B, Hinton R W. 2003. Trace−element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa[J]. Mineralogical Magazine, 67(5): 921−930. doi: 10.1180/0026461036750151

    CrossRef Google Scholar

    [27] Decrée S, Cawthorn G, Deloule E, Mercadier J, Frimmel H, Baele J. 2020. Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA−ICPMS and in−situ O and Sr isotope analyses[J]. Contributions to Mineralogy and Petrology, 175: 34. doi: 10.1007/s00410-020-1671-6

    CrossRef Google Scholar

    [28] Deer W A, Howie R A, Zussman J. 1996. The Rock−forming Minerals. Vol5: Non−silicates, Apatite[M]. 2nd ed. New York: Londman.

    Google Scholar

    [29] Ding T, Ma D S, Lu J J, Zhang R Q. 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi–Hang zone, China: Implications for petrogenesis and metallogenesis[J]. Ore Geology Reviews, 69: 104−117. doi: 10.1016/j.oregeorev.2015.02.004

    CrossRef Google Scholar

    [30] Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt–fluid(s)–apatite systems at 50 MPa and 850–950°C[J]. Chemical Geology, 384: 94−111. doi: 10.1016/j.chemgeo.2014.06.023

    CrossRef Google Scholar

    [31] Donelick R A. 2005. Apatite fission−track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1): 49−94. doi: 10.2138/rmg.2005.58.3

    CrossRef Google Scholar

    [32] Fleet M E, Pan Y. 1995. Site preference of rare earth elements in fluorapatite[J]. American Mineralogist, 80(3/4): 329−335.

    Google Scholar

    [33] Garzanti E. 2017. The maturity myth in sedimentology and provenance analysis[J]. Journal of Sedimentary Research, 87(4): 353−365. doi: 10.2110/jsr.2017.17

    CrossRef Google Scholar

    [34] Glorie S, Jepson G, Konopelko D, Mirkamalov R, Meeuws F, Gilbert S, Gillespie J, Collins A S, Xiao W, Dewaele S, De Grave J. 2019. Thermochronological and geochemical footprints of post−orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan[J]. Gondwana Research, 71: 1−15. doi: 10.1016/j.gr.2019.01.011

    CrossRef Google Scholar

    [35] Golani P R. 2021. Assessment of Ore Deposit Settings, Structures and Proximity Indicator Minerals in Geological Exploration[M]. Springer Mineralogy, 1−389.

    Google Scholar

    [36] Goldoff B, Webster J D, Harlov D E. 2012. Characterization of fluor−chlorapatites by electron probe microanalysis with a focus on time−dependent intensity variation of Halogens[J]. American Mineralogist, 97: 1103−1115. doi: 10.2138/am.2012.3812

    CrossRef Google Scholar

    [37] Guo J, Zhang R Q, Li C Y, Sun W D, Hu Y B, Kang D M, Wu J D. 2018a. Genesis of the Gaosong Sn–Cu deposit, Gejiu district, SW China: Constraints from in situ LA−ICP−MS cassiterite U–Pb dating and trace element fingerprinting[J]. Ore Geology Reviews, 92: 627−642. doi: 10.1016/j.oregeorev.2017.11.033

    CrossRef Google Scholar

    [38] Guo J, Zhang R Q, Sun W D, Ling M X, Hu Y B, Wu K, Luo M, Zhang L C. 2018b. Genesis of tin−dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U–Pb ages and trace element compositions[J]. Ore Geology Reviews, 95: 863−879. doi: 10.1016/j.oregeorev.2018.03.023

    CrossRef Google Scholar

    [39] Harja M, Ciobanu G. 2018. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite[J]. Science of the Total Environment, 628−629: 36−43.

    Google Scholar

    [40] Harlov D E, Wirth R, Foerster H. 2005. An experimental study of dissolution−reprecipitation in fluorapatite; fluid infiltration and the formation of monazite[J]. Contributions to Mineralogy and Petrology, 150(3): 268−286. doi: 10.1007/s00410-005-0017-8

    CrossRef Google Scholar

    [41] Harlov D E. 2015. Apatite: A fingerprint for metasomatic processes[J]. Elements (Quebec), 11(3): 171−176. doi: 10.2113/gselements.11.3.171

    CrossRef Google Scholar

    [42] Henrichs I A, Chew D M, O'Sullivan G J, Mark C, McKenna C, Guyett P. 2019. Trace element (Mn−Sr−Y−Th−REE) and U−Pb isotope systematics of metapelitic apatite during progressive greenschist−to amphibolite−facies barrovian metamorphism[J]. Geochemistry, Geophysics, Geosystems, 20: 4103−4129.

    Google Scholar

    [43] Henrichs I A, O'Sullivan G, Chew D M, Mark C, Babechuk M G, Mckenna C, Emo R. 2018. The trace element and U−Pb systematics of metamorphic apatite[J]. Chemical Geology, 483: 218−238. doi: 10.1016/j.chemgeo.2017.12.031

    CrossRef Google Scholar

    [44] Hu Xiaoyan, Bi Xianwu, Hu Ruizhong, Shang Linbo, Fan Wenling. 2007. Advances in tin distribution between granitic melts and coexisting aqueous fluids and a review of tin in fluids and melts[J]. Advances in Earth Science, 22(3): 281−289 (in Chinese with English abstract).

    Google Scholar

    [45] Jiang Guohao. 2004. Chlorine and Fluorine Control on Copper and Tungsten Mineralization in Hydrothermal Deposits—Cases of Dexing Porphyry Copper Deposit and Dajishan Tungsten Deposit in Jiangxi Province[D]. Guizhou: Chinese Academy of Science (Institute of Geochemistry), 1−107(in Chinese with English abstract).

    Google Scholar

    [46] Jiang Haoyuan, Zhao Zhidan, Zhu Xinyou, Yang Shangsong, Jiang Binbin, Yang Chaolei, Mao Chunwei. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).

    Google Scholar

    [47] Kempe U, Götze J. 2002. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare−metal deposits[J]. Mineralogical Magazine, 66(1): 151−172. doi: 10.1180/0026461026610019

    CrossRef Google Scholar

    [48] Kharkongor M B K, Glorie S, Mulder J, Kirkland C L, Chew D, Kohn B, Simpson A. 2023. Apatite laser ablation Lu−Hf geochronology: A new tool to date mafic rocks[J]. Chemical Geology, 636: 121630.

    Google Scholar

    [49] Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co−variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer[J]. American Mineralogist, 102(3): 548−557. doi: 10.2138/am-2017-5907

    CrossRef Google Scholar

    [50] Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake U A, Berugoda Arachchige D M, Kumarasinghe A R, Dahanayake D, Karunaratne V, Amaratunga G A J. 2017. Urea−Hydroxyapatite Nanohybrids for Slow Release of Nitrogen[J]. ACS Nano, 11(2): 1214−1221. doi: 10.1021/acsnano.6b07781

    CrossRef Google Scholar

    [51] Krneta S, Ciobanu C L, Cook N J, Ehrig K, Kontonikas−Charos A. 2016. Apatite at Olympic Dam, South Australia: A petrogenetic tool[J]. Lithos, 262: 470−485. doi: 10.1016/j.lithos.2016.07.033

    CrossRef Google Scholar

    [52] Labanieh S, Chauvel C, Germa A, Quidelleur X. 2012. Martinique: A clear case for sediment melting and slab dehydration as a function of distance to the trench[J]. Journal of Petrology, 53: 2441−2464. doi: 10.1093/petrology/egs055

    CrossRef Google Scholar

    [53] Lassiter J C, Hauri E H, Nikogosian I K, Barsczus H G. 2002. Chlorine–potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine−induced melting of oceanic crust[J]. Earth and Planetary Science Letters, 202(3): 525−540.

    Google Scholar

    [54] Li H J, Hermann J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800°C: A new experimentally derived thermodynamic model[J]. American Mineralogist, 102(3): 580−594. doi: 10.2138/am-2017-5891

    CrossRef Google Scholar

    [55] Li J, Chen S Y, Zhao Y H. 2022. Trace elements in apatite from Gejiu Sn polymetallic district: Implications for petrogenesis, metallogenesis and exploration[J]. Ore Geology Reviews, 145: 104880. doi: 10.1016/j.oregeorev.2022.104880

    CrossRef Google Scholar

    [56] Li Jiang. 2022. Significance of Apatite for Metallogenic Mechanism and Prospecting Evaluation of Gejiu Sn−Cu Polymetallic Deposit in Yunnan Province[D]. Wuhan: China University of Geosciences, 1−174(in Chinese with English abstract).

    Google Scholar

    [57] Li Tianyi, Zhou Yan, Fang Shi, He Sheng, He Zhiliang, Fan Dehua. 2013. A new method for apatite fission track dating—the Laser−ICPMS method[J]. Oil & Gas Geology, 34(4): 550−557 (in Chinese with English abstract).

    Google Scholar

    [58] Lin S R, Hu K, Cao J, Liu Y, Liu S J, Zhang B. 2023. Geochemistry and origin of hydrothermal apatite in Carlin−type Au deposits, southwestern China (Gaolong deposit)[J]. Ore Geology Reviews, 154: 105312. doi: 10.1016/j.oregeorev.2023.105312

    CrossRef Google Scholar

    [59] Liu Min, Song Shiwei, Cui Yurong, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. In−situ U−Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform−like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province[J]. Acta Petrologica Sinica. 37(3): 717−732(in Chinese with English abstract).

    Google Scholar

    [60] Liu Shirong, Hu Ruizhong, Zhou Guofu, Gong Guohong, Jin Zzhisheng, Zheng Wenqin. 2008. Study on the mineral composition of the clastic phosphate in Zhijin phosphate deposits, China[J]. Acta Mineralogica Sinica, 28(3): 244−250 (in Chinese with English abstract).

    Google Scholar

    [61] Liu W H, Danišík M, Zhang J, Hu X L. 2020. Apatite (U–Th)/He thermochronometry of iron deposits in the central Ningwu volcanic basin, eastern China: Implications for exhumation and preservation[J]. Journal of Geochemical Exploration, 217: 106608. doi: 10.1016/j.gexplo.2020.106608

    CrossRef Google Scholar

    [62] Liu Yu, Peng Mingsheng. 2003. Advances in the researches on structural substitution of apatite[J]. Acta Petrologica et Minralogica, 22(4): 413−415 (in Chinese with English abstract).

    Google Scholar

    [63] Liu Zhenjiang, Wang Jianping, Zheng Dewen, Liu Jiajun, Liu Jun, Fu Chao. 2010. Exploration prospect and post−ore denudation in the northwestern Jiaodong Gold Province, China: Evidence from apatite fission track thermochronology[J]. Acta Petrologica Sinica, 26(12): 3597−3611(in Chinese with English abstract).

    Google Scholar

    [64] Loader M A, Wilkinson J J, Armstrong R N. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J]. Earth and Planetary Science Letters, 472: 107−119. doi: 10.1016/j.jpgl.2017.05.010

    CrossRef Google Scholar

    [65] Lumiste K, Mänd K, Bailey J, Paiste P, Lang L, Lepland A, Kirsimäe K. 2019. REE+Y uptake and diagenesis in Recent sedimentary apatites[J]. Chemical Geology, 525: 268−281. doi: 10.1016/j.chemgeo.2019.07.034

    CrossRef Google Scholar

    [66] Mao M, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions; a robust new tool for mineral exploration[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 111(5): 1187−1222. doi: 10.2113/econgeo.111.5.1187

    CrossRef Google Scholar

    [67] Maraszewska M, Majka J, Harlov D. E, Manecki M, Schneider D. A, Broska I, Myhre P. 2023. Multi-Stage Metamorphic and Metasomatic Imprints on Apatite-Monazite-Xenotime Assemblages in a Set of Small Iron Oxide-Apatite (Ioa) Ore Bodies, Prins Karls Forland, Svalbard[J]. Ore Geology Reviews, 155: 105344.

    Google Scholar

    [68] Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?” [Geochimica et Cosmochimica Acta 132 (2014) 101–119][J]. Geochimica et Cosmochimica Acta, 183: 267−270. doi: 10.1016/j.gca.2016.02.017

    CrossRef Google Scholar

    [69] Mathez E A, Webster J D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite−silicate melt−fluid[J]. Geochimica et Cosmochimica Acta, 69(5): 1275−1286. doi: 10.1016/j.gca.2004.08.035

    CrossRef Google Scholar

    [70] McClellan G H, Van Kauwenbergh S J, Notholt A J G, Jarvis I. 1990. Mineralogy of sedimentary apatites[J]. Geological Society Special Publication, 52(1): 23−31. doi: 10.1144/GSL.SP.1990.052.01.03

    CrossRef Google Scholar

    [71] McCubbin F M, Vander Kaaden K E, Tartèse R, Boyce J W, Mikhail S, Whitson E S, Bell A S, Anand M, Franchi I A, Wang J, Hauri E H. 2015. Experimental investigation of F, Cl, and OH partitioning between apatite and Fe−rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C[J]. American Mineralogist, 100(8/9): 1790−1802.

    Google Scholar

    [72] Migdisov A A, Williams−Jones A E, Wagner T. 2009. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride− and chloride−bearing aqueous solutions at temperatures up to 300°C[J]. Geochimica et Cosmochimica Acta, 73(23): 7087−7109. doi: 10.1016/j.gca.2009.08.023

    CrossRef Google Scholar

    [73] Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta, 132: 101−119. doi: 10.1016/j.gca.2014.01.040

    CrossRef Google Scholar

    [74] Nadoll P, Mauk J L, Leveille R A, Koenig A E. 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the Southwestern United States[J]. Mineralium Deposita, 50(4): 493−515. doi: 10.1007/s00126-014-0539-y

    CrossRef Google Scholar

    [75] O'Sullivan G, Chew D, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

    CrossRef Google Scholar

    [76] Palma G, Barra F, Reich M, Valencia V, Simon A C, Vervoort J, Leisen M, Romero R. 2019. Halogens, trace element concentrations, and Sr−Nd isotopes in apatite from iron oxide−apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization[J]. Geochimica et Cosmochimica Acta, 246: 515−540. doi: 10.1016/j.gca.2018.12.019

    CrossRef Google Scholar

    [77] Pan L C, Hu R Z, Wang X S, Bi X W, Zhu J J, Li C S. 2016. Apatite trace element and halogen compositions as petrogenetic−metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China[J]. Lithos, 254−255: 118−130.

    Google Scholar

    [78] Pan Y, Fleet M E. 2002. Compositions of the apatite−group minerals: Substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry, 48(1): 13−49. doi: 10.2138/rmg.2002.48.2

    CrossRef Google Scholar

    [79] Peng G, Luhr J F, Mcgee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist, 82(11/12): 1210−1224.

    Google Scholar

    [80] Piccoli P M, Candela P A. 2002. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 48(1): 255−292. doi: 10.2138/rmg.2002.48.6

    CrossRef Google Scholar

    [81] Pickering J, Matthews W, Enkelmann E, Guest B, Sykes C, Koblinger B M. 2020. Laser ablation (U−Th−Sm)/He dating of detrital apatite[J]. Chemical Geology, 548: 119683. doi: 10.1016/j.chemgeo.2020.119683

    CrossRef Google Scholar

    [82] Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts[J]. Geochimica et Cosmochimica Acta, 70(17): 4513−4527. doi: 10.1016/j.gca.2006.06.162

    CrossRef Google Scholar

    [83] Putnis A. 2002. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms[J]. Mineralogical Magazine, 66(5): 689−708. doi: 10.1180/0026461026650056

    CrossRef Google Scholar

    [84] Qian Z S, Yang F, Liu C, Xue F, Santosh M, Yang B, Zhang S, Kim S W. 2022. Late Mesozoic Huangbeiling S−type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution[J]. Geochemistry, 82(1): 125857. doi: 10.1016/j.chemer.2021.125857

    CrossRef Google Scholar

    [85] Qiu K F, Zhou T, Chew D, Hou Z L, Müller A, Yu H C, Lee R G, Chen H, Deng J. 2024. Apatite trace element composition as an indicator of ore deposit types: A machine learning approach[J]. American Mineralogist, 109(2): 303−314. doi: 10.2138/am-2022-8805

    CrossRef Google Scholar

    [86] Qu P, Yang W B, Niu H C, Li N B, Wu D. 2021. Apatite fingerprints on the magmatic−hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China[J]. GSA Bulletin, (7/8): 1863−1876.

    Google Scholar

    [87] Robb L. 2005. Introduction to Ore−Forming Processes[M]. UK: Blackwell Publishing. 1−343.

    Google Scholar

    [88] Rønsbo J G. 2008. Apatite in the Ilímaussaq alkaline complex: Occurrence, zonation and compositional variation[J]. Lithos, 106(1−2): 71−82.

    Google Scholar

    [89] Sang Shengping, Lu Haijian, Ye Jiacan, Pan Jiawei, Li Haibing. 2024. Sediment recycling in the northern Qaidam Basin margin during the Cenozoic: A case study from the Dahonggou section[J]. Geology in China, 51(2): 606−622 (in Chinese with English abstract).

    Google Scholar

    [90] Serova A A, Spiridonov E M. 2018. Three types of apatite in Norilsk sulfide ores[J]. Geochemistry International, 56(5): 474−483. doi: 10.1134/S0016702918050075

    CrossRef Google Scholar

    [91] Sha L, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser−ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 63(22): 3861−3881. doi: 10.1016/S0016-7037(99)00210-0

    CrossRef Google Scholar

    [92] Simpson A, Gilbert S, Tamblyn R, Hand M, Spandler C, Gillespie J, Nixon A, Glorie S. 2021. In−Situ Lu Hf geochronology of garnet, apatite and xenotime by La−ICP−MS/MS[J]. Chemical Geology, 577: 120299. doi: 10.1016/j.chemgeo.2021.120299

    CrossRef Google Scholar

    [93] Sommerauer J, Katz−Lehnert K. 1985. A new partial substitution mechanism of ${\mathrm{CO}}_3^{2-} $/CO3OH3− and ${\mathrm{SiO}}_4^{4-} $ for the ${\mathrm{PO}}_4^{3-} $ group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW−Germany)[J]. Contributions to Mineralogy and Petrology, 91(4): 360−368. doi: 10.1007/BF00374692

    CrossRef ${\mathrm{CO}}_3^{2-} $/CO3OH3− and ${\mathrm{SiO}}_4^{4-} $ for the ${\mathrm{PO}}_4^{3-} $ group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW−Germany)" target="_blank">Google Scholar

    [94] Spear F S, Pyle J M. 2002. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 48(1): 293−335. doi: 10.2138/rmg.2002.48.7

    CrossRef Google Scholar

    [95] Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt[J]. Chemical Geology, 506: 162−174. doi: 10.1016/j.chemgeo.2018.12.015

    CrossRef Google Scholar

    [96] Sun J F, Yang J H, Zhang J H, Yang Y H, Zhu Y S. 2021. Apatite geochemical and Sr−Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 566: 120104. doi: 10.1016/j.chemgeo.2021.120104

    CrossRef Google Scholar

    [97] Sun S J, Yang X Y, Wang G J, Sun W D, Zhang H, Li C, Ding X. 2019. In situ elemental and Sr−O isotopic studies on apatite from the Xu−Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny[J]. Chemical Geology, 510: 200−214. doi: 10.1016/j.chemgeo.2019.02.010

    CrossRef Google Scholar

    [98] Tan H M R, Huang X W, Meng Y M, Xie H, Qi L. 2023. Multivariate statistical analysis of trace elements in apatite: Discrimination of apatite with different origins[J]. Ore Geology Reviews, 153: 105269.

    Google Scholar

    [99] Tepper J H, Kuehner S M. 1999. Complex zoning in apatite from the Idaho Batholith; a record of magma mixing and intracrystalline trace element diffusion[J]. American Mineralogist, 84(4): 581−595. doi: 10.2138/am-1999-0412

    CrossRef Google Scholar

    [100] Thomson S N, Gehrels G E, Ruiz J, Buchwaldt R. 2012. Routine low−damage apatite U−Pb dating using laser ablation–multicollector–ICPMS[J]. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA2.

    Google Scholar

    [101] Toplis M J, Dingwell D B. 1996. The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts[J]. Geochimica et Cosmochimica Acta, 60(21): 4107−4121. doi: 10.1016/S0016-7037(96)00225-6

    CrossRef Google Scholar

    [102] Wang Guocan. 2002. New approach to determine the exhumation history of the sediment provenance: Detrital zircon and apatite fission−track thermochronology[J]. Geological Science and Technology Information, 21(4): 35−40 (in Chinese with English abstract).

    Google Scholar

    [103] Wang Yiwei, Mei Gang, Xie Qixing, Zhou Xiaoke, Wang Gang. 2015. Apatite fission track evidence for the Cenozoic uplift process in Garze area on the eastern margin of the Tibetan Plateau[J]. Geology in China, 42(2): 469−479 (in Chinese with English abstract).

    Google Scholar

    [104] Wang Y J, Fan H H, Qin, K Z, Evans N J, Zhang C, Zou X Y, Pang Y Q, Zhang H. 2023. Mineralization age of the Xiangshan uranium ore field, South China redefined by hydrothermal apatite U−Pb geochronology[J]. Ore Geology Reviews, 160: 105586.

    Google Scholar

    [105] Watson E B, Green T H. 1981. Apatite/liquid partition coefficients for the rare earth elements and strontium[J]. Earth and Planetary Science Letters, 56: 405−421. doi: 10.1016/0012-821X(81)90144-8

    CrossRef Google Scholar

    [106] Watson E B. 1980. Apatite and phosphorus in mantle source regions: An experimental study of apatite/melt equilibria at pressures to 25 kbar[J]. Earth and Planetary Science Letters, 51(2): 322−335. doi: 10.1016/0012-821X(80)90214-9

    CrossRef Google Scholar

    [107] Webster J D, Goldoff B A, Flesch R N, Nadeau P A, Silbert Z W. 2017. Hydroxyl, Cl, and F partitioning between high−silica rhyolitic melts−apatite−fluid(s) at 50–200 MPa and 700–1000°C[J]. American Mineralogist, 102(1): 61−74.

    Google Scholar

    [108] Webster J D, Piccoli P M, Harlov D E, Rakovan J F. 2015. Magmatic apatite; a powerful, yet deceptive, mineral[J]. Elements (Quebec), 11(3): 177−182. doi: 10.2113/gselements.11.3.177

    CrossRef Google Scholar

    [109] Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta, 73(3): 559−581. doi: 10.1016/j.gca.2008.10.034

    CrossRef Google Scholar

    [110] Wei C W, Xu C, Deng M, Song W L, Shi A G, Li Z Q, Fan C, Kuang G. 2022. Origin of metasomatic fluids in the Bayan Obo rare−earth−element deposit[J]. Ore Geology Reviews, 141: 104654. doi: 10.1016/j.oregeorev.2021.104654

    CrossRef Google Scholar

    [111] Williams−Jones A E, Migdisov A A, Samson I M. 2012. Hydrothermal mobilisation of the rare earth elements; a tale of "ceria" and "yttria"[J]. Elements (Quebec), 8(5): 355−360. doi: 10.2113/gselements.8.5.355

    CrossRef Google Scholar

    [112] Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer[J]. Chemical Geology, 148(1): 105−114.

    Google Scholar

    [113] Wu W, Lang X, Wang X, Deng Y, Du L, Wang Y, Jiang K, Zhan H, Zhaxi P, Fayek M. 2024. Cathodoluminescence and geochemical characteristics of Apatite: Implications for mineral exploration in the Xiongcun District, Tibet, China[J]. Ore Geology Reviews, 164: 105786. doi: 10.1016/j.oregeorev.2023.105786

    CrossRef Google Scholar

    [114] Wyllie P J, Cox K G, Biggar G M. 1962. The habit of apatite in synthetic systems and igneous rocks[J]. Journal of Petrology, 3(2): 238−242. doi: 10.1093/petrology/3.2.238

    CrossRef Google Scholar

    [115] Xie Fuwei, Lang Xinhai, Tang Juxin, Xiao Hongtian, Ma Di. 2019. Trace element geochemistry of zircon, apatite, and titanite of Late Cretaceous hornblende gabbro and granite porphyry in the southern Lhasa subterrane: Implications for petrogenesis and mineralization. Acta Petrologica Sinica, 35(7): 2124−2142(in Chinese with English abstract).

    Google Scholar

    [116] Yang F, Jepson G, Liu C, Qian Z S, Zhang X H, Zhang Y, Glorie S. 2022a. Uplift−exhumation and preservation of the Yumugou Mo−W deposit, East Qinling, China: Insights from multiple apatite low−temperature thermochronology[J]. Ore Geology Reviews, 141: 104670. doi: 10.1016/j.oregeorev.2021.104670

    CrossRef Google Scholar

    [117] Yang F, Mao J W, Ren W D, Qian Z S, Li C, Jepson G. 2022b. Temporal evolution and origin of the Yumugou Mo−W deposit, East Qinling, China: Evidence from molybdenite Re−Os age and U−Pb dating and geochemistry of titanite[J]. Ore Geology Reviews, 150: 105172. doi: 10.1016/j.oregeorev.2022.105172

    CrossRef Google Scholar

    [118] Yang F, Santosh M, Glorie S, Xue F, Zhang S, Zhang X H. 2020. Apatite geochronology and chemistry of Luanchuan granitoids in the East Qinling Orogen, China: Implications for petrogenesis, metallogenesis and exploration[J]. Lithos, 378−379: 105797.

    Google Scholar

    [119] Yang Jing, Shi Wei, Wang Sen, Zhang Shuanhong, Pang Jianzhang, Yang Qian, Zhang Yu, Wang Tianyu. 2023. Measurement procedure and verification of apatite fission track dating: External detector method and LA−ICP−MS/FT method[J]. Acta Geologica Sinica, 97(5): 1701−1710(in Chinese with English abstract).

    Google Scholar

    [120] Yang Li, Yuan Wanmin, Wang Ke. 2018. Research advances of thermochronology in mineral deposits[J]. Earth Science, 43(6): 1887−1902(in Chinese with English abstract).

    Google Scholar

    [121] Yang Y, Chen Y, Zhang J, Zhang C. 2013. Ore geology, fluid inclusions and four−stage hydrothermal mineralization of the Shangfanggou giant Mo–Fe deposit in Eastern Qinling, central China[J]. Ore Geology Reviews, 55: 146−161. doi: 10.1016/j.oregeorev.2013.05.007

    CrossRef Google Scholar

    [122] Yang Yongfei, Li Nuo, Yang Yan. 2009. Fluid inclusion study of the Nannihu porphyry Mo−W deposit, Luanchuan county, Henan Province[J]. Acta Petrologica Sinica. 25(10): 2550−2562(in Chinese with English abstract).

    Google Scholar

    [123] Yu Z Q, Ling H F, Chen P R, Chen W F, Fang Q C, Mavrogenes J. 2022. In situ elemental and Sr−Nd isotopic compositions of hydrothermal apatite from the Shazhou U deposit in the Xiangshan complex: Implications for the origins of ore−forming fluids of volcanic related U deposits in South China[J]. Journal of Asian Earth Sciences, 233: 105230.

    Google Scholar

    [124] Yu Z Q, Ling H F, Mavrogenes J, Chen P R, Chen W F, Fang Q C. 2019. Metallogeny of the Zoujiashan uranium deposit in the Mesozoic Xiangshan volcanic−intrusive complex, southeast China: Insights from chemical compositions of hydrothermal apatite and metal elements of individual fluid inclusions[J]. Ore Geology Reviews, 113: 103085. doi: 10.1016/j.oregeorev.2019.103085

    CrossRef Google Scholar

    [125] Yuan Wanmin. 2016. Thermochronological method of revealing conservation and changes of mineral deposits[J]. Acta Petrologica Sinica, 32(8): 2571−2578(in Chinese with English abstract).

    Google Scholar

    [126] Zeng L P, Zhao X F, Li X C, Hu H, Christopher M. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite−apatite deposit, eastern China; constraints on fluid metasomatism[J]. American Mineralogist, 101(11): 2468−2483. doi: 10.2138/am-2016-5743

    CrossRef Google Scholar

    [127] Zhang Junzhen, Chang Jian, Li Chenxing, Feng Qianqian, Zhang Haizu, Li Dan. 2024. Meso−Cenozoic tectono−thermal evolution and prospect analysis of oil and gas exploration of the eastern Kuqa Depression in the Tarim Basin[J]. Geology in China, 51(3): 799−810.

    Google Scholar

    [128] Zhang Rongwei, Peng Jiantang, Xue Chuandong Xue Lipeng, Yang Kaijun. 2019. The metallogenic thermal evolution of the Bengge gold deposit related to alkali−rich intrusive rocks in the Sanjiang region SW China: Evidence from apatite fission track (AFT) thermochronology[J]. Acta Geologica Sinica, 93(9): 2260−2272 (in Chinese with English abstract).

    Google Scholar

    [129] Zhang X N, Pan J Y, Lehmann B, Li J X, Yin S, Ouyang Y P, Wu B, Fu J L, Zhang Y, Sun Y, Wan J J, Liu T. 2023. Diagnostic REE patterns of magmatic and hydrothermal apatite in the Zhuxi tungsten skarn deposit, China[J]. Journal of Geochemical Exploration, 252: 107271. doi: 10.1016/j.gexplo.2023.107271

    CrossRef Google Scholar

    [130] Zhao Linghao, Zhan Xiuchun, Zeng Lingsen, Hu Mingyue, Sun Dongyang, Yuan Jihai. 2022. Direct calibration method for LA−HR−ICP−MS apatite U−Pb dating[J]. Rock and Mineral Analysis, 41(5): 744−753(in Chinese with English abstract).

    Google Scholar

    [131] Zhou Hongying, Gen Jianzhen, Cui Yurong, Li Huaikun, Li Huimin. 2012. In situ U−Pb dating of apatite using LA−MC−ICP−MS[J]. Acta Geoscientica Sinica, 33(6): 857−864 (in Chinese with English abstract).

    Google Scholar

    [132] Zhou Tong, Qiu Kunfeng, Wang Yu, Yu Haochen, Hou Zhaoliang. 2022. Apatite Eu/Y−Ce discrimination diagram: A big data based approach for provenance classification[J]. Acta Petrologica Sinica, 38(1): 291−299 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.01.19

    CrossRef Google Scholar

    [133] Zhou Yaoqi, Shi Bingjie, Li Su, Liu Qian, Zhang Yuncui. 2013. Geochemical research progress of accessory minerals[J]. Journal of China University of Petroleum (Edition of Natural Science), 37(4): 59−70(in Chinese with English abstract).

    Google Scholar

    [134] Zhu Xiaoqing, Wang Zhonggang, Huang Yan, Wang Ganlu. 2004. REE content and distribution in apatite and its geological tracing significance[J]. Chinese Rare Earths, 25(5): 41−45(in Chinese with English abstract).

    Google Scholar

    [135] Zirner A L K, Marks M A W, Wenzel T, Jacob D E, Markl G. 2015. Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland[J]. Lithos, 228−229: 12−22.

    Google Scholar

    [136] 陈晓翠, 毛凯楠, 杨巍, 杨梧, 闫俊, 李朋, 姜海. 2023. 磷灰石地球化学特征对花岗岩锡成矿能力的指示: 以滇西腾冲−梁河锡矿带小龙河锡矿床为例[J]. 地质学报, 97(11): 3846−3860.

    Google Scholar

    [137] 胡晓燕, 毕献武, 胡瑞忠, 尚林波, 樊文苓. 2007. 锡在花岗质熔体和流体中的性质及分配行为研究进展[J]. 地球科学进展, 22(3): 281−289. doi: 10.3321/j.issn:1001-8166.2007.03.008

    CrossRef Google Scholar

    [138] 蒋国豪. 2004. 氟、氯对热液钨、铜成矿的制约—以江西德兴铜矿, 大吉山钨矿为例[D]. 贵州: 中国科学院研究生院(地球化学研究所), 1−107.

    Google Scholar

    [139] 蒋昊原, 赵志丹, 祝新友, 杨尚松, 蒋斌斌, 杨朝磊, 茅椿伟. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213

    CrossRef Google Scholar

    [140] 李姜. 2022. 磷灰石对云南个旧锡铜多金属矿床成矿机制及找矿评价的指示意义[D]. 武汉: 中国地质大学, 1−174.

    Google Scholar

    [141] 李天义, 周雁, 方石, 何生, 何治亮, 樊德华. 2013. 磷灰石裂变径迹年龄测试分析新方法—激光剥蚀−ICP−MS法[J]. 石油与天然气地质, 34(4): 550−557. doi: 10.11743/ogg20130418

    CrossRef Google Scholar

    [142] 刘敏, 宋世伟, 崔玉荣, 陈国华, 饶建锋, 欧阳永棚. 2021. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U−Pb年代学及微量元素研究[J]. 岩石学报, 37(3): 717−732.

    Google Scholar

    [143] 刘世荣, 胡瑞忠, 周国富, 龚国洪, 金志升, 郑文勤. 2008. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, 28(3): 244−250. doi: 10.3321/j.issn:1000-4734.2008.03.003

    CrossRef Google Scholar

    [144] 刘羽, 彭明生. 2003. 磷灰石结构替换的研究进展[J]. 岩石矿物学杂志, 22(4): 413−415. doi: 10.3969/j.issn.1000-6524.2003.04.021

    CrossRef Google Scholar

    [145] 柳振江, 王建平, 郑德文, 刘家军, 刘俊, 付超. 2010. 胶东西北部金矿剥蚀程度及找矿潜力和方向—来自磷灰石裂变径迹热年代学的证据[J]. 岩石学报, 26(12): 3597−3611.

    Google Scholar

    [146] 桑胜萍, 卢海建, 叶家灿, 潘家伟, 李海兵. 2024. 柴达木盆地北缘新生代沉积物再旋回作用研究: 以大红沟剖面为例[J]. 中国地质, 51(2): 606−622. doi: 10.12029/gc20201226001

    CrossRef Google Scholar

    [147] 王国灿. 2002. 沉积物源区剥露历史分析的一种新途径—碎屑锆石和磷灰石裂变径迹热年代学[J]. 地质科技情报, 21(4): 35−40.

    Google Scholar

    [148] 王一伟, 梅刚, 谢启兴, 周晓珂, 王刚. 2015. 青藏高原东缘甘孜地区新生代隆升过程之磷灰石裂变径迹证据[J]. 中国地质, 42(2): 469−479. doi: 10.3969/j.issn.1000-3657.2015.02.008

    CrossRef Google Scholar

    [149] 谢富伟, 郎兴海, 唐菊兴, 肖鸿天, 马笛. 2019. 拉萨地块南缘晚白垩世角闪辉长岩、花岗斑岩副矿物微量元素特征对成岩成矿的指示[J]. 岩石学报, 35(7): 2124−2142. doi: 10.18654/1000-0569/2019.07.11

    CrossRef Google Scholar

    [150] 杨静, 施炜, 王森, 张拴宏, 庞建章, 杨谦, 张宇, 王天宇. 2023. 磷灰石裂变径迹实验流程的建立及验证—外探测器法和LA−ICP−MS/FT法[J]. 地质学报, 97(5): 1701−1710. doi: 10.3969/j.issn.0001-5717.2023.05.023

    CrossRef Google Scholar

    [151] 杨莉, 袁万明, 王珂. 2018. 热年代学方法、技术手段及其在矿床地质中的研究进展[J]. 地球科学, 43(6): 1887−1902.

    Google Scholar

    [152] 杨永飞, 李诺, 杨艳. 2009. 河南省栾川南泥湖斑岩型钼钨矿床流体包裹体研究[J]. 岩石学报, 25(10): 2550−2562.

    Google Scholar

    [153] 袁万明. 2016. 矿床保存变化研究的热年代学技术方法[J]. 岩石学报, 32(8): 2571−2578.

    Google Scholar

    [154] 张荣伟, 彭建堂, 薛传东, 薛力鹏, 杨开军. 2019. 西南三江甭哥与富碱侵入岩有关金矿床成矿热史的磷灰石裂变径迹年代学证据[J]. 地质学报, 93(9): 2260−2272. doi: 10.3969/j.issn.0001-5717.2019.09.011

    CrossRef Google Scholar

    [155] 赵令浩, 詹秀春, 曾令森, 胡明月, 孙冬阳, 袁继海. 2022. 磷灰石LA−ICP−MS U−Pb定年直接校准方法研究[J]. 岩矿测试, 41(5): 744−753.

    Google Scholar

    [156] 周红英, 耿建珍, 崔玉荣, 李怀坤, 李惠民. 2012. 磷灰石微区原位LA−MC−ICP−MS U−Pb同位素定年[J]. 地球学报, 33(6): 857−864.

    Google Scholar

    [157] 周统, 邱昆峰, 王瑀, 于皓丞, 侯照亮. 2022. 磷灰石Eu/Y−Ce: 基于大数据的源区类型判别新图解[J]. 岩石学报, 38(1): 291−299. doi: 10.18654/1000-0569/2022.01.19

    CrossRef Google Scholar

    [158] 周瑶琪, 史冰洁, 李素, 刘倩, 张云翠. 2013. 副矿物地球化学研究进展[J]. 中国石油大学学报(自然科学版), 37(4): 59−70.

    Google Scholar

    [159] 朱笑青, 王中刚, 黄艳, 王甘露. 2004. 磷灰石的稀土组成及其示踪意义[J]. 稀土, 25(5): 41−45. doi: 10.3969/j.issn.1004-0277.2004.05.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(106) PDF downloads(15) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint