2025 Vol. 52, No. 2
Article Contents

YE Guiqi, JI Wenbing, YANG Zhongfang, YU Tao, HOU Qingye, QIAN Kun. 2025. Research progress and prospect of oxygen isotope technique in soil−vegetation−ecology−environment studies[J]. Geology in China, 52(2): 527-573. doi: 10.12029/gc20240410003
Citation: YE Guiqi, JI Wenbing, YANG Zhongfang, YU Tao, HOU Qingye, QIAN Kun. 2025. Research progress and prospect of oxygen isotope technique in soil−vegetation−ecology−environment studies[J]. Geology in China, 52(2): 527-573. doi: 10.12029/gc20240410003

Research progress and prospect of oxygen isotope technique in soil−vegetation−ecology−environment studies

    Fund Project: Supported by the projects of Guangdong Geological Exploration and Urban Geology (No.2023−25) and “Research on the transformation factors of soil carbon sinks and carbon pool conservation in north−central Ningxia” of the Key R&D Program of Ningxia Hui Autonomous Region (No.2022BBF02036).
More Information
  • Author Bio: YE Guiqi, female, born in 2001, master candidate, majors in geochemistry, engaged in environmental geochemistry; E-mail: yegq77@163.com
  • Corresponding author: JI Wenbing, male, born in 1991, assistant researcher, majors in geochemistry and ecological geochemistry; E-mail:13121531228@163.com
  • This paper is the result of environmental geological survey engineering.

    Objective

    Oxygen is one of the basic elements that make up living matter, and the oxygen cycle in nature is the basic guarantee for life activities. Oxygen isotope technology is a powerful tracer that can effectively indicate biogeochemical cycling processes and has been widely used in ecological and environmental research.

    Methods

    This paper reviewes the fractionation mechanism of oxygen isotopes and its application in soil−vegetation−ecological environment by reviewing a large number of literatures on oxygen isotopes.

    Results

    Depending on the large isotope mass ratio difference, oxygen isotopes can undergo the greatest degree of isotope fractionation under natural conditions. The application of oxygen isotopes mainly includes three aspects: (1) Tracing the source of environmental pollutants; (2) Paleoenvironment and paleoclimate restoration; (3) Tracing the geographical origin of food (animals).

    Conclusions

    In practice, oxygen isotopes are usually used together with other isotopes (hydrogen, carbon, nitrogen, etc.) to track multi-dimensional climate, vegetation development, and geographical location. In the future, oxygen stable isotopes can be combined with substitute models in the fields of global change, such as tree rings, foraminifera, loess, and salt lakes, and play a more important role in environmental ecology research.

  • 加载中
  • [1] Agterhuis T, Ziegler M, de Winter N J, Lourens L J. 2022. Warm deep−sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry[J]. Communications Earth & Environment, 3(1): 39.

    Google Scholar

    [2] Acha E M, Mianzan H, Guerrero R, Carreto J, Giberto D, Montoya N, Carignan M. 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary[J]. Continental Shelf Research, 28(13): 1579−1588. doi: 10.1016/j.csr.2007.01.031

    CrossRef Google Scholar

    [3] Affek H P, Eiler J M. 2006. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath[J]. Geochimica et Cosmochimica Acta, 70(1): 1−12. doi: 10.1016/j.gca.2005.08.021

    CrossRef Google Scholar

    [4] Alexander B, Thiemens M, Farquhar J, Kaufman A, Savarino J, Delmas R. 2003. East Antarctic ice core sulfur isotope measurements over a complete glacial−interglacial cycle[J]. Journal of Geophysical Research: Atmospheres, 108(D24): 4786.

    Google Scholar

    [5] Alley R, Shuman C, Meese D, Gow A, Taylor K, Cuffey K, Fitzpatrick J, Grootes P, Zielinski G, Ram M. 1997. Visual−stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application[J]. Journal of Geophysical Research: Oceans, 102(C12): 26367−26381. doi: 10.1029/96JC03837

    CrossRef Google Scholar

    [6] Al–Ramadan K, Koeshidayatullah A, Cantrell D, Swart P K. 2020. Impact of basin architecture on diagenesis and dolomitization in a fault–bounded carbonate platform: outcrop analogue of a pre–salt carbonate reservoir, Red Sea rift, NW Saudi Arabia[J]. Petroleum Geoscience, 26(3): 448−461. doi: 10.1144/petgeo2018-125

    CrossRef Google Scholar

    [7] Amberger A, Schmidt H–L. 1987. Natürliche isotopengehalte von Nitrat als Indikatoren für dessen Herkunft[J]. Geochimica et Cosmochimica Acta, 51(10): 2699−2705. doi: 10.1016/0016-7037(87)90150-5

    CrossRef Google Scholar

    [8] Amekawa S, Kashiwagi K, Hori M, Sone T, Kato H, Okumura T, Yu T–L, Shen C–C, Kano A. 2021. Stalagmite evidence for East Asian winter monsoon variability and 18O–depleted surface water in the Japan Sea during the last glacial period[J]. Progress in Earth and Planetary Science, 8: 1−15. doi: 10.1186/s40645-020-00388-2

    CrossRef Google Scholar

    [9] Anderson T F, Arthur M A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems[C]//Arthur M A, Anderson T F, Kaplan I R, Veizer J, Land L S. Stable Isotopes in Sedimentary Geology (Vol. 10). SEPM Society for Sedimentary Geology.

    Google Scholar

    [10] Angert A, Weiner T, Mazeh S, Sternberg M. 2012. Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients[J]. Environmental Science & Technology, 46(4): 2156−2162.

    Google Scholar

    [11] Aron P G, Levin N E, Beverly E J, Huth T E, Passey B H, Pelletier E M, Poulsen C J, Winkelstern I Z, Yarian D A. 2021. Triple oxygen isotopes in the water cycle[J]. Chemical Geology, 565: 120026. doi: 10.1016/j.chemgeo.2020.120026

    CrossRef Google Scholar

    [12] Assonov S, Brenninkmeijer C. 2005. Reporting small Δ17O values: existing definitions and concepts[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up−to−the−Minute Research in Mass Spectrometry, 19(5): 627−636.

    Google Scholar

    [13] Augustin L, Barbante C, Barnes P R F, Barnola J M, Bigler M, Castellano E, Cattani O, Chappellaz J, DahlJensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Flückiger J, Hansson M E, Huybrechts P, Jugie R, Johnsen S J, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov V Y, Littot G V C, Longinelli A, Lorrain R, Maggi V, Masson–Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel D A, Petit J R, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tabacco I E, Udisti R, van de Wal R S W, van den Broeke M, Weiss J, Wilhelms F, Winther J G, Wolff E W, Zucchelli M, Members E C. 2004. Eight glacial cycles from an Antarctic ice core[J]. Nature, 429(6992): 623−628. doi: 10.1038/nature02599

    CrossRef Google Scholar

    [14] Bao H, Cao X, Hayles J A. 2016. Triple oxygen isotopes: fundamental relationships and applications[J]. Annual Review of Earth and Planetary Sciences, 44: 463−492. doi: 10.1146/annurev-earth-060115-012340

    CrossRef Google Scholar

    [15] Bao Rui, Sheng Xuefen, Chen Jun. 2021. Carbon and oxygen isotopic composition of land snail shells and climate[J]. Quaternary Sciences, 41(4): 903−915 (in Chinese with English abstract).

    Google Scholar

    [16] Barbour M M, Andrews T J, Farquhar G D. 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world[J]. Australian Journal of Plant Physiology, 28(5): 335−348.

    Google Scholar

    [17] Barkan E, Luz B. 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up−to−the−Minute Research in Mass Spectrometry, 19(24): 3737−3742.

    Google Scholar

    [18] Barkan E, Luz B. 2007. Diffusivity fractionations of H216O H217O and H216O/H218O in air and their implications for isotope hydrology[J]. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up−to−the−Minute Research in Mass Spectrometry, 21(18): 2999−3005.

    Google Scholar

    [19] Bat K B, Eler K, Mazej D, Vodopivec B M, Mulič I, Kump P, Ogrinc N. 2016. Isotopic and elemental characterisation of Slovenian apple juice according to geographical origin: Preliminary results[J]. Food Chemistry, 203: 86−94. doi: 10.1016/j.foodchem.2016.02.039

    CrossRef Google Scholar

    [20] Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain M A, Baldocchi D, Bonan G B. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 329(5993): 834−838. doi: 10.1126/science.1184984

    CrossRef Google Scholar

    [21] Belem A L, Caricchio C, Albuquerque A L S, Venancio I M, Zucchi M, Santos T H R, Alvarez Y G. 2019. Salinity and stable oxygen isotope relationship in the Southwestern Atlantic: Constraints to paleoclimate reconstructions[J]. Anais da Academia Brasileira de Ciências, 91: e20180226.

    Google Scholar

    [22] Bender M, Sowers T, Labeyrie L. 1994. The Dole effect and its variations during the last 130, 000 years as measured in the Vostok ice core[J]. Global Biogeochemical Cycles, 8(3): 363−376. doi: 10.1029/94GB00724

    CrossRef Google Scholar

    [23] Bergé A, Imbrie J, Hays J, Kukla G, Salzman B. 1984. Milankovitch and Climate[M]. D. In: Reidel Publishing Company, Dordrecht.

    Google Scholar

    [24] Bershaw J, Hansen D D, Schauer A J. 2020. Deuterium excess and 17O–excess variability in meteoric water across the Pacific Northwest, USA[J]. Tellus B: Chemical and Physical Meteorology, 72(1): 1−17.

    Google Scholar

    [25] Beverly E J, Levin N E, Passey B H, Aron P G, Yarian D A, Page M, Pelletier E M. 2021. Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania[J]. Earth and Planetary Science Letters, 567: 116952. doi: 10.1016/j.jpgl.2021.116952

    CrossRef Google Scholar

    [26] Bhatia M P, Das S B, Kujawinski E B, Henderson P B, Burke A, Charette M A. 2011. Seasonal evolution of water source contributions to subglacial outflow: Insight from a new isotope–mixing model[J]. Journal of Glaciology, 57(205): 929−941. doi: 10.3189/002214311798043861

    CrossRef Google Scholar

    [27] Bintanja R, Van De Wal R S, Oerlemans J. 2005. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 437(7055): 125−128. doi: 10.1038/nature03975

    CrossRef Google Scholar

    [28] Blake R E, O’Neil J R, Surkov A V. 2005. Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes[J]. American Journal of Science, 305(6/8): 596−620. doi: 10.2475/ajs.305.6-8.596

    CrossRef Google Scholar

    [29] Blunier T, Bender M L, Barnett B, Von Fischer J C. 2012. Planetary fertility during the past 400 ka based on the triple isotope composition of O2 in trapped gases from the Vostok ice core[J]. Climate of the Past, 8(5): 1509−1526. doi: 10.5194/cp-8-1509-2012

    CrossRef Google Scholar

    [30] Boering K, Jackson T, Hoag K, Cole A, Perri M, Thiemens M, Atlas E. 2004. Observations of the anomalous oxygen isotopic composition of carbon dioxide in the lower stratosphere and the flux of the anomaly to the troposphere[J]. Geophysical Research Letters, 31(3): L03109.

    Google Scholar

    [31] Borzenko S V. 2021. The main formation processes for different types of salt lakes: Evidence from isotopic composition with case studies of lakes in Transbaikalia, Russia[J]. Science of the Total Environment, 782: 146782. doi: 10.1016/j.scitotenv.2021.146782

    CrossRef Google Scholar

    [32] Borzenko S, Zamana L, Posokhov V. 2022. The Isotope Composition, Nature, and Main Mechanisms of Formation of Different Types and Subtypes of Salt Lakes in Transbaikalia[J]. Russian Geology and Geophysics, 63(6): 706−725. doi: 10.2113/RGG20214272

    CrossRef Google Scholar

    [33] Bose T, Sengupta S, Chakraborty S, Borgaonkar H. 2016. Reconstruction of soil water oxygen isotope values from tree ring cellulose and its implications for paleoclimate studies[J]. Quaternary International, 425: 387−398. doi: 10.1016/j.quaint.2016.07.052

    CrossRef Google Scholar

    [34] Bowen G J, Cai Z, Fiorella R P, Putman A L. 2019. Isotopes in the water cycle: regional–to global–scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 47: 453−479. doi: 10.1146/annurev-earth-053018-060220

    CrossRef Google Scholar

    [35] Bowen G J. 2010. Isoscapes: spatial pattern in isotopic biogeochemistry[J]. Annual Review of Earth and Planetary Sciences, 38: 161−187. doi: 10.1146/annurev-earth-040809-152429

    CrossRef Google Scholar

    [36] Brooks J R, Gibson J J, Birks S J, Weber M H, Rodecap K D, Stoddard J L. 2014. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments[J]. Limnology and Oceanography, 59(6): 2150−2165. doi: 10.4319/lo.2014.59.6.2150

    CrossRef Google Scholar

    [37] Büntgen U, Urban O, Krusic P J, Rybníček M, Kolář T, Kyncl T, Ač A, Koňasová E, Čáslavský J, Esper J. 2021. Recent European drought extremes beyond Common Era background variability[J]. Nature Geoscience, 14(4): 190−196. doi: 10.1038/s41561-021-00698-0

    CrossRef Google Scholar

    [38] Came R E, Eiler J M, Veizer J, Azmy K, Brand U, Weidman C R. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era[J]. Nature, 449(7159): 198−201. doi: 10.1038/nature06085

    CrossRef Google Scholar

    [39] Cao Chao, Lei Huaiyan. 2021. Respondence between carbon and oxygen isotopic characteristics of Foraminifera from the Northern South China Sea and Late Quaternary hydrate released[J]. Journal of Jilin University (Earth Science Edition), 42(S1): 162–171 (in Chinese with English abstract).

    Google Scholar

    [40] Cao J, Xie C, Hou Z. 2022. Ecological evaluation of heavy metal pollution in the soil of Pb–Zn mines[J]. Ecotoxicology, 31(2): 259−270. doi: 10.1007/s10646-021-02505-3

    CrossRef Google Scholar

    [41] Cao Jialu, Niu Zhenchuan, Liang Dan, Feng Xue, Lü Mengni, Wang Guowei, Liu Wanyu. 2023. Progress on mass independent fractionation of oxygen isotope in CO2 related researches[J]. Journal of Earth Environment, 14(6): 714−724 (in Chinese with English abstract).

    Google Scholar

    [42] Cappa C D, Hendricks M B, DePaolo D J, Cohen R C. 2003. Isotopic fractionation of water during evaporation[J]. Journal of Geophysical Research: Atmospheres, 108(D16): 4525.

    Google Scholar

    [43] Capuano R M. 1992. The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system[J]. Geochimica et Cosmochimica Acta, 56(6): 2547−2554. doi: 10.1016/0016-7037(92)90208-Z

    CrossRef Google Scholar

    [44] Cavalcante H, Araújo F, Noyma N, Becker V. 2018. Phosphorus fractionation in sediments of tropical semiarid reservoirs[J]. Science of the Total Environment, 619: 1022−1029.

    Google Scholar

    [45] Cerling T E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229−240. doi: 10.1016/0012-821X(84)90089-X

    CrossRef Google Scholar

    [46] Chang Fengqin, Zhang Hucai, Lei Guoliang, Pu Yang, Chen Guangjie, Zhang Wenxiang, Yang Lunqing. 2010. Geochemical behaviors of strontium isotope and related elements of the lacustrine deposits and their application to paleoenvironment reconstruction[J]. Quaternary Sciences, 30(5): 962−971 (in Chinese with English abstract).

    Google Scholar

    [47] Chen J, Chen F, Feng S, Huang W, Liu J, Zhou A. 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 107: 98−111. doi: 10.1016/j.quascirev.2014.10.012

    CrossRef Google Scholar

    [48] Chen J, Rao Z, Liu J, Huang W, Feng S, Dong G, Hu Y, Xu Q, Chen F. 2016. On the timing of the East Asian summer monsoon maximum during the Holocene—Does the speleothem oxygen isotope record reflect monsoon rainfall variability?[J]. Science China Earth Sciences, 59: 2328−2338. doi: 10.1007/s11430-015-5500-5

    CrossRef Google Scholar

    [49] Chen Luwang, GuiHerong, Xu Guangquan, Song Xiaomei, Yuan Wenhua. 2003. Characteristics of the hydrogen and oxygen stable isotopes in karst water of seam floor in the mining district of the northern Anhui Province[J]. Journal of Hefei University of Technology(Natural Science)(3): 374–378 (in Chinese with English abstract).

    Google Scholar

    [50] Chen X, Jiang C, Zheng L, Dong X, Chen Y, Li C. 2020. Identification of nitrate sources and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city[J]. Environmental Pollution, 267: 115651. doi: 10.1016/j.envpol.2020.115651

    CrossRef Google Scholar

    [51] Chen Yao, Gou Xiaohua, Liu Wenhuo, Chen Qiaomei, SuJiajia, Lin Wei. 2017. Advances in tree−ring stable oxygen isotope study in Asia[J]. Journal of Glaciology and Geocryology, 39(2): 308−316 (in Chinese with English abstract).

    Google Scholar

    [52] Chen Zhigang, Huang Yipu, Liu Guangshan, Cai Yihua, Lu Yangyang, Liu Run. 2010. Advances in the measurement methods and fractionation mechanism of the oxygen isotope composition of phosphate[J]. Advances in Earth Science, 25(10): 1040 (in Chinese with English abstract).

    Google Scholar

    [53] Chen Zhong, Ma Haizhou, Cao Guangchao, Zhou Dujun, Zhang Xiying, Tan Hongbing, Yao yuan. 2006. Study on Carbonates in Loess: A Review[J]. Journal of Salt Lake Research, (4): 66–72 (in Chinese with English abstract).

    Google Scholar

    [54] Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X, Wang Y, Zhang R, Wang X. 2009. Ice age terminations[J]. Science, 326(5950): 248−252. doi: 10.1126/science.1177840

    CrossRef Google Scholar

    [55] Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X. 2016. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 534(7609): 640−646.

    Google Scholar

    [56] Cheng H, Sinha A, Wang X, Cruz F W, Edwards R L. 2012. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 39: 1045−1062. doi: 10.1007/s00382-012-1363-7

    CrossRef Google Scholar

    [57] Cheng H, Zhang H, Zhao J, Li H, Ning Y, Kathayat G. 2019. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 62: 1489−1513. doi: 10.1007/s11430-019-9478-3

    CrossRef Google Scholar

    [58] Cheng Hai, R L Edwards, Wang Xianfeng, Wang Yongjin, Kong Xinggong, Yuan Daoxian, Zhang Meiliang, Lin Yushi, Qin Jiaming, Ran Jingcheng. 2005. Oxygen isotope records of stalagmites from Southern China[J]. Quaternary Sciences, 25(2): 157−163 (in Chinese with English abstract).

    Google Scholar

    [59] Chesson L A, Valenzuela L O, O’Grady S P, Cerling T E, Ehleringer J R. 2010. Hydrogen and oxygen stable isotope ratios of milk in the United States[J]. Journal of Agricultural and Food Chemistry, 58(4): 2358−2363. doi: 10.1021/jf904151c

    CrossRef Google Scholar

    [60] Chiba H, Sakai H. 1985. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures[J]. Geochimica et Cosmochimica Acta, 49(4): 993−1000. doi: 10.1016/0016-7037(85)90314-X

    CrossRef Google Scholar

    [61] Clark I D, Fritz P. 1997. Environmental Isotopes in Hydrogeology[M]. CRC press: London, UK.

    Google Scholar

    [62] Clayton D. 2003. Handbook of Isotopes in the Cosmos: Hydrogen to Gallium[M]. Cambridge, UK: Cambridge Univ. Press.

    Google Scholar

    [63] Clayton R N, Grossman L, Mayeda T K. 1973. A component of primitive nuclear composition in carbonaceous meteorites[J]. Science, 182(4111): 485−488. doi: 10.1126/science.182.4111.485

    CrossRef Google Scholar

    [64] Clementz M T, Koch P L. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel[J]. Oecologia, 129: 461−472. doi: 10.1007/s004420100745

    CrossRef Google Scholar

    [65] Cliff S S, Brenninkmeijer C A M, Thiemens M H. 1999. First measurement of the 18O/16O and 17O/16O ratios in stratospheric nitrous oxide: A mass−independent anomaly[J]. Journal of Geophysical Research: Atmospheres, 104(D13): 16171−16175. doi: 10.1029/1999JD900152

    CrossRef Google Scholar

    [66] Coelho I, Matos A S, Epova E N, Barre J, Cellier R, Ogrinc N, Castanheira I, Bordado J, Donard O F. 2023. Multi–element and multi–isotopic profiles of Port and Douro wines as tracers for authenticity[J]. Journal of Food Composition and Analysis, 115: 104988. doi: 10.1016/j.jfca.2022.104988

    CrossRef Google Scholar

    [67] Cong F, Tian J, Hao F, Licht A, Liu Y, Cao Z, Eiler J M. 2021. A thermal pulse induced by a Permian mantle plume in the Tarim Basin, Northwest China: Constraints from clumped isotope thermometry and In situ calcite U−Pb dating[J]. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB020636. doi: 10.1029/2020JB020636

    CrossRef Google Scholar

    [68] Conroy J L, Cobb K M, Lynch–Stieglitz J, Polissar P J. 2014. Constraints on the salinity–oxygen isotope relationship in the central tropical Pacific Ocean[J]. Marine Chemistry, 161: 26−33. doi: 10.1016/j.marchem.2014.02.001

    CrossRef Google Scholar

    [69] Cook G, Lauer C. 1968. The encyclopedia of the chemical elements[M]. Reinhold B. Corp. , New York.

    Google Scholar

    [70] Coplen T B, Kendall C, Hopple J. 1983. Comparison of stable isotope reference samples[J]. Nature, 302: 236−238. doi: 10.1038/302236a0

    CrossRef Google Scholar

    [71] Coplen, TylerB. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report)[J]. Pure & Applied Chemistry, 66(2): 273−276.

    Google Scholar

    [72] Corliss B H. 1985. Microhabitats of benthic foraminifera within deep–sea sediments[J]. Nature, 314(6010): 435−438. doi: 10.1038/314435a0

    CrossRef Google Scholar

    [73] Costa D P, 2018. Osmoregulation. In: Würsig B, Thewissen J G M, Kovacs K M. Encyclopedia of Marine Mammals [M]. Third ed. Academic Press, San Diego, 659–664.

    Google Scholar

    [74] Coulthard B L, George S S, Meko D M. 2020. The limits of freely–available tree–ring chronologies[J]. Quaternary Science Reviews, 234: 106264. doi: 10.1016/j.quascirev.2020.106264

    CrossRef Google Scholar

    [75] Craig H, Gordon L I. 1964. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[C]// Symposium on Marine Geochemistry.

    Google Scholar

    [76] Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen–18 in natural waters[J]. Science, 133(3467): 1833−1834. doi: 10.1126/science.133.3467.1833

    CrossRef Google Scholar

    [77] Cramer B, Toggweiler J, Wright J, Katz M, Miller K. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 24(4): PA4216.

    Google Scholar

    [78] Criss R E, Farquhar J. 2008. Abundance, notation, and fractionation of light stable isotopes[J]. Reviews in Mineralogy and Geochemistry, 68(1): 15−30. doi: 10.2138/rmg.2008.68.3

    CrossRef Google Scholar

    [79] Cui Jingwei, Huang Junhua, Hu Chaoyong. 2008. Environment substitute indexes and the paleoclimate and paleoenvironment contained in stalagmite[J]. Bulletin of Geological Science and Technology (1): 93–98 (in Chinese with English abstract).

    Google Scholar

    [80] Cui Y D, Liu X Q, Wang H Z. 2008. Macrozoobenthic community of Fuxian Lake, the deepest lake of southwest China[J]. Limnologica, 38(2): 116−125. doi: 10.1016/j.limno.2007.10.003

    CrossRef Google Scholar

    [81] Cui Rui, Wang Ji, Zhang Chengfu, Shi Xiaohong, Han Zhiming. 2019. Analysis on hydrogen and oxygen isotopes and lake water source in Girantai saline lake[J]. Journal of Inner Mongolia Forestry ScienceandTechnology, 45(1): 17−21 (in Chinese with English abstract).

    Google Scholar

    [82] Cutler K, Edwards R, Taylor F, Cheng H, Adkins J, Gallup C, Cutler P, Burr G, Bloom A. 2003. Rapid sea–level fall and deep–ocean temperature change since the last interglacial period[J]. Earth and Planetary Science Letters, 206(3/4): 253−271. doi: 10.1016/S0012-821X(02)01107-X

    CrossRef Google Scholar

    [83] Dahl–Jensen D, Albert M R, Aldahan A, Azuma N, Balslev–Clausen D, Baumgartner M, Berggren A M, Bigler M, Binder T, Blunier T, Bourgeois J C, Brook E J, Buchardt S L, Buizert C, Capron E, Chappellaz J, Chung J, Clausen H B, Cvijanovic I, Davies S M, Ditlevsen P, Eicher O, Fischer H, Fisher D A, Fleet L G, Gfeller G, Gkinis V, Gogineni S, Goto–Azuma K, Grinsted A, Gudlaugsdottir H, Guillevic M, Hansen S B, Hansson M, Hirabayashi M, Hong S, Hur S D, Huybrechts P, Hvidberg C S, Iizuka Y, Jenk T, Johnsen S J, Jones T R, Jouzel J, Karlsson N B, Kawamura K, Keegan K, Kettner E, Kipfstuhl S, Kjær H A, Koutnik M, Kuramoto T, Köhler P, Laepple T, Landais A, Langen P L, Larsen L B, Leuenberger D, Leuenberger M, Leuschen C, Li J, Lipenkov V, Martinerie P, Maselli O J, Masson–Delmotte V, McConnell J R, Miller H, Mini O, Miyamoto A, Montagnat–Rentier M, Mulvaney R, Muscheler R, Orsi A J, Paden J, Panton C, Pattyn F, Petit J R, Pol K, Popp T, Possnert G, Prié F, Prokopiou M, Quiquet A, Rasmussen S O, Raynaud D, Ren J, Reutenauer C, Ritz C, Röckmann T, Rosen J L, Rubino M, Rybak O, Samyn D, Sapart C J, Schilt A, Schmidt A M Z, Schwander J, Schüpbach S, Seierstad I, Severinghaus J P, Sheldon S, Simonsen S B, Sjolte J, Solgaard A M, Sowers T, Sperlich P, Steen–Larsen H C, Steffen K, Steffensen J P, Steinhage D, Stocker T F, Stowasser C, Sturevik A S, Sturges W T, Sveinbjörnsdottir A, Svensson A, Tison J L, Uetake J, Vallelonga P, van de Wal R S W, van der Wel G, Vaughn B H, Vinther B, Waddington E, Wegner A, Weikusat I, White J W C, Wilhelms F, Winstrup M, Witrant E, Wolff E W, Xiao C, Zheng J, Community N. 2013. Eemian interglacial reconstructed from a Greenland folded ice core[J]. Nature, 493(7433): 489−494. doi: 10.1038/nature11789

    CrossRef Google Scholar

    [84] Dansgaard W. 1953. The abundance of O18 in atmospheric water and water vapour[J]. Tellus, 5(4): 461−469. doi: 10.3402/tellusa.v5i4.8697

    CrossRef Google Scholar

    [85] Dansgaard W. 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436−468. doi: 10.1111/j.2153-3490.1964.tb00181.x

    CrossRef Google Scholar

    [86] del Rio–Lavín A, Weber J, Molkentin J, Jiménez E, Artetxe–Arrate I, Pardo M A. 2022. Stable isotope and trace element analysis for tracing the geographical origin of the Mediterranean mussel (Mytilus galloprovincialis) in food authentication[J]. Food Control, 139: 109069. doi: 10.1016/j.foodcont.2022.109069

    CrossRef Google Scholar

    [87] Delaygue G, Bard E, Rollion C, Jouzel J, Stiévenard M, Duplessy J C, Ganssen G. 2001. Oxygen isotope/salinity relationship in the northern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 106(C3): 4565−4574. doi: 10.1029/1999JC000061

    CrossRef Google Scholar

    [88] Delgado A, Reyes E. 1996. Oxygen and hydrogen isotope compositions in clay minerals: A potential single–mineral geothermometer[J]. Geochimica et Cosmochimica Acta, 60(21): 4285−4289. doi: 10.1016/S0016-7037(96)00260-8

    CrossRef Google Scholar

    [89] Dettman D L, Fang X, Garzione C N, Li J. 2003. Uplift–driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan plateau[J]. Earth and Planetary Science Letters, 214(1−2): 267−277. doi: 10.1016/S0012-821X(03)00383-2

    CrossRef Google Scholar

    [90] Ding Y, Wang Z, Sun Y. 2008. Inter−decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(9): 1139−1161.

    Google Scholar

    [91] Ding Z L, Yang S L. 2000. C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3/4): 291–299.

    Google Scholar

    [92] Dompierre K A, Barbour S L. 2016. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi–tracer study[J]. Journal of Contaminant Hydrology, 189: 12−26. doi: 10.1016/j.jconhyd.2016.03.006

    CrossRef Google Scholar

    [93] Dong J, Shen C C, Kong X, Wang H C, Jiang X. 2015. Reconciliation of hydroclimate sequences from the Chinese Loess Plateau and low–latitude East Asian Summer Monsoon regions over the past 14, 500 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 127–135.

    Google Scholar

    [94] Dong Qinming, Hu Zhonggui, Chen Shiyue, Li Shilin, Cai Jialan, Zhu Yixin, Zhang Yuying. 2021. Isotope geochemical responses and their geological significance of Changxing–Feixianguan Formation carbonates, northeastern Sichuan Basin[J]. Oil Gas Geology, 42(6): 1307−1320 (in Chinese with English abstract).

    Google Scholar

    [95] Dou Yanguang, Li Qing, Wu Yonghua, Zhao Jingtao, Sun Chenghui, Cai Feng, Chen Xiaohui, Zhang Yong, Fan Jiahui, Shi Xuefa. 2022. Carbon and oxygen isotopic characteristics of benthic foraminifera in the Okinawa Trough since MIS6 and their palaeoceanographical significance[J]. Earth Science Frontiers, 29(4): 84−92 (in Chinese with English abstract).

    Google Scholar

    [96] Doveri M, Stenni B, Petrini R, Giannecchini R, Dreossi G, Menichini M, Ghezzi L. 2019. Oxygen and hydrogen isotopic composition of waters in a past–mining area of southern Apuan Alps (Italy): Hydrogeological characterization and implications on the fate of potentially toxic elements[J]. Journal of Geochemical Exploration, 205: 106338. doi: 10.1016/j.gexplo.2019.106338

    CrossRef Google Scholar

    [97] Drago M, Valdivia M, Bragg D, González E M, Aguilar A, Cardona L. 2020. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean[J]. Estuarine, Coastal and Shelf Science, 238: 106708.

    Google Scholar

    [98] Drummond C N, Patterson W P, Walker J C. 1995. Climatic forcing of carbon–oxygen isotopic covariance in temperate–region marl lakes[J]. Geology, 23(11): 1031−1034.

    Google Scholar

    [99] Dubicka Z, Wierzbowski H, Pałczyńska A. 2021. Can oxygen and carbon isotope ratios of Jurassic foraminifera be used in palaeoenvironmental reconstructions?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110554.

    Google Scholar

    [100] Duplessy J C, Shackleton N J. 1985. Response of global deep–water circulation to Earth's climatic change 135, 000–107, 000 years ago[J]. Nature, 316(6028): 500−507.

    Google Scholar

    [101] Dütsch M, Pfahl S, Sodemann H. 2017. The impact of nonequilibrium and equilibrium fractionation on two different deuterium excess definitions[J]. Journal of Geophysical Research: Atmospheres, 122(23): 12732−12746.

    Google Scholar

    [102] Ehtesham E, Hayman A, Van Hale R, Frew R. 2015. Influence of feed and water on the stable isotopic composition of dairy milk[J]. International Dairy Journal, 47: 37−45. doi: 10.1016/j.idairyj.2015.02.008

    CrossRef Google Scholar

    [103] Eiler J M, Schauble E. 2004. 18O13C16O in Earth’s atmosphere[J]. Geochimica et Cosmochimica Acta, 68(23): 4767−4777. doi: 10.1016/j.gca.2004.05.035

    CrossRef Google Scholar

    [104] Eiler J M. 2007. “Clumped–isotope” geochemistry—The study of naturally–occurring, multiply–substituted isotopologues[J]. Earth and Planetary Science Letters, 262(3/4): 309−327. doi: 10.1016/j.jpgl.2007.08.020

    CrossRef Google Scholar

    [105] Elliott E, Kendall C, Burns D, Boyer E, Harlin K, Wankel S, Butler T, Carlton R. 2006. Nitrate isotopes in precipitation to distinguish NOx sources, atmospheric processes, and source areas in the United States[C]// American Geophysical Union, Fall Meeting 2007. San Francisco, AGU.

    Google Scholar

    [106] Emiliani C. 1955. Pleistocene temperatures[J]. The Journal of Geology, 63(6): 538−578. doi: 10.1086/626295

    CrossRef Google Scholar

    [107] Emsley J. 2011. Nature's Building Blocks: An AZ Guide to the Elements[M]. Oxford University Press, USA.

    Google Scholar

    [108] Epstein S, Buchsbaum R, Lowenstam H A, Urey H C. 1953. Revised carbonate–water isotopic temperature scale[J]. Geological Society of America Bulletin, 64(11): 1315−1326. doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2

    CrossRef Google Scholar

    [109] Epstein S, Sharp R P, Gow A J. 1965. Six−year record of oxygen and hydrogen isotope variations in South Pole firn[J]. Journal of Geophysical Research, 70(8): 1809−1814. doi: 10.1029/JZ070i008p01809

    CrossRef Google Scholar

    [110] Eren M, Akgöz M, Kadir S, Kapur S. 2021. Primary characteristics of selected stalagmites from four caves located between Erdemli and Silifke (Mersin), southern Turkey—Implications on their formation[J]. Carbonates and Evaporites, 36(2): 20. doi: 10.1007/s13146-021-00684-y

    CrossRef Google Scholar

    [111] European Commission. 2008. Commission Regulation (EC)[EB/OL]. No 555/2008 of 27 June 2008.

    Google Scholar

    [112] Falzoni F, Petrizzo M R, Clarke L J, MacLeod K G, Jenkyns H C. 2016. Long–term Late Cretaceous oxygen–and carbon–isotope trends and planktonic foraminiferal turnover: A new record from the southern Midlatitudes[J]. Bulletin, 128(11/12): 1725−1735.

    Google Scholar

    [113] Fan Juan, Nan Shenghui, Liu Yingfeng, Zhou Tianwei, Zhang Guangming. 2021. Water–filling conditions of Xiaotun Coal Mine based on hydrochemical and isotopic characteristics[J]. Safety and Environmental Engineering, (4): 80–87 (in Chinese with English abstract).

    Google Scholar

    [114] Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Biology, 40(1): 503−537. doi: 10.1146/annurev.pp.40.060189.002443

    CrossRef Google Scholar

    [115] Fiebig J, Daëron M, Bernecker M, Guo W, Schneider G, Boch R, Bernasconi S M, Jautzy J, Dietzel M. 2021. Calibration of the dual clumped isotope thermometer for carbonates[J]. Geochimica et Cosmochimica Acta, 312: 235−256. doi: 10.1016/j.gca.2021.07.012

    CrossRef Google Scholar

    [116] Frau F, Cidu R, Ghiglieri G, Caddeo G A. 2020. Characterization of low–enthalpy geothermal resources and evaluation of potential contaminants. RendicontiLincei[J]. ScienzeFisiche e Naturali, 31(4): 1055−1070.

    Google Scholar

    [117] FriedmanI, O'Nei J R. 1977. Data of Geochemistry. Chapter KK, Compilation of Stable Isotope Fractionation Factors of Geochemical Interest[M]. Washington DC: US GPO.

    Google Scholar

    [118] Friedrich O, Norris R D, Erbacher J. 2012. Evolution of middle to Late Cretaceous oceans—a 55 my record of Earth's temperature and carbon cycle[J]. Geology, 40(2): 107−110. doi: 10.1130/G32701.1

    CrossRef Google Scholar

    [119] Fu Changchang, Liu Cong. 2022. Hydrochemical characteristics and formation mechanism of saline lakes in Hoh Xil region[J]. Yangtze River, 53(7): 36−41 (in Chinese with English abstract).

    Google Scholar

    [120] Galewsky J, Steen−Larsen H C, Field R D, Worden J, Risi C, Schneider M. 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 54(4): 809−865. doi: 10.1002/2015RG000512

    CrossRef Google Scholar

    [121] Galili N, Sade Z, Halevy I. 2022. Equilibrium fractionation of triple–oxygen and hydrogen isotopes between ice and water[J]. Earth and Planetary Science Letters, 595: 117753. doi: 10.1016/j.jpgl.2022.117753

    CrossRef Google Scholar

    [122] Gammons C H, Brown A, Poulson S R, Henderson T H. 2013. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage[J]. Applied Geochemistry, 31: 228−238. doi: 10.1016/j.apgeochem.2013.01.008

    CrossRef Google Scholar

    [123] Garbaras A, Skipitytė R, Šapolaitė J, Ežerinskis Ž, Remeikis V. 2019. Seasonal variation in stable isotope ratios of cow milk in Vilnius region, Lithuania[J]. Animals, 9(3): 69. doi: 10.3390/ani9030069

    CrossRef Google Scholar

    [124] Gasse F, Fontes J C, Plaziat J, Carbonel P, Kaczmarska I, De Deckker P, Soulié–Marsche I, Callot Y, Dupeuble P. 1987. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 60: 1–46.

    Google Scholar

    [125] Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 24(1): 225−262. doi: 10.1146/annurev.earth.24.1.225

    CrossRef Google Scholar

    [126] Gat J. 1981. Paleoclimate conditions in the Levant as revealed by the isotopic composition of paleowaters[J]. Israel Meteorological Research Papers, 3: 13−28.

    Google Scholar

    [127] Gatzert X, Chun K P, Boner M, Hermanowski R, Mäder R, Breuer L, Gattinger A, Orlowski N. 2021. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany[J]. Isotopes in Environmental and Health Studies, 57(3): 281−300. doi: 10.1080/10256016.2021.1905635

    CrossRef Google Scholar

    [128] Gedney N, Cox P M, Betts R A, Boucher O, Huntingford C, Stott P. 2006. Detection of a direct carbon dioxide effect in continental river runoff records[J]. Nature, 439(7078): 835−838. doi: 10.1038/nature04504

    CrossRef Google Scholar

    [129] Gessler A, Ferrio J P, Hommel R, Treydte K, Werner R A, Monson R K. 2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood[J]. Tree Physiology, 34(8): 796−818. doi: 10.1093/treephys/tpu040

    CrossRef Google Scholar

    [130] Gonfiantini R. 1978. Standards for stable isotope measurements in natural compounds[J]. Nature, 271(5645): 534−536. doi: 10.1038/271534a0

    CrossRef Google Scholar

    [131] Gonfiantini R. 1984. Stable isotope reference samples for geochemicaland hydrological investigations[J]. International Journal of AppliedRadiation and Isotopes, 35(5): 426−426.

    Google Scholar

    [132] Grant K, Rohling E, Bar–Matthews M, Ayalon A, Medina–Elizalde M, Ramsey C B, Satow C, Roberts A. 2012. Rapid coupling between ice volume and polar temperature over the past 150, 000 years[J]. Nature, 491(7426): 744−747. doi: 10.1038/nature11593

    CrossRef Google Scholar

    [133] Gross A, Angert A. 2015. What processes control the oxygen isotopes of soil bio–available phosphate?[J]. Geochimica et Cosmochimica Acta, 159: 100−111. doi: 10.1016/j.gca.2015.03.023

    CrossRef Google Scholar

    [134] Gross A, Nishri A, Angert A. 2013. Use of phosphate oxygen isotopes for identifying atmospheric–P sources: A case study at Lake Kinneret[J]. Environmental Science & Technology, 47(6): 2721−2727.

    Google Scholar

    [135] Gross A, Turner B L, Wright S J, Tanner E V, Reichstein M, Weiner T, Angert A. 2015. Oxygen isotope ratios of plant available phosphate in lowland tropical forest soils[J]. Soil Biology and Biochemistry, 88: 354−361. doi: 10.1016/j.soilbio.2015.06.015

    CrossRef Google Scholar

    [136] Gruau G, Legeas M, Riou C, Gallacier E, Martineau F, Hénin O. 2005. The oxygen isotope composition of dissolved anthropogenic phosphates: A new tool for eutrophication research?[J]. Water Research, 39(1): 232−238. doi: 10.1016/j.watres.2004.08.035

    CrossRef Google Scholar

    [137] Gu G H. 2008. Water temperature record and trend analysis of Fuxian Lake[R]. Yuxi City Water Resources District.

    Google Scholar

    [138] Guo H, Yu X, Lin M. 2022. Kinetic isotope effects in H2O2 self–decomposition: Implications for triple oxygen isotope systematics of secondary minerals in the solar system[J]. Earth and Planetary Science Letters, 594: 117722. doi: 10.1016/j.jpgl.2022.117722

    CrossRef Google Scholar

    [139] Guo Q, Li B, Voelker A H, Kim J–K. 2020. Mediterranean Outflow Water dynamics across the middle Pleistocene transition based on a 1.3 million–year benthic foraminiferal record off the Portuguese margin[J]. Quaternary Science Reviews, 247: 106567. doi: 10.1016/j.quascirev.2020.106567

    CrossRef Google Scholar

    [140] Guo Qimei, Li Baohua, Wang Xiaoyan, Yu Zhoufei, Xu Ye, Zhang Kai. 2020. Applications of benthic foraminifera in paleoceanography[J]. Acta Palaeontologica Sinica, 59(3): 365−379 (in Chinese with English abstract).

    Google Scholar

    [141] Guo Qimei, Liu Jing, Li Baohua. 2023. Single/Multi–shell benthic foraminiferal stable oxygen and carbon isotopic composition, difference and its significance[J]. Acta Micropalaeontologica Sinica, 40(1): 53−65 (in Chinese with English abstract).

    Google Scholar

    [142] Hamzić Gregorčič S, Potočnik D, Camin F, Ogrinc N. 2020. Milk authentication: Stable isotope composition of hydrogen and oxygen in milks and their constituents[J]. Molecules, 25(17): 4000. doi: 10.3390/molecules25174000

    CrossRef Google Scholar

    [143] Han Jiamao, Jiang Wenying, Liu Dongsheng, Lü Houyuan, Guo Zhengtang, Wu Naiqin. 1996. The isotopic record of paleoclimate change in loess carbonates[J]. Scientia Sinica (Terrae), (5): 399−404 (in Chinese).

    Google Scholar

    [144] Han Jiamao, Jiang Wenying, Lü Houyuan, Wu Naiqin, Guo Zhengtang. 1995a. Carbon and oxygen isotope compositions of carbonate concretions in loess part 2: Carbon isotope and paleo–aridity[J]. Quaternary Sciences(4): 367–377 (in Chinese with English abstract).

    Google Scholar

    [145] Han Jiamao, Jiang Wenying, Wu Naiqin, Guo Zhengtang. 1995b. Carbon and oxygen isotope compositions of carbonate concretions in loss part 1: Oxygen isotope and paleotemperature[J]. Quaternary Sciences(2): 130–138 (in Chinese with English abstract).

    Google Scholar

    [146] Hao Z, Singh V P, Xia Y. 2018. Seasonal drought prediction: Advances, challenges, and future prospects[J]. Reviews of Geophysics, 56(1): 108−141. doi: 10.1002/2016RG000549

    CrossRef Google Scholar

    [147] Haubrich F, Tichomirowa M. 2002. Sulfur and oxygen isotope geochemistry of acid mine drainage—the polymetallic sulfide deposit “HimmelfahrtFundgrube” in Freiberg (Germany)[J]. Isotopes in Environmental and Health Studies, 38(2): 121−138.

    Google Scholar

    [148] Hayes J M. 1982. An introduction to isotopic measurements and terminology[J]. Spectr, 8: 3−8.

    Google Scholar

    [149] Hayles J A, Killingsworth B A. 2022. Constraints on triple oxygen isotope kinetics[J]. Chemical Geology, 589: 120646. doi: 10.1016/j.chemgeo.2021.120646

    CrossRef Google Scholar

    [150] Hays I J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[J]. Milankouitch and Climate, NATO ASI Series, Series C: Mathematical and Physical Sciences, 126: 269–305.

    Google Scholar

    [151] Helfenstein J, Tamburini F, von Sperber C, Massey M S, Pistocchi C, Chadwick O A, Vitousek P M, Kretzschmar R, Frossard E. 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil[J]. Nature Communications, 9(1): 3226. doi: 10.1038/s41467-018-05731-2

    CrossRef Google Scholar

    [152] Helle G, Schleser G H. 2004. Interpreting Climate Proxies from Tree–rings[M]. In The Climate in Historical Times: Towards a Synthesis of Holocene Proxy Data and Climate Models (129–148): Springer.

    Google Scholar

    [153] Hendy C H. 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta, 35(8): 801−824. doi: 10.1016/0016-7037(71)90127-X

    CrossRef Google Scholar

    [154] Henkes G A, Passey B H, Grossman E L, Shenton B J, Pérez–Huerta A, Yancey T E. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures[J]. Geochimica et Cosmochimica Acta, 139: 362−382. doi: 10.1016/j.gca.2014.04.040

    CrossRef Google Scholar

    [155] Henkes G A, Passey B H, Wanamaker Jr A D, Grossman E L, Ambrose Jr W G, Carroll M L. 2013. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells[J]. Geochimica et Cosmochimica Acta, 106: 307−325. doi: 10.1016/j.gca.2012.12.020

    CrossRef Google Scholar

    [156] Hesse T, Butzin M, Bickert T, Lohmann G. 2011. A model−data comparison of δ13C in the glacial Atlantic Ocean[J]. Paleoceanography, 26(3): 3220.

    Google Scholar

    [157] Hoag K, Still C, Fung I, Boering K. 2005. Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes[J]. Geophysical Research Letters, 32(2): L02802.

    Google Scholar

    [158] Hobson K A, Koehler G. 2015. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America[J]. Ecology and Evolution, 5(3): 799−806. doi: 10.1002/ece3.1383

    CrossRef Google Scholar

    [159] Hoefs J. 1997. Stable Isotope Geochemistry[M]. Berlin: Springer: 58–66.

    Google Scholar

    [160] Horacek M, Ogrinc N, Magdas D A, Wunderlin D, Sucur S, Maras V, Misurovic A, Eder R, ˇCuˇs F, Wyhlidal S, Papesch W. 2021. Isotope analysis (13C, 18O) of wine from central and eastern Europe and Argentina, 2008 and 2009 Vintages: Differentiation of origin, environmental indications, and variations within countries[J]. Frontiers in Sustainable Food Systems, 5: 638941. doi: 10.3389/fsufs.2021.638941

    CrossRef Google Scholar

    [161] Hori M, Ishikawa T, Nagaishi K, Lin K, Wang B S, You C F, Shen C C, Kano A. 2013. Prior calcite precipitation and source mixing process influence Sr/Ca, Ba/Ca and 87Sr/86Sr of a stalagmite developed in southwestern Japan during 18.0–4.5 ka[J]. Chemical Geology, 347: 190−198. doi: 10.1016/j.chemgeo.2013.03.005

    CrossRef Google Scholar

    [162] Horváth B, Hofmann M, Pack A. 2012. On the triple oxygen isotope composition of carbon dioxide from some combustion processes[J]. Geochimica et Cosmochimica Acta, 95: 160−168. doi: 10.1016/j.gca.2012.07.021

    CrossRef Google Scholar

    [163] Hou Zhanfang, Zhang Jun, Song Chunhui, Li Jijun, Liu Jia, Liu Shanpin, Hui Zhengchuang, Peng Tingjiang. 2011. The oxygen and carbon isotopic records of Miocene sediments in the Tianshui Basin of the Northestern Tibetan Plateau and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology, 31(3): 69−78 (in Chinese with English abstract).

    Google Scholar

    [164] Hsieh J C, Chadwick O A, Kelly E F, Savin S M. 1998. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration[J]. Geoderma, 82(1/3): 269−293. doi: 10.1016/S0016-7061(97)00105-5

    CrossRef Google Scholar

    [165] Hu M, Wang Y, Du P, Shui Y, Cai A, Lv C, Bao Y, Li Y, Li S, Zhang P. 2019. Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes[J]. Science of the Total Environment, 658: 132−140. doi: 10.1016/j.scitotenv.2018.12.149

    CrossRef Google Scholar

    [166] Hu Quanxu, Wang Xianyan, Meng Xianqiang, Liu Quanyu, Lu Huayu. 2018. Paleoclimatic implications of oxygen isotope from authigenic carbonates in loess deposit of northeastern Tibetan Plateau[J]. Earth Science, 43(11): 4128−4137 (in Chinese with English abstract).

    Google Scholar

    [167] Huang R, Zhu H, Liang E, Bräuning A, Zhong L, Xu C, Feng X, Asad F, Sigdel S R, Li L. 2022. Contribution of winter precipitation to tree growth persists until the late growing season in the Karakoram of northern Pakistan[J]. Journal of Hydrology, 607: 127513. doi: 10.1016/j.jhydrol.2022.127513

    CrossRef Google Scholar

    [168] Huang Sijing, Shi He, Mao Xiaodong, Zhang Meng, Shen Licheng, Wu Wenhui. 2003. Diagenetic alteration of earlier Palaeozoic marine carbonate and preservation for the information of sea water[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 30(1): 9−18 (in Chinese with English abstract).

    Google Scholar

    [169] Hullar I, Brand A. 1993. Nutritional factors affecting milk quality, with special regard to milk protein: A review[J]. Acta Veterinaria Hungarica, 41(1−2): 11−32.

    Google Scholar

    [170] Hulston J R, Thode H G. 1965. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects[J]. Journal of Geophysical Research, 70(14): 3475−3484. doi: 10.1029/JZ070i014p03475

    CrossRef Google Scholar

    [171] Hundey E J, Russell S, Longstaffe F J, Moser K A. 2016. Agriculture causes nitrate fertilization of remote alpine lakes[J]. Nature Communications, 7(1): 10571. doi: 10.1038/ncomms10571

    CrossRef Google Scholar

    [172] Ishida–Fujii K, Goto S, Uemura R, Yamada K, Sato M, Yoshida N. 2005. Botanical and geographical origin identification of industrial ethanol by stable isotope analyses of C, H, and O[J]. Bioscience, Biotechnology, and Biochemistry, 69(11): 2193–2199.

    Google Scholar

    [173] Ishino S, Hattori S, Savarino J, Jourdain B, Preunkert S, Legrand M, Caillon N, Barbero A, Kuribayashi K, Yoshida N. 2017. Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica[J]. Atmospheric Chemistry and Physics, 17(5): 3713−3727. doi: 10.5194/acp-17-3713-2017

    CrossRef Google Scholar

    [174] Jaisi D P, Blake R E. 2010. Tracing sources and cycling of phosphorus in Peru margin sediments using oxygen isotopes in authigenic and detrital phosphates[J]. Geochimica et Cosmochimica Acta, 74(11): 3199−3212. doi: 10.1016/j.gca.2010.02.030

    CrossRef Google Scholar

    [175] Jameel Y, Brewer S, Good S P, Tipple B J, Ehleringer J R, Bowen G J. 2016. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area[J]. Water Resources Research, 52(8): 5891−5910. doi: 10.1002/2016WR019104

    CrossRef Google Scholar

    [176] Ji S, Nie J, Breecker D O, Luo Z, Song Y. 2017. Intensified aridity in northern China during the middle Piacenzian warm period[J]. Journal of Asian Earth Sciences, 147: 222−225. doi: 10.1016/j.jseaes.2017.07.016

    CrossRef Google Scholar

    [177] Ji X, Shu L, Li J, Zhao C, Chen W, Chen Z, Shang X, Dahlgren R A, Yang Y, Zhang M. 2022. Tracing nitrate sources and transformations using Δ17O, δ15N, and δ18O–NO3 in a coastal plain river network of eastern China[J]. Journal of Hydrology, 610: 127829. doi: 10.1016/j.jhydrol.2022.127829

    CrossRef Google Scholar

    [178] Jin Z, Wang J, Zhang R, Liao P, Liu Y, Yang J, Chen J. 2023. Identification of the sources of different phosphorus fractions in lake sediments by oxygen isotopic composition of phosphate[J]. Applied Geochemistry, 151: 105627. doi: 10.1016/j.apgeochem.2023.105627

    CrossRef Google Scholar

    [179] Johnsen S J, Dahl−Jensen D, Gundestrup N, Steffensen J P, Clausen H B, Miller H, Masson-Delmotte V, Sveinbjörnsdottir A E, White J. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice−core stations: Camp Century, Dye−3, GRIP, GISP2, Renland and NorthGRIP[J]. Journal of Quaternary Science: Published for the Quaternary Research Association, 16(4): 299−307.

    Google Scholar

    [180] Joshi S R, Kukkadapu R K, Burdige D J, Bowden M E, Sparks D L, Jaisi D P. 2015. Organic matter remineralization predominates phosphorus cycling in the mid–bay sediments in the Chesapeake Bay[J]. Environmental Science & Technology, 49(10): 5887−5896.

    Google Scholar

    [181] Joussaume S, Jouzel J, Sadourny R. 1984. Erratum: A general circulation model of water isotope cycles in the atmosphere[J]. Nature, 311(5987): 680−680.

    Google Scholar

    [182] Jouzel J, Merlivat L. 1984. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research: Atmospheres, 89(D7): 11749−11757. doi: 10.1029/JD089iD07p11749

    CrossRef Google Scholar

    [183] Junghans M, Tichomirowa M. 2009. Using sulfur and oxygen isotope data for sulfide oxidation assessment in the Freiberg polymetallic sulfide mine[J]. Applied Geochemistry, 24(11): 2034−2050. doi: 10.1016/j.apgeochem.2009.08.001

    CrossRef Google Scholar

    [184] Kamezaki K, Hattori S, Iwamoto Y, Ishino S, Furutani H, Miki Y, Miura K, Uematsu M, Yoshida N. 2017. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean[C]. Paper presented at the EGU General Assembly Conference Abstracts.

    Google Scholar

    [185] Kamiloglu S. 2019. Authenticity and traceability in beverages[J]. Food Chemistry, 277: 12−24. doi: 10.1016/j.foodchem.2018.10.091

    CrossRef Google Scholar

    [186] Kato H, Amekawa S, Hori M, Shen C C, Kuwahara Y, Senda R, Kano A. 2021. Influences of temperature and the meteoric water δ18O value on a stalagmite record in the last deglacial to Middle Holocene period from southwestern Japan[J]. Quaternary Science Reviews, 253: 106746. doi: 10.1016/j.quascirev.2020.106746

    CrossRef Google Scholar

    [187] Kelly S, Heaton K, Hoogewerff J. 2005. Tracing the geographical origin of food: The application of multi–element and multi–isotope analysis[J]. Trends in Food Science & Technology, 16(12): 555−567.

    Google Scholar

    [188] Kendall C, Elliott E M, Wankel S D. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems[J]. Stable Isotopes in Ecology and Environmental Science, 2(1): 375−449.

    Google Scholar

    [189] Kendall C, McDonnell J J. 1998. Isotope Tracers in Catchment Hydrology[M]. Amsterdam: Elsevier.

    Google Scholar

    [190] Killingsworth B A, Bao H. 2015. Significant human impact on the flux and δ34S of sulfate from the Largest River in North America[J]. Environmental Science & Technology, 49(8): 4851−4860.

    Google Scholar

    [191] Kim D M, Yun S T, Yoon S, Mayer B. 2019. Signature of oxygen and sulfur isotopes of sulfate in ground and surface water reflecting enhanced sulfide oxidation in mine areas[J]. Applied Geochemistry, 100: 143−151. doi: 10.1016/j.apgeochem.2018.11.018

    CrossRef Google Scholar

    [192] Kim S T, O’Neil J R, Hillaire–Marcel C, Mucci A. 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration[J]. Geochimica et Cosmochimica Acta, 71(19): 4704−4715. doi: 10.1016/j.gca.2007.04.019

    CrossRef Google Scholar

    [193] Kluge T, John C M, Jourdan A L, Davis S, Crawshaw J. 2015. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250 C temperature range[J]. Geochimica et Cosmochimica Acta, 157: 213−227. doi: 10.1016/j.gca.2015.02.028

    CrossRef Google Scholar

    [194] Kolodny Y, Luz B, Navon O. 1983. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—Rechecking the rules of the game[J]. Earth and Planetary Science Letters, 64(3): 398−404. doi: 10.1016/0012-821X(83)90100-0

    CrossRef Google Scholar

    [195] Korenaga T, Musashi M, Nakashita R, Suzuki Y. 2010. Statistical analysis of rice samples for compositions of multiple light elements (H, C, N, and O) and their stable isotopes[J]. Analytical Sciences, 26(8): 873−878. doi: 10.2116/analsci.26.873

    CrossRef Google Scholar

    [196] Kortelainen N. 2009. Isotopic composition of atmospheric precipitation and shallow groundwater in Olkiluoto: O–18, H–2 and H–3[R]. Posiva Oy.

    Google Scholar

    [197] Krouse H R, Grinenko V A. 1991. Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment[M]. New York: John Wiley and Sons Ltd, 1991: 1–40.

    Google Scholar

    [198] Kukusamude C, Sola P, Kongsri S. 2018. Stable isotope ratio of local rice samples in Thailand[C]//Journal of Physics: Conference Series. IOP Publishing, 1144(1): 012168.

    Google Scholar

    [199] Kuwano D, Tsuchiya Y, Kameo K, Hayashi H, Kubota Y, Mantoku K, Oura Y. 2022. Early Pleistocene (marine isotope stage 40–36) paleoceanography in the northwestern Pacific: Evidence from faunal and oxygen isotope analyses of planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 592: 110873.

    Google Scholar

    [200] Labeyrie L, Duplessy J C, Blanc P. 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125, 000 years[J]. Nature, 327(6122): 477−482. doi: 10.1038/327477a0

    CrossRef Google Scholar

    [201] Landais A, Barkan E, Yakir D, Luz B. 2006. The triple isotopic composition of oxygen in leaf water[J]. Geochimica et Cosmochimica Acta, 70(16): 4105−4115. doi: 10.1016/j.gca.2006.06.1545

    CrossRef Google Scholar

    [202] Landais A, Risi C, Bony S, Vimeux F, Descroix L, Falourd S, Bouygues A. 2010. Combined measurements of 17Oexcess and d–excess in African monsoon precipitation: Implications for evaluating convective parameterizations[J]. Earth and Planetary Science Letters, 298(1/2): 104−112.

    Google Scholar

    [203] Larkins C, Turunen K, Mänttäri I, Lahaye Y, Hendriksson N, Forsman P, Backnäs S. 2018. Characterization of selected conservative and non–conservative isotopes in mine effluent and impacted surface waters: implications for tracer applications at the mine–site scale[J]. Applied Geochemistry, 91: 1−13. doi: 10.1016/j.apgeochem.2018.01.005

    CrossRef Google Scholar

    [204] Laskar A H, Maurya A S, Singh V, Gurjar B R, Liang M–C. 2020. A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2[J]. Environmental Pollution, 263: 114542. doi: 10.1016/j.envpol.2020.114542

    CrossRef Google Scholar

    [205] Lawrence J R, Gedzelman S D, Dexheimer D, Cho H K, Carrie G D, Gasparini R, Anderson C R, Bowman K P, Biggerstaff M I. 2004. Stable isotopic composition of water vapor in the tropics[J]. Journal of Geophysical Research: Atmospheres, 109(D6): D06115.

    Google Scholar

    [206] Lea D W, Martin P A, Pak D K, Spero H J. 2002. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 21(1−3): 283−293. doi: 10.1016/S0277-3791(01)00081-6

    CrossRef Google Scholar

    [207] Leavitt S W, Danzer S R. 1993. Method for batch processing small wood samples to holocellulose for stable–carbon isotope analysis[J]. Analytical Chemistry, 65(1): 87−89. doi: 10.1021/ac00049a017

    CrossRef Google Scholar

    [208] LeGrande A N, Schmidt G A. 2006. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical research letters, 33(12): L12604.

    Google Scholar

    [209] Li A, Keely B, Chan S, Baxter M, Rees G, Kelly S. 2015. Verifying the provenance of rice using stable isotope ratio and multi–element analyses: A feasibility study[J]. Quality Assurance and Safety of Crops & Foods, 7(3): 343−354.

    Google Scholar

    [210] Li C, Ren J, Shi G, Pang H, Wang Y, Hou S, Li Z, Du Z, Ding M, Ma X. 2021. Spatial and temporal variations of fractionation of stable isotopes in East–Antarctic snow[J]. Journal of Glaciology, 67(263): 523−532. doi: 10.1017/jog.2021.5

    CrossRef Google Scholar

    [211] Li H C, Ku T L. 1997. δ13C–δ18C covariance as a paleohydrological indicator for closed–basin lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 133(1–2): 69–80.

    Google Scholar

    [212] Li J, Li Z, Brandis K J, Bu J, Sun Z, Yu Q, Ramp D. 2020a. Tracing geochemical pollutants in stream water and soil from mining activity in an alpine catchment[J]. Chemosphere, 242: 125167. doi: 10.1016/j.chemosphere.2019.125167

    CrossRef Google Scholar

    [213] Li Jiansen, Cai Jinfu, Fan Qishun, Shan Fashou, Ling Zhiyong, Han Yuanhong, Zhang Yongxing. 2022. Metallogenic geochemical system of K, B and Li resources in salt lakes of Qaidam Basin[J]. Journal of Salt Lake Research, 30(3): 12−20 (in Chinese with English abstract).

    Google Scholar

    [214] Li S L, Liu C Q, Li J, Liu X, Chetelat B, Wang B, Wang F. 2010. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach[J]. Environmental Science & Technology, 44(5): 1573−1578.

    Google Scholar

    [215] Li Siyuan, Hou Qingye, Yang Zhongfang, Yu Tao. 2024. Nitrogen isotope fractionation mechanism, analysis measurement tracer technology and itsapplication in ecological environment[J]. Geology in China, 51(5): 1617−1643 (in Chinese with English abstract).

    Google Scholar

    [216] Li Tong, Qiu Guoyu. 2018. Hydrogen and oxygen stable isotope study on the difference of evaporation between salt and pure water[J]. Tropical Geography, 38(6): 857−865 (in Chinese with English abstract).

    Google Scholar

    [217] Li X, Pan G, Zhou A, Fang L, He N. 2022. Stable sulfur and oxygen isotopes of sulfate as tracers of antimony and arsenic pollution sources related to antimony mine activities in an impacted river[J]. Applied Geochemistry, 142: 105351. doi: 10.1016/j.apgeochem.2022.105351

    CrossRef Google Scholar

    [218] Li X, Wang Y, Stern J, Gu B. 2011. Isotopic evidence for the source and fate of phosphorus in Everglades wetland ecosystems[J]. Applied Geochemistry, 26(5): 688−695. doi: 10.1016/j.apgeochem.2011.01.027

    CrossRef Google Scholar

    [219] Li Xiaoqian, Zhang Bin, Zhou Aiguo, LiuYunde. 2014. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology, 41(6): 103−109 (in Chinese with English abstract).

    Google Scholar

    [220] Li Y, Liu T, Wu W, Hna J, Hong Y. 2003. Paleoenvironment in Chinese loess plateau during mis 3: Evidence from Malan Loess[J]. Quaternary Sciences, 23(1): 69−76.

    Google Scholar

    [221] Li Y, Zeng X, Liu X, Evans M N, Xu G, Szejner P, Ni P. 2023. A seasonally varying tree physiological response to environmental conditions: Results from semi−arid China[J]. Journal of Geophysical Research: Biogeosciences, 128(7): e2023JG007455. doi: 10.1029/2023JG007455

    CrossRef Google Scholar

    [222] Li Yue, Wang Rujian, Li Wenbao. 2016. Review on research on paleo–sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science, 31(3): 310−319 (in Chinese with English abstract).

    Google Scholar

    [223] Li Z, Ou J, Chen X, Li F, Wang X, Tan X. 2017. Characteristics and main development controlling factors for Lower Permian dolomite reservoirs in Chuanzhong region[J]. Petroleum Geology & Oilfield Development in Daqing, 36(4): 1−8.

    Google Scholar

    [224] Li Z, Zhang R, Liu C, Zhang R, Chen F, Liu Y. 2020b. Phosphorus spatial distribution and pollution risk assessment in agricultural soil around the Danjiangkou reservoir, China[J]. Science of the Total Environment, 699: 134417. doi: 10.1016/j.scitotenv.2019.134417

    CrossRef Google Scholar

    [225] Li Zhitao, Xiao Hongwei, Wu Zuoting, Ma Yan, Xiao Yangning, Chen Zhenping, Tao Jihua. 2022. Hydrochemistry, nitrogen and oxygen isotope composition of nitrate to trace its source in Poyang Lake wetland[J]. China Environmental Science, 42(9): 4315−4322 (in Chinese with English abstract).

    Google Scholar

    [226] Liang M C, Laskar A H, Barkan E, Newman S, Thiemens M H, Rangarajan R. 2023. New constraints of terrestrial and oceanic global gross primary productions from the triple oxygen isotopic composition of atmospheric CO2 and O2[J]. Scientific Reports, 13(1): 2162. doi: 10.1038/s41598-023-29389-z

    CrossRef Google Scholar

    [227] Liang M C, Mahata S, Laskar A H, Bhattacharya S K. 2017. Spatiotemporal variability of oxygen isotope anomaly in near surface air CO2 over urban, semi–urban and ocean areas in and around Taiwan[J]. Aerosol and Air Quality Research, 17(3): 706−720. doi: 10.4209/aaqr.2016.04.0171

    CrossRef Google Scholar

    [228] Liang M C, Mahata S. 2015. Oxygen anomaly in near surface carbon dioxide reveals deep stratospheric intrusion[J]. Scientific Reports, 5(1): 11352. doi: 10.1038/srep11352

    CrossRef Google Scholar

    [229] Liang M C, Yung Y L. 2007. Sources of the oxygen isotopic anomaly in atmospheric N2O[J]. Journal of Geophysical Research: Atmospheres, 112(D13): D13307.

    Google Scholar

    [230] Lin M, Thiemens M H. 2024. 40 years of theoretical advances in mass–independent oxygen isotope effects and applications in atmospheric chemistry: A critical review and perspectives[J]. Applied Geochemistry, 161: 105860. doi: 10.1016/j.apgeochem.2023.105860

    CrossRef Google Scholar

    [231] Lisiecki L E, Raymo M E. 2005. A Pliocene−Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 20(2): PA2007.

    Google Scholar

    [232] Liu C L, Wang M L, Jiao P C. 1999. Hydrogen, oxygen, strontium and sulfur isotopic geochemistry and potash–forming material sources of lop salt lake, Xinjiang[J]. Mineral Deposits, 18(3): 268−275.

    Google Scholar

    [233] Liu J, Chen J, Zhang X, Li Y, Rao Z, Chen F. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth–Science Reviews, 148: 194−208.

    Google Scholar

    [234] Liu J, Han G. 2021. Tracing riverine sulfate source in an agricultural watershed: Constraints from stable isotopes[J]. Environmental Pollution, 288: 117740. doi: 10.1016/j.envpol.2021.117740

    CrossRef Google Scholar

    [235] Liu Ke, Hou Shugui, Pang Hongxi, Shi Guitao, Geng Lei, Hu Huanting, Song Jing, Zhang Wangbin, Zou Xiang, An Chunlei, Yu Jinhai. 2022. Polar ice core–based climate and environmental research: A review and perspective[J]. Chinese Journal of Polar Research, 34(4): 530−545 (in Chinese with English abstract).

    Google Scholar

    [236] Liu S, Zhang R, Kang R, Meng J, Ao C. 2016. Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets[J]. Animal Nutrition, 2(4): 329−333. doi: 10.1016/j.aninu.2016.08.008

    CrossRef Google Scholar

    [237] Liu T, Wang F, Michalski G, Xia X, Liu S. 2013. Using 15N, 17O, and 18O to determine nitrate sources in the Yellow River, China[J]. Environmental Science & Technology, 47(23): 13412−13421.

    Google Scholar

    [238] Liu X F, Xue C H, Wang Y M, Li Z J, Xue Y, Xu J. 2011. Principal component analysis and cluster analysis of inorganic elements in sea cucumber Apostichopus japonicus[J]. Spectroscopy and Spectral Analysis, 31(11): 3119−3122.

    Google Scholar

    [239] Liu X, Chen B. 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14): 1729−1742.

    Google Scholar

    [240] Liu Y, Wang Y, Li Q, Song H, Linderholm H W, Leavitt S W, Wang R, An Z. 2014. Tree–ring stable carbon isotope–based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming[J]. Quaternary Science Reviews, 93: 67−76. doi: 10.1016/j.quascirev.2014.03.023

    CrossRef Google Scholar

    [241] Loader N, Robertson I, McCarroll D. 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree–rings[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(3/4): 395–407.

    Google Scholar

    [242] Lü Fenglin, Liu Chenglin, Jiao Pengcheng, Zhang Hua, Sun Xiaohong, Zhang Yongming. 2018. Carbon and oxygen isotopic compositions of the lacustrine carbonate in Lop Nur since the Mid–Pleistocene and their paleoenvironment significance[J]. Acta Geologica Sinica, 92(8): 1589−1604 (in Chinese with English abstract).

    Google Scholar

    [243] Luo D, Dong H, Luo H, Xian Y, Guo X, Wu Y. 2016. Multi–element (C, N, H, O) stable isotope ratio analysis for determining the geographical origin of pure milk from different regions[J]. Food Analytical Methods, 9: 437−442. doi: 10.1007/s12161-015-0204-9

    CrossRef Google Scholar

    [244] Luo X, Wang H, An Z, Zhang Z, Liu W. 2020. Carbon and oxygen isotopes of calcified root cells, carbonate nodules and total inorganic carbon in the Chinese loess–paleosol sequence: The application of paleoenvironmental studies[J]. Journal of Asian Earth Sciences, 201: 104515. doi: 10.1016/j.jseaes.2020.104515

    CrossRef Google Scholar

    [245] Luz B, Barkan E, Bender M L, Thiemens M H, Boering K A. 1999. Triple–isotope composition of atmospheric oxygen as a tracer of biosphere productivity[J]. Nature, 400(6744): 547−550. doi: 10.1038/22987

    CrossRef Google Scholar

    [246] Luz B, Barkan E. 2010. Variations of 17O/16O and 18O/16O in meteoric waters[J]. Geochimica et Cosmochimica Acta, 74(22): 6276−6286. doi: 10.1016/j.gca.2010.08.016

    CrossRef Google Scholar

    [247] Ma Zhengming, Jiang Panwu, Li Qingkuan, Wei Haicheng, Li Yongshou, Shan Fashou. 2021. Hydrogen and oxygen isotope characteristics and origin of Hadahexiu Salt Lake Brine[J]. Journal of Salt Lake Research, 29(1): 80−87 (in Chinese with English abstract).

    Google Scholar

    [248] MacDonald G K, Bennett E M, Potter P A, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world's croplands[J]. Proceedings of the National Academy of Sciences, 108(7): 3086−3091. doi: 10.1073/pnas.1010808108

    CrossRef Google Scholar

    [249] MacDonald J M, John C M, Girard J–P. 2018. Testing clumped isotopes as a reservoir characterization tool: A comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2–4 km[J]. Geological Society, London, Special Publications, 468(1): 189–202.

    Google Scholar

    [250] MacLeod K G, Huber B T, Berrocoso Á J, Wendler I. 2013. A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera[J]. Geology, 41(10): 1083−1086. doi: 10.1130/G34510.1

    CrossRef Google Scholar

    [251] Magdas DA, Dehelean A, Puscas R. 2012. Isotopic and elemental determination in some Romanian apple fruit juices[J]. Scientific World Journal, 2012: 1−7.

    Google Scholar

    [252] Mahecha M D, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne S I, Vargas R, Ammann C, Arain M A, Cescatti A. 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level[J]. Science, 329(5993): 838−840. doi: 10.1126/science.1189587

    CrossRef Google Scholar

    [253] Maher B A, Hu M. 2006. A high–resolution record of Holocene rainfall variations from the western Chinese Loess Plateau: Antiphase behaviour of the African/Indian and East Asian summer monsoons[J]. The Holocene, 16(3): 309−319. doi: 10.1191/0959683606hl929rp

    CrossRef Google Scholar

    [254] Maiorano P, Marino M, Balestra B, Flores J–A, Hodell D, Rodrigues T. 2015. Coccolithophore variability from the Shackleton Site (IODP Site U1385) through MIS 16–10[J]. Global and Planetary Change, 133: 35−48. doi: 10.1016/j.gloplacha.2015.07.009

    CrossRef Google Scholar

    [255] Majoube M. 1971. Fractionnementenoxygène–18 et endeutérium entre l’eau et savapeur[J]. Journal de Chimie Physique, 68: 1423−1436. doi: 10.1051/jcp/1971681423

    CrossRef Google Scholar

    [256] Mangenot X, Deçoninck J F, Bonifacie M, Rouchon V, Collin P Y, Quesne D, Gasparrini M, Sizun J P. 2019. Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes—France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data[J]. Basin Research, 31(2): 361−379. doi: 10.1111/bre.12324

    CrossRef Google Scholar

    [257] Mangenot X, Gasparrini M, Gerdes A, Bonifacie M, Rouchon V. 2018. An emerging thermochronometer for carbonate–bearing rocks: ∆47/(U–Pb)[J]. Geology, 46(12): 1067−1070. doi: 10.1130/G45196.1

    CrossRef Google Scholar

    [258] Mao Jianying, Zhu Jianping, Xiao Jianjun. 2003. The relationship between nitrogen contamination and dissolved oxygen in mainstream of the Huaihe River[J]. Environmental Monitoring in China, (5): 41−43 (in Chinese with English abstract).

    Google Scholar

    [259] Maqsoud A, Neculita C M, Bussière B, Benzaazoua M, Dionne J. 2016. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada[J]. Environmental Science and Pollution Research, 23: 9054−9072. doi: 10.1007/s11356-016-6111-9

    CrossRef Google Scholar

    [260] Marcus R. 2008. Mass–independent oxygen isotope fractionation in selected systems. Mechanistic considerations[J]. Advances in Quantum Chemistry, 55: 5−19.

    Google Scholar

    [261] Marrero T R, Mason E A. 1972. Gaseous diffusion coefficients[J]. Journal of Physical and Chemical Reference Data, 1(1): 3−118.

    Google Scholar

    [262] Martino J C, Mazumder D, Gadd P, Doubleday Z A. 2022. Tracking the provenance of octopus using isotopic and multi–elemental analysis[J]. Food Chemistry, 371: 131133. doi: 10.1016/j.foodchem.2021.131133

    CrossRef Google Scholar

    [263] Masud Z, Vallet C, Martin G J. 1999. Stable isotope characterization of milk components and whey ethanol[J]. Journal of Agricultural and Food Chemistry, 47(11): 4693−4699.

    Google Scholar

    [264] Mayer B, Bollwerk S M, Mansfeldt T, Hütter B, Veizer J. 2001. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors[J]. Geochimica et Cosmochimica Acta, 65(16): 2743−2756.

    Google Scholar

    [265] Mayer B, Boyer E W, Goodale C, Jaworski N A, Van Breemen N, Howarth R W, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K. 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: Isotopic constraints[J]. Biogeochemistry, 57: 171−197.

    Google Scholar

    [266] McCarroll D, Loader N J. 2004. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 23(7−8): 771−801.

    Google Scholar

    [267] McCorkle D C, Keigwin L D, Corliss B H, Emerson S R. 1990. The influence of microhabitats on the carbon isotopic composition of deep−sea benthic foraminifera[J]. Paleoceanography, 5(2): 161−185.

    Google Scholar

    [268] McLaughlin K, Kendall C, Silva S R, Young M, Paytan A. 2006. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California[J]. Journal of Geophysical Research: Biogeosciences, 111(G3): 03003.

    Google Scholar

    [269] Meijer H A J, Li W J. 1998. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water[J]. Isotopes in Environmental and Health Studies, 34(4): 349−369.

    Google Scholar

    [270] Merlivat L, Coantic M. 1975. Study of mass transfer at the air−water interface by an isotopic method[J]. Journal of Geophysical Research, 80(24): 3455−3464. doi: 10.1029/JC080i024p03455

    CrossRef Google Scholar

    [271] Merlivat L, Jouzel J. 1979. Global climatic interpretation of the deuterium−oxygen 18 relationship for preci–pitation[J]. Journal of Geophysical Research: Oceans, 84(C8): 5029−5033. doi: 10.1029/JC084iC08p05029

    CrossRef Google Scholar

    [272] Miall A D. 2013. Principles of Sedimentary Basin Analysis[M]. Springer Science & Business Media.

    Google Scholar

    [273] Miao Qing, Hou Xianhua, Yang Zhenjing. 2021. Application of several commonly used paleoclimate proxies in paleoenvironmental studies of salt lakes[J]. Scientific and Technological Innovation, (5): 31−32 (in Chinese).

    Google Scholar

    [274] Miao Tian, JinYaqi, Wang Lei, Wu Gaoyang, Chen Zhong. 2021. Research progress on the paleoclimate significance of loess carbonate[J]. Journal of Salt Lake Research, 29(4): 90−99 (in Chinese with English abstract).

    Google Scholar

    [275] Michalski G, Meixner T, Fenn M, Hernandez L, Sirulnik A, Allen E, Thiemens M. 2004. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O[J]. Environmental Science & Technology, 38(7): 2175−2181.

    Google Scholar

    [276] Michalski G, Scott Z, Kabiling M, Thiemens M H. 2003. First measurements and modeling of Δ17O in atmospheric nitrate[J]. Geophysical Research Letters, 30(16): 1870.

    Google Scholar

    [277] Michalski G, Thiemens M. 2006. The use of multi–isotope ratio measurements as a new and unique technique to resolve NOx transformation, transport and nitrate deposition in the Lake Tahoe Basin[J]. California Air Resources Board, Sacramento,CA: 03−317.

    Google Scholar

    [278] Miller K G, Browning J V, Schmelz W J, Kopp R E, Mountain G S, Wright J D. 2020. Cenozoic sea–level and cryospheric evolution from deep–sea geochemical and continental margin records[J]. Science advances, 6(20): eaaz1346. doi: 10.1126/sciadv.aaz1346

    CrossRef Google Scholar

    [279] Miller K G, Wright J D, Browning J V, Kulpecz A, Kominz M, Naish T R, Cramer B S, Rosenthal Y, Peltier W R, Sosdian S. 2012. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation[J]. Geology, 40(5): 407−410. doi: 10.1130/G32869.1

    CrossRef Google Scholar

    [280] Miller M F. 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three–isotope system: An appraisal and geochemical significance[J]. Geochimica et Cosmochimica Acta, 66(11): 1881−1889. doi: 10.1016/S0016-7037(02)00832-3

    CrossRef Google Scholar

    [281] Miller M F. 2018. Precipitation regime influence on oxygen triple–isotope distributions in Antarctic precipitation and ice cores[J]. Earth and Planetary Science Letters, 481: 316−327. doi: 10.1016/j.jpgl.2017.10.035

    CrossRef Google Scholar

    [282] Mimmo T, Camin F, Bontempo L, Capici C, Tagliavini M, Cesco S, Scampicchio M. 2015. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data[J]. Rapid Communications in Mass Spectrometry, 29(21): 1984−1990. doi: 10.1002/rcm.7306

    CrossRef Google Scholar

    [283] Mix A C, Ruddiman W F. 1984. Oxygen–isotope analyses and Pleistocene ice volumes[J]. Quaternary Research, 21(1): 1−20. doi: 10.1016/0033-5894(84)90085-1

    CrossRef Google Scholar

    [284] Mosley–Thompson E, Thompson L G, Grootes P M, Gundestrup N. 1990. Little ice age (neoglacial) paleoenvironmental conditions at siple station, Antarctica[J]. Annals of Glaciology, 14: 199−204. doi: 10.3189/S0260305500008570

    CrossRef Google Scholar

    [285] Moyé J, Picard–Lesteven T, Zouhri L, El Amari K, Hibti M, Benkaddour A. 2017. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco)[J]. Environmental Pollution, 231: 899−907. doi: 10.1016/j.envpol.2017.07.044

    CrossRef Google Scholar

    [286] Naylor H N, Defliese W F, Grossman E L, Maupin C R. 2020. Investigation of the thermal history of the Delaware Basin (West Texas, USA) using carbonate clumped isotope thermometry[J]. Basin Research, 32(5): 1140−1155. doi: 10.1111/bre.12419

    CrossRef Google Scholar

    [287] Nestler A, Berglund M, Accoe F, Duta S, Xue D, Boeckx P, Taylor P. 2011. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies[J]. Environmental Science and Pollution Research, 18: 519−533. doi: 10.1007/s11356-010-0422-z

    CrossRef Google Scholar

    [288] Newman C P, Poulson S R, Hanna B. 2020. Regional isotopic investigation of evaporation and water–rock interaction in mine pit lakes in Nevada, USA[J]. Journal of Geochemical Exploration, 210: 106445. doi: 10.1016/j.gexplo.2019.106445

    CrossRef Google Scholar

    [289] Newsome S D, Clementz M T, Koch P L. 2010. Using stable isotope biogeochemistry to study marine mammal ecology[J]. Marine Mammal Science, 26(3): 509−572.

    Google Scholar

    [290] Nishimoto N, Yamamoto Y, Yamagata S, Igarashi T, Tomiyama S. 2021. Acid mine drainage sources and impact on groundwater at the osarizawa mine, Japan[J]. Minerals, 11(9): 998. doi: 10.3390/min11090998

    CrossRef Google Scholar

    [291] O'driscoll M, DeWalle D, McGuire K, Gburek W. 2005. Seasonal 18O variations and groundwater recharge for three landscape types in central Pennsylvania, USA[J]. Journal of Hydrology, 303(1/4): 108−124.

    Google Scholar

    [292] Oerter E J, Bowen G. 2017. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems[J]. Ecohydrology, 10(4): e1841. doi: 10.1002/eco.1841

    CrossRef Google Scholar

    [293] Ogrinc N, Košir I J, Kocjančič M, Kidrič J. 2001. Determination of authenticy, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF–NMR analyses[J]. Journal of Agricultural and Food Chemistry, 49(3): 1432−1440. doi: 10.1021/jf000911s

    CrossRef Google Scholar

    [294] O'Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 51(12): 5547−5558. doi: 10.1063/1.1671982

    CrossRef Google Scholar

    [295] Orellana S, Johansen A M, Gazis C. 2019. Geographic classification of US Washington State wines using elemental and water isotope composition[J]. Food Chemistry: X, 1: 100007. doi: 10.1016/j.fochx.2019.100007

    CrossRef Google Scholar

    [296] Passey B H, Henkes G A. 2012. Carbonate clumped isotope bond reordering and geospeedometry[J]. Earth and Planetary Science Letters, 351: 223−236.

    Google Scholar

    [297] Passey B H, Ji H. 2019. Triple oxygen isotope signatures of evaporation in lake waters and carbonates: A case study from the western United States[J]. Earth and Planetary Science Letters, 518: 1−12. doi: 10.1016/j.jpgl.2019.04.026

    CrossRef Google Scholar

    [298] Perini M, Thomas F, Ortiz A I C, Simoni M, Camin F. 2022. Stable isotope ratio analysis of lactose as a possible potential geographical tracer of milk[J]. Food Control, 139: 109051. doi: 10.1016/j.foodcont.2022.109051

    CrossRef Google Scholar

    [299] Peters M, Guo Q, Strauss H, Wei R, Li S, Yue F. 2019. Contamination patterns in river water from rural Beijing: A hydrochemical and multiple stable isotope study[J]. Science of the Total Environment, 654: 226−236. doi: 10.1016/j.scitotenv.2018.10.423

    CrossRef Google Scholar

    [300] Petit J–R, Jouzel J, Raynaud D, Barkov N I, Barnola J–M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G. 1999. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 399(6735): 429−436. doi: 10.1038/20859

    CrossRef Google Scholar

    [301] Pistocchi C, Mészáros É, Frossard E, Bünemann E K, Tamburini F. 2020. In or out of equilibrium? How microbial activity controls the oxygen isotopic composition of phosphate in forest organic horizons with low and high phosphorus availability[J]. Frontiers in Environmental Science, 8: 564778. doi: 10.3389/fenvs.2020.564778

    CrossRef Google Scholar

    [302] Porter T J, Pisaric M F, Field R D, Kokelj S V, Edwards T W, deMontigny P, Healy R, LeGrande A N. 2014. Spring–summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree–rings from the Mackenzie Delta, northwestern Canada[J]. Climate Dynamics, 42: 771−785. doi: 10.1007/s00382-013-1674-3

    CrossRef Google Scholar

    [303] Prell W L, Imbrie J, Martinson D G, Morley J J, Pisias N G, Shackleton N J, Streeter H F. 1986. Graphic correlation of oxygen isotope stratigraphy application to the Late Quaternary[J]. Paleoceanography, 1(2): 137−162. doi: 10.1029/PA001i002p00137

    CrossRef Google Scholar

    [304] Pritchard H D. 2019. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 569(7758): 649−654. doi: 10.1038/s41586-019-1240-1

    CrossRef Google Scholar

    [305] Prud'Homme C, Lécuyer C, Antoine P, Moine O, Hatté C, Fourel F, Martineau F, Rousseau D–D. 2016. Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany[J]. Earth and Planetary Science Letters, 442: 13−20. doi: 10.1016/j.jpgl.2016.02.045

    CrossRef Google Scholar

    [306] Qiao Zhanfeng, Yu Zhou, She Min, Pan Liyin, Zhang Tianfu, Li Wenzheng, Shen Anjiang. 2023. Progresses on ancient ultra–deeply buried marine carbonate reservoir in China.[J]. Journal of Palaeogeography(Chinese Edition), 25(6): 1257−1276 (in Chinese with English abstract).

    Google Scholar

    [307] Qiu Nansheng, Liu Xin, Xiong Yujie, Liu Yuchen, Xu Qiuchen, Chang Qing. 2023. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 45(5): 891−903 (in Chinese with English abstract).

    Google Scholar

    [308] Rao Z, Liu X, Hua H, Gao Y, Chen F. 2015. Evolving history of the East Asian summer monsoon intensity during the MIS5: Inconsistent records from Chinese stalagmites and loess deposits[J]. Environmental Earth Sciences, 73: 3937−3950. doi: 10.1007/s12665-014-3681-z

    CrossRef Google Scholar

    [309] Rasmussen S O, Abbott P M, Blunier T, Bourne A, Brook E, Buchardt S L, Buizert C, Chappellaz J, Clausen H, Cook E. 2013. A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core[J]. Climate of the Past, 9(6): 2713−2730. doi: 10.5194/cp-9-2713-2013

    CrossRef Google Scholar

    [310] Rech J A, Currie B S, Jordan T E, Riquelme R, Lehmann S B, Kirk–Lawlor N E, Li S, Gooley J T. 2019. Massive Middle Miocene gypsic paleosols in the Atacamadesert and the formation of the Central Andean rain–shadow[J]. Earth and Planetary Science Letters, 506: 184−194. doi: 10.1016/j.jpgl.2018.10.040

    CrossRef Google Scholar

    [311] Ren J, Xiao C, Hou S, Li Y, Sun B. 2009. New focuses of polar ice–core study: NEEM and Dome A[J]. Chinese Science Bulletin, 54(6): 1009−1011. doi: 10.1007/s11434-009-0012-y

    CrossRef Google Scholar

    [312] Ren K, Zeng J, Liang J, Yuan D, Jiao Y, Peng C, Pan 20X. 2021. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes[J]. Science of the Total Environment, 761: 143223. doi: 10.1016/j.scitotenv.2020.143223

    CrossRef Google Scholar

    [313] Ren Kun, Pan Xiaodong, Lan Ganjiang, Peng Cong, Liang Jiapeng, Zeng Jie. 2021. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using sulfur and oxygen isotopes[J]. Environmental Science, 42(9): 4267−4274 (in Chinese with English abstract).

    Google Scholar

    [314] Ridley H E, Asmerom Y, Baldini J U, Breitenbach S F, Aquino V V, Prufer K M, Culleton B J, Polyak V, Lechleitner F A, Kennett D J. 2015. Aerosol forcing of the position of the intertropical convergence zone since AD 1550[J]. Nature Geoscience, 8(3): 195−200. doi: 10.1038/ngeo2353

    CrossRef Google Scholar

    [315] Roberts K, Defforey D, Turner B L, Condron L M, Peek S, Silva S, Kendall C, Paytan A. 2015. Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest[J]. Geoderma, 257: 14−21.

    Google Scholar

    [316] Rockmann T, Brenninkmeijer C, Saueressig G, Bergamaschi P, Crowley J, Fischer H, Crutzen P. 1998. Mass–independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO+ OH[J]. Science, 281(5376): 544−546. doi: 10.1126/science.281.5376.544

    CrossRef Google Scholar

    [317] Roe L J, Thewissen J, Quade J, O’Neil J R, Bajpai S, Sahni A, Hussain S T. 1998. Isotopic approaches to understanding the terrestrial–to–marine transition of the earliest cetaceans[J]. The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, 399–422.

    Google Scholar

    [318] Rohling E J, Grant K, Bolshaw M, Roberts A, Siddall M, Hemleben C, Kucera M. 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles[J]. Nature Geoscience, 2(7): 500−504. doi: 10.1038/ngeo557

    CrossRef Google Scholar

    [319] Rohling E J. 2013. Oxygen isotope composition of seawater[J]. The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2: 915−922.

    Google Scholar

    [320] Rossmann A, Reniero F, Moussa I, Schmidt H L, Versini G, Merle M H. 1999. Stable oxygen isotope content of water of EU data–bank wines from Italy, France and Germany[J]. Zeitschrift Fur Lebensmittel–Untersuchung Und–Forschung a–Food Research and Technology, 208(5/6): 400−407.

    Google Scholar

    [321] Roy R, Wang Y, Jiang S. 2019. Growth pattern and oxygen isotopic systematics of modern freshwater mollusks along an elevation transect: Implications for paleoclimate reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 532: 109243.

    Google Scholar

    [322] Ruhela M, Sharma K, Bhutiani R, Chandniha S K, Kumar V, Tyagi K, Ahamad F, Tyagi I. 2022. GIS–based impact assessment and spatial distribution of air and water pollutants in mining area[J]. Environmental Science and Pollution Research, 29(21): 31486−31500. doi: 10.1007/s11356-021-18009-w

    CrossRef Google Scholar

    [323] Ryu Y, Baldocchi D D, Kobayashi H, Van Ingen C, Li J, Black T A, Beringer J, Van Gorsel E, Knohl A, Law B E. 2011. Integration of MODIS land and atmosphere products with a coupled−process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales[J]. Global Biogeochemical Cycles, 25: GB4017.

    Google Scholar

    [324] Sanci R, Panarello H O, Gozalvez M R. 2020. Environmental isotopes as tracers of mining activities and natural processes: A case study of San Antonio de los Cobres River Basin, Puna Argentina[J]. Journal of Geochemical Exploration, 213: 106517. doi: 10.1016/j.gexplo.2020.106517

    CrossRef Google Scholar

    [325] Santesteban L, Miranda C, Barbarin I, Royo J. 2015. Application of the measurement of the natural abundance of stable isotopes in viticulture: A review[J]. Australian Journal of Grape and Wine Research, 21(2): 157−167. doi: 10.1111/ajgw.12124

    CrossRef Google Scholar

    [326] Savarino J, Kaiser J, Morin S, Sigman D M, Thiemens M. 2007. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica[J]. Atmospheric Chemistry and Physics, 7(8): 1925−1945. doi: 10.5194/acp-7-1925-2007

    CrossRef Google Scholar

    [327] Savarino J, Thiemens M H. 1999. Analytical procedure to determine both δ18O and δ17O of H2O2 in natural water and first measurements[J]. Atmospheric Environment, 33(22): 3683−3690. doi: 10.1016/S1352-2310(99)00122-3

    CrossRef Google Scholar

    [328] Savin S M, Lee M. 1988. Isotopic studies of phyllosilicates[J]. Reviews in Mineralogy and Geochemistry, 19(1): 189−223.

    Google Scholar

    [329] Schauble E A, Ghosh P, Eiler J M. 2006. Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first–principles lattice dynamics[J]. Geochimica et Cosmochimica Acta, 70(10): 2510−2529. doi: 10.1016/j.gca.2006.02.011

    CrossRef Google Scholar

    [330] Schilt A, Baumgartner M, Blunier T, Schwander J, Spahni R, Fischer H, Stocker T F. 2010. Glacial–interglacial and millennial–scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years[J]. Quaternary Science Reviews, 29(1/2): 182−192.

    Google Scholar

    [331] Schönbeck L C, Santiago L S. 2022. Time will tell: towards high–resolution temporal tree–ring isotope analyses[J]. Tree Physiology, 42(12): 2401−2403. doi: 10.1093/treephys/tpac121

    CrossRef Google Scholar

    [332] Schubert B A, Jahren A H. 2015. Seasonal temperature and precipitation recorded in the intra–annual oxygen isotope pattern of meteoric water and tree–ring cellulose[J]. Quaternary Science Reviews, 125: 1−14. doi: 10.1016/j.quascirev.2015.07.024

    CrossRef Google Scholar

    [333] Shackleton N J, Opdyke N D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale[J]. Quaternary Research, 3(1): 39−55. doi: 10.1016/0033-5894(73)90052-5

    CrossRef Google Scholar

    [334] Shackleton N J. 1967. Oxygen isotope analyses and Pleistocene temperatures re–assessed[J]. Nature, 215(5096): 15−17. doi: 10.1038/215015a0

    CrossRef Google Scholar

    [335] Shackleton N J. 1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[J]. Colloques International du Centre National du Recherche Scientifique, 219: 203−210.

    Google Scholar

    [336] Shackleton N J. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281[J]. Initial Reports Deep Sea Drilling Project, 29: 743−755.

    Google Scholar

    [337] Shao H M, Lu X, Gao B, Hong S X, Pan H F, Xu Z Y, Bai X J. 2019. Geochemical analyzing technique of the microzone’s normal position and its application: A case study on the diagenetic evolution of the carbonate reservoir in Gucheng area[J]. Petroleum Geology & Oilfield Development in Daqing, 38(5): 160−168.

    Google Scholar

    [338] Sharp Z D, Wostbrock J A G, Pack A. 2018. Mass–dependent triple oxygen isotope variations in terrestrial materials[J]. Geochemical Perspectives Letters, 7: 27−31.

    Google Scholar

    [339] Shen C C, Kano A, Hori M, Lin K, Chiu T C, Burr G S. 2010. East Asian monsoon evolution and reconciliation of climate records from Japan and Greenland during the last deglaciation[J]. Quaternary Science Reviews, 29(23/24): 3327−3335. doi: 10.1016/j.quascirev.2010.08.012

    CrossRef Google Scholar

    [340] Shen Zhaoli, Wang Yanxin, Guo Huaming. 2012. Opportunities and challenges of water–rock interaction studies[J]. Earth Science, 37(2): 207−219 (in Chinese with English abstract).

    Google Scholar

    [341] Sheng Xuefen, Chen Jun, Yang Jiedong, Ji Junfeng, Chen Yang. 2002. Carbon and oxygen isotopic composition of carbonate in different grain size fractions from loess–paleosol sequences, China[J]. Geochimica, 31(2): 105−112 (in Chinese with English abstract).

    Google Scholar

    [342] Shi X, Zhang F, Tian L, Joswiak D R, Zeng C, Qu D. 2014. Tracing contributions to hydro−isotopic differences between two adjacent lakes in the southern Tibetan Plateau[J]. Hydrological Processes, 28(22): 5503−5512. doi: 10.1002/hyp.10051

    CrossRef Google Scholar

    [343] Shi Y, Yu G, Liu X, Li B, Yao T. 2001. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1/2): 69–83.

    Google Scholar

    [344] Siddall M, Rohling E J, Almogi–Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed D. 2003. Sea–level fluctuations during the last glacial cycle[J]. Nature, 423(6942): 853−858. doi: 10.1038/nature01690

    CrossRef Google Scholar

    [345] Siegenthaler M B, Tamburini F, Frossard E, Chadwick O, Vitousek P, Pistocchi C, Mészáros É, Helfenstein J. 2020. A dual isotopic (32P and 18O) incubation study to disentangle mechanisms controlling phosphorus cycling in soils from a climatic gradient (Kohala, Hawaii)[J]. Soil Biology and Biochemistry, 149: 107920. doi: 10.1016/j.soilbio.2020.107920

    CrossRef Google Scholar

    [346] Sierra C, Álvarez Saiz J R, Gallego J L R. 2013. Nanofiltration of acid mine drainage in an abandoned mercury mining area[J]. Water, Air, & Soil Pollution, 224: 1–12.

    Google Scholar

    [347] Siler N, Bailey A, Roe G H, Buizert C, Markle B, Noone D. 2021. The large–scale, long–term coupling of temperature, hydrology, and water isotopes[J]. Journal of Climate, 34(16): 6725−6742.

    Google Scholar

    [348] Sone T, Kano A, Okumura T, Kashiwagi K, Hori M, Jiang X, Shen C–C. 2013. Holocene stalagmite oxygen isotopic record from the Japan Sea side of the Japanese Islands, as a new proxy of the East Asian winter monsoon[J]. Quaternary Science Reviews, 75: 150−160. doi: 10.1016/j.quascirev.2013.06.019

    CrossRef Google Scholar

    [349] Song K, Wang F, Peng Y, Liu J, Liu D. 2022. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution, 305: 119327. doi: 10.1016/j.envpol.2022.119327

    CrossRef Google Scholar

    [350] Southon J. 2002. A first step to reconciling the GRIP and GISP2 ice–core chronologies, 0–14, 500 yr BP[J]. Quaternary Research, 57(1): 32−37. doi: 10.1006/qres.2001.2295

    CrossRef Google Scholar

    [351] Springer A E, Boldt E M, Junghans K M. 2017. Local vs. regional groundwater flow delineation from stable isotopes at western North America springs[J]. Groundwater, 55(1): 100−109. doi: 10.1111/gwat.12442

    CrossRef Google Scholar

    [352] Stevenson R, Desrochers S, Hélie J F. 2015. Stable and radiogenic isotopes as indicators of agri–food provenance: Insights from artisanal cheeses from Quebec, Canada[J]. International Dairy Journal, 49: 37−45. doi: 10.1016/j.idairyj.2015.04.003

    CrossRef Google Scholar

    [353] Su Y Y, Gao J, Zhao Y F, Wen H S, Zhang J J, Zhang A, Yuan C L. 2020. Geographical origin classification of Chinese wines based on carbon and oxygen stable isotopes and elemental profiles[J]. Journal of Food Protection, 83(8): 1323−1334. doi: 10.4315/JFP-19-499

    CrossRef Google Scholar

    [354] Suzuki Y, Nakashita R, Huque R, Khatun M A, Othman Z B, Salim N A B A, Thantar S, Pabroa P C, Kong P Y K, Waduge V A. 2022. Effects of processing on stable isotope compositions (δ13C, δ15N, and δ18O) of rice (Oryza sativa) and stable isotope analysis of asian rice samples for tracing their geographical origins[J]. Japan Agricultural Research Quarterly: JARQ, 56(1): 95−103. doi: 10.6090/jarq.56.95

    CrossRef Google Scholar

    [355] Swart P K, Murray S T, Staudigel P T, Hodell D A. 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates[J]. Geochemistry, Geophysics, Geosystems, 20(7): 3730–3750.

    Google Scholar

    [356] Syed T H, Famiglietti J S, Rodell M, Chen J, Wilson C R. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 44(2): W02433.

    Google Scholar

    [357] Szymczak S, Joachimski M M, Bräuning A, Hetzer T, Kuhlemann J. 2012. Are pooled tree ring δ13C and δ18O series reliable climate archives?—A case study of Pinus nigra spp. laricio (Corsica/France)[J]. Chemical Geology, 308: 40−49.

    Google Scholar

    [358] Tachikawa K, Elderfield H. 2002. Microhabitat effects on Cd/Ca and δ13C of benthic foraminifera[J]. Earth and Planetary Science Letters, 202(3−4): 607−624. doi: 10.1016/S0012-821X(02)00796-3

    CrossRef Google Scholar

    [359] Tan L, An Z, Huh C A, Cai Y, Shen C C, Shiau L J, Yan L, Cheng H, Edwards R L. 2014. Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries[J]. Scientific Reports, 4(1): 6381. doi: 10.1038/srep06381

    CrossRef Google Scholar

    [360] Tan M. 2016. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re–reconstruction of ENSO–like state[J]. Science China Earth Sciences, 59: 1225−1241. doi: 10.1007/s11430-015-5256-6

    CrossRef Google Scholar

    [361] Thiemens M H, Chakraborty S, Jackson T L. 2014. Decadal Δ17O record of tropospheric CO2: Verification of a stratospheric component in the troposphere[J]. Journal of Geophysical Research: Atmospheres, 119(10): 6221−6229. doi: 10.1002/2013JD020317

    CrossRef Google Scholar

    [362] Thiemens M H, Heidenreich III J E. 1983. The mass–independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications[J]. Science, 219(4588): 1073−1075. doi: 10.1126/science.219.4588.1073

    CrossRef Google Scholar

    [363] Thiemens M H. 2006. History and applications of mass–independent isotope effects[J]. Annual Review of Earth and Planetary Sciences, 34: 217−262. doi: 10.1146/annurev.earth.34.031405.125026

    CrossRef Google Scholar

    [364] Thompson L G, Mosley–Thompson E, Dansgaard W, Grootes P M. 1986. The little ice age as recorded in the stratigraphy of the tropical Quelccaya ice cap[J]. Science, 234(4774): 361−364. doi: 10.1126/science.234.4774.361

    CrossRef Google Scholar

    [365] Thompson L o, Yao T, Davis M, Henderson K, Mosley Thompson E, Lin P N, Beer J, Synal H A, Cole Dai J, Bolzan J. 1997. Tropical climate instability: The last glacial cycle from a Qinghai–Tibetan ice core[J]. Science, 276(5320): 1821−1825. doi: 10.1126/science.276.5320.1821

    CrossRef Google Scholar

    [366] Tian L, Guo Q, Yu G, Zhu Y, Lang Y, Wei R, Hu J, Yang X, Ge T. 2020. Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils[J]. Chemosphere, 239: 124622. doi: 10.1016/j.chemosphere.2019.124622

    CrossRef Google Scholar

    [367] Tian L, Guo Q, Zhu Y, He H, Lang Y, Hu J, Zhang H, Wei R, Han X, Peters M. 2016. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils[J]. Environmental Science and Pollution Research, 23: 23406−23414. doi: 10.1007/s11356-016-7482-7

    CrossRef Google Scholar

    [368] Tian Lide, Yao Tandong. 2016. High–resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 61: 926−937 (in Chinese with English abstract). doi: 10.1360/N972015-00779

    CrossRef Google Scholar

    [369] Tichomirowa M, Heidel C, Junghans M, Haubrich F, Matschullat J. 2010. Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997–2008) in the region of Freiberg, central–eastern Germany[J]. Chemical Geology, 276(1/2): 104−118. doi: 10.1016/j.chemgeo.2010.06.004

    CrossRef Google Scholar

    [370] Tomiyama S, Igarashi T, Tabelin C B, Tangviroon P, Ii H. 2019. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study[J]. Journal of Contaminant Hydrology, 225: 103502. doi: 10.1016/j.jconhyd.2019.103502

    CrossRef Google Scholar

    [371] Touzeau A, Landais A, Stenni B, Uemura R, Fukui K, Fujita S, Guilbaud S, Ekaykin A, Casado M, Barkan E. 2016. Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters[J]. The Cryosphere, 10(2): 837−852. doi: 10.5194/tc-10-837-2016

    CrossRef Google Scholar

    [372] Treydte K S, Schleser G H, Helle G, Frank D C, Winiger M, Haug G H, Esper J. 2006. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 440(7088): 1179−1182. doi: 10.1038/nature04743

    CrossRef Google Scholar

    [373] Trofimova T, Andersson C, Bonitz F G, Pedersen L E R, Schöne B R. 2021. Reconstructing early Holocene seasonal bottom–water temperatures in the northern North Sea using stable oxygen isotope records of Arctica islandica shells[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110242.

    Google Scholar

    [374] Trueman C N, Glew K S J. 2019. Isotopic Tracking of Marine Animal Movement[C]// Tracking Animal Migration with Stable Isotopes (137–172). Elsevier.

    Google Scholar

    [375] Trueman C N, MacKenzie K, Palmer M. 2012. Identifying migrations in marine fishes through stable−isotope analysis[J]. Journal of Fish Biology, 81(2): 826−847. doi: 10.1111/j.1095-8649.2012.03361.x

    CrossRef Google Scholar

    [376] Tuli S. 1985. Nuclear Wallet Cards. Natural Nuclear Data Center[M]. Brookhaven National Laboratory, 35pp.

    Google Scholar

    [377] Turpin M, Gressier V, Bahamonde J R, Immenhauser A. 2014. Component–specific petrographic and geochemical characterization of fine–grained carbonates along Carboniferous and Jurassic platform–to–basin transects[J]. Sedimentary Geology, 300: 62−85. doi: 10.1016/j.sedgeo.2013.11.004

    CrossRef Google Scholar

    [378] Vander Zanden H B, Soto D X, Bowen G J, Hobson K A. 2016. expanding The Isotopic Toolbox: Applications Of Hydrogen And Oxygen Stable Isotope Ratios To Food Web Studies[j]. frontiers In Ecology And Evolution, 4: 20.

    Google Scholar

    [379] Wang Chunlian, Liu Chenglin, Xu Haiming, Wang Licheng, Zhang Linbing. 2013. Carbon and oxygen isotopes characteristics of Palaeocene saline lake facies carbonates in Jiangling Depression and their environmental significance[J]. Acta Geoscientica Sinica, 34(5): 567−576 (in Chinese with English abstract).

    Google Scholar

    [380] Wang Jingzhong, Wu Jinglu, Zeng Haiao, Bai Ruidong. 2013. Characteristics of water isotope and hydrochemistry in Hetao Plain of Inner Mongolia[J]. Journal of Earth Sciences and Environment, 35(4): 104−112 (in Chinese with English abstract).

    Google Scholar

    [381] Wang Mili, Yang Zhichen, Liu Chenglin, XieZhichao, Jiao Pengcheng, Li Changhua. 1996. Potassium Deposits in Salt Lakes in the Northern Part of the Qaidam Basin and Their Development Prospects [M]. Beijing: Geological Publishing House, 33–51 (in Chinese with English abstract).

    Google Scholar

    [382] Wang W, Yu Z, Song X, Wu Z, Yuan Y, Zhou P, Cao X. 2017. Characteristics of the δ15 ${\mathrm{N}}_{{\mathrm{NO}}_3} $ distribution and its drivers in the Changjiang River estuary and adjacent waters[J]. Chinese Journal of Oceanology and Limnology, 35: 367−382. doi: 10.1007/s00343-016-5276-x

    CrossRef ${\mathrm{N}}_{{\mathrm{NO}}_3} $ distribution and its drivers in the Changjiang River estuary and adjacent waters" target="_blank">Google Scholar

    [383] Wang X T, Wang Y, Auderset A, Sigman D M, Ren H, Martínez–García A, Haug G H, Su Z, Zhang Y G, Rasmussen B. 2022a. Oceanic nutrient rise and the late Miocene inception of Pacific oxygen–deficient zones[J]. Proceedings of the National Academy of Sciences, 119(45): e2204986119. doi: 10.1073/pnas.2204986119

    CrossRef Google Scholar

    [384] Wang Y J, Cheng H, Edwards R L, An Z, Wu J, Shen C C, Dorale J A. 2001. A high–resolution absolute–dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 294(5550): 2345−2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [385] Wang Y, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z. 2008. Millennial–and orbital–scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 451(7182): 1090−1093. doi: 10.1038/nature06692

    CrossRef Google Scholar

    [386] Wang Yongjin, Liu Dianbing. 2016. Speleothem records of Asian paleomonsoon variability and mechanisms[J]. Chinese Science Bulletin, 61(9): 938−951 (in Chinese with English abstract). doi: 10.1360/N972015-01022

    CrossRef Google Scholar

    [387] Wang Z, Guo Q, Tian L. 2022b. Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes[J]. Science of the Total Environment, 829: 154611. doi: 10.1016/j.scitotenv.2022.154611

    CrossRef Google Scholar

    [388] Wang Z, Tian L, Zhao C, Du C, Zhang J, Sun F, Tekleab T Z, Wei R, Fu P, Gooddy D C. 2023. Source partitioning using phosphate oxygen isotopes and multiple models in a large catchment[J]. Water Research, 244: 120382. doi: 10.1016/j.watres.2023.120382

    CrossRef Google Scholar

    [389] Werner C, Meredith L K, Ladd S N, Ingrisch J, Kübert A, van Haren J, Bahn M, Bailey K, Bamberger I, Beyer M. 2021. Ecosystem fluxes during drought and recovery in an experimental forest[J]. Science, 374(6574): 1514−1518. doi: 10.1126/science.abj6789

    CrossRef Google Scholar

    [390] Wheatley P V, Peckham H, Newsome S D, Koch P L. 2012. Estimating marine resource use by the American crocodile Crocodylusacutus in southern Florida, USA[J]. Marine Ecology Progress Series, 447: 211−229. doi: 10.3354/meps09503

    CrossRef Google Scholar

    [391] Worden J, Noone D, Bowman K. 2007. Importance of rain evaporation and continental convection in the tropical water cycle[J]. Nature, 445(7127): 528−532. doi: 10.1038/nature05508

    CrossRef Google Scholar

    [392] Wu H, Tian L, Chen B, Jin B, Tian B, Xie L, Rogers K M, Lin G. 2019. Verification of imported red wine origin into China using multi isotope and elemental analyses[J]. Food Chemistry, 301: 125137. doi: 10.1016/j.foodchem.2019.125137

    CrossRef Google Scholar

    [393] Xia X, Li S, Wang F, Zhang S, Fang Y, Li J, Michalski G, Zhang L. 2019. Triple oxygen isotopic evidence for atmospheric nitrate and its application in source identification for river systems in the Qinghai–Tibetan Plateau[J]. Science of the Total Environment, 688: 270−280. doi: 10.1016/j.scitotenv.2019.06.204

    CrossRef Google Scholar

    [394] Xiong Zhifang, Hu Chaoyong, Huang Junhua, Xie Shucheng, Gan Yiqun. 2007. Mass–Independent oxygen isotope fractionation and its application to earth sciences[J]. Bulletin of Geological Science and Technology (2): 51–58 (in Chinese with English abstract).

    Google Scholar

    [395] Xu S, Kang P, Sun Y A. 2016. A stable isotope approach and its application for identifying nitrate source and transformation process in water[J]. Environmental Science and Pollution Research, 23: 1133−1148. doi: 10.1007/s11356-015-5309-6

    CrossRef Google Scholar

    [396] Yamaguchi K, Tomiyama S, Metugi H, Ii H, Ueda A. 2015. Flow and geochemical modeling of drainage from Tomitaka mine, Miyazaki, Japan[J]. Journal of Environmental Sciences, 36: 130−143. doi: 10.1016/j.jes.2015.05.012

    CrossRef Google Scholar

    [397] Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F, Liu J, Sigman D M, Peterson L C, Haug G H. 2007. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 445(7123): 74−77. doi: 10.1038/nature05431

    CrossRef Google Scholar

    [398] Yao T D, Qin D H, Wang N L, Liu Y Q, Xu B Q. 2020. Study on climatic and environmental changes recorded in ice cores: From science to policy[J]. Bulletin of Chinese Academy of Sciences(4): 466–474.

    Google Scholar

    [399] Yao T, Guo X, Thompson L, Duan K, Wang N, Pu J, Xu B, Yang X, Sun W. 2006. δ18O record and temperature change over the past 100 years in ice cores on the Tibetan Plateau[J]. Science in China Series D, 49: 1−9.

    Google Scholar

    [400] Yao T. 1999. Abrupt climatic changes on the Tibetan Plateau during the Last Ice Age–Comparative study of the Guliya ice core with the Greenland GRIP ice core[J]. Science in China (Ser.D), 42: 358−368.

    Google Scholar

    [401] Yao Tandong, Qin Dahe, Tian Lide, Jiao Keqin, Yang Zhihong, Xie Chao, L G Thompson. 1996. Temperature and precipitation changes on the Tibetan Plateau over a 2–ka period–Guria ice core record[J]. Scientia Sinica(Terrae) (4): 348–353 (in Chinese).

    Google Scholar

    [402] Ye F, Ni Z, Xie L, Wei G, Jia G. 2015. Isotopic evidence for the turnover of biological reactive nitrogen in the Pearl River Estuary, south China[J]. Journal of Geophysical Research: Biogeosciences, 120(4): 661−672. doi: 10.1002/2014JG002842

    CrossRef Google Scholar

    [403] Yiou F, Raisbeck G, Baumgartner S, Beer J, Hammer C, Johnsen S, Jouzel J, Kubik P, Lestringuez J, Stievenard M. 1997. Beryllium 10 in the Greenland ice core project ice core at summit, Greenland[J]. Journal of Geophysical Research: Oceans, 102(C12): 26783−26794. doi: 10.1029/97JC01265

    CrossRef Google Scholar

    [404] Young E D, Galy A, Nagahara H. 2002. Kinetic and equilibrium mass–dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance[J]. Geochimica et Cosmochimica Acta, 66(6): 1095−1104. doi: 10.1016/S0016-7037(01)00832-8

    CrossRef Google Scholar

    [405] Yu Shengbo, Qu Junxia. 2021. Characteristics and significance of stable hydrogen and oxygen isotopes in groundwater of Sugan Lake basin[J]. Journal of Arid Land Resources and Environment, 35(1): 169−175 (in Chinese with English abstract).

    Google Scholar

    [406] Yu Z, Li B, Li H, Zhang J, Chen J. 2022. The influence of seasonal calcification depth change on the planktonic foraminiferal stable oxygen isotope signal[J]. Geochimica et Cosmochimica Acta, 327: 34−52. doi: 10.1016/j.gca.2022.04.014

    CrossRef Google Scholar

    [407] Yuan D, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M, Qing J, Lin Y, Wang Y, Wu J. 2004. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 304(5670): 575−578. doi: 10.1126/science.1091220

    CrossRef Google Scholar

    [408] Yuan H, Li Q, Kukkadapu R K, Liu E, Yu J, Fang H, Li H, Jaisi D P. 2019. Identifying sources and cycling of phosphorus in the sediment of a shallow freshwater lake in China using phosphate oxygen isotopes[J]. Science of the Total Environment, 676: 823−833. doi: 10.1016/j.scitotenv.2019.04.322

    CrossRef Google Scholar

    [409] Yuan H, Wang H, Dong A, Zhou Y, Huang R, Yin H, Zhang L, Liu E, Li Q, Jia B. 2022. Tracing the sources of phosphorus in lake at watershed scale using phosphate oxygen isotope (δ18Op)[J]. Chemosphere, 305: 135382. doi: 10.1016/j.chemosphere.2022.135382

    CrossRef Google Scholar

    [410] Yue F J, Li S L, Hu J. 2015. The contribution of nitrate sources in Liao Rivers, China, based on isotopic fractionation and Bayesian mixing model[J]. Procedia Earth and Planetary Science, 13: 16−20. doi: 10.1016/j.proeps.2015.07.004

    CrossRef Google Scholar

    [411] Yue F J, Li S L, Liu C Q, Zhao Z Q, Ding H. 2017. Tracing nitrate sources with dual isotopes and long term monitoring of nitrogen species in the Yellow River, China[J]. Scientific Reports, 7(1): 8537. doi: 10.1038/s41598-017-08756-7

    CrossRef Google Scholar

    [412] Yue F J, Liu C Q, Li S L, Zhao Z Q, Liu X L, Ding H, Liu B J, Zhong J. 2014. Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China[J]. Journal of Hydrology, 519: 329−339. doi: 10.1016/j.jhydrol.2014.07.026

    CrossRef Google Scholar

    [413] Yuntseover Y, Gat J R. 1981. Atmospheric Waters[M]. IAEA Technical Reports Series 210–Stable Isotope Hydrology (103–142).

    Google Scholar

    [414] Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686−693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [415] Zahn R, Winn K, Sarnthein M. 1986. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoideswuellerstorfi[J]. Paleoceanography, 1(1): 27−42. doi: 10.1029/PA001i001p00027

    CrossRef Google Scholar

    [416] Zeng Y, Zhu J, Wang Y, Hu W. 2018. Changes of water temperature and heat flux at water–sediment interface, East Lake Taihu[J]. Journal of Lake Sciences, 30(6): 1599−1609. doi: 10.18307/2018.0611

    CrossRef Google Scholar

    [417] Zenteno L, Crespo E, Goodall N, Aguilar A, de Oliveira L, Drago M, Secchi E R, Garcia N, Cardona L. 2013. Stable isotopes of oxygen reveal dispersal patterns of the South American sea lion in the southwestern Atlantic Ocean[J]. Journal of Zoology, 291(2): 119−126. doi: 10.1111/jzo.12051

    CrossRef Google Scholar

    [418] Zhang Chi, Ji Hongbing, Chen Zhigang. 2018. The application of phosphate oxygen isotope in organophosphorus degradation[J]. Journal of Shandong Agricultural University, 49(6): 1008−1014 (in Chinese with English abstract).

    Google Scholar

    [419] Zhang Cuiyun, Zhong Zuo, Shen Zhaoli. 2003. The progress in the study of oxygen isotopes in groundwater nitrate[J]. Earth Science Frontiers, 10(2): 287−291 (in Chinese with English abstract).

    Google Scholar

    [420] Zhang Fangfang, Zheng Yonghong, Pan Guoyan, Yuan Shuai, Kong Fanxi, Qi Yongdong, Wang Dan. 2018. Climatic significance of tree–ring δ18O in Shennongjia Mountain[J]. Progress in Geography, 37(7): 946−953 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2018.07.008

    CrossRef Google Scholar

    [421] Zhang J, Chen L, Hou X, Lin M, Ren X, Li J, Zhang M, Zheng X. 2021. Multi–isotopes and hydrochemistry combined to reveal the major factors affecting Carboniferous groundwater evolution in the Huaibei coalfield, North China[J]. Science of the Total Environment, 791: 148420. doi: 10.1016/j.scitotenv.2021.148420

    CrossRef Google Scholar

    [422] Zhang Xin, Zhang Yan, Bi Zhilei, Shan Zexuan, Ren Lijiang, Li Qi. 2020. Distribution and source analysis of nitrate in surface waters of China[J]. Environmental Science, 41(4): 1594−1606 (in Chinese with English abstract).

    Google Scholar

    [423] Zhang Y, Shi P, Li F, Wei A, Song J, Ma J. 2018. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 208: 493−501. doi: 10.1016/j.chemosphere.2018.05.164

    CrossRef Google Scholar

    [424] Zhang Yinghua, Wu Yanqing, Wen Xiaohu, SuJianping. 2006. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 17(5): 738−747 (in Chinese with English abstract).

    Google Scholar

    [425] Zhang Ziyang, Yan Ming, Mulvaney Robert, Ji Junfeng, Xiao Cunde, Liu Leibao, An Chunlei. 2021. Preliminary study on air temperature records from 1712 to 2001 revealed by LGB69 ice core in East Antarctica[J]. Advances in Earth Science, 36(2): 172−184 (in Chinese with English abstract).

    Google Scholar

    [426] Zhao Huabiao, Xu Baiqing, Wang Ninglian. 2014. Study on the water stable isotopes in Tibetan plateau ice cores as a proxy of temperature[J]. Quaternary Sciences, 34(6): 1215−1226 (in Chinese with English abstract).

    Google Scholar

    [427] Zhao Q, Xu C, An W, Liu Y, Xiao G, Huang C. 2023. Increasing tree growth in subalpine forests of central China due to earlier onset of the thermal growing season[J]. Agricultural and Forest Meteorology, 333: 109391. doi: 10.1016/j.agrformet.2023.109391

    CrossRef Google Scholar

    [428] Zhao Ruihan, Han Zhiwei, Fu Yong. 2022. A review of research progress of isotope technology in tracing pollution process in the mine environment[J]. Rock and Mineral Analysis, 41(6): 947−961 (in Chinese with English abstract).

    Google Scholar

    [429] Zhao Tiantian, Tian Kang, Hu Wenyou, Huang Biao, Zhao Yongcun. 2022. The application of phosphate oxygen isotopes in soil phosphorus cycling[J]. Acta Pedologica Sinica, 59(5): 1204−1214 (in Chinese with English abstract).

    Google Scholar

    [430] Zheng Mianping, Zhao Yuanyi, Liu Junying. 1998. Quaternary saline lake deposition and paleoclimate[J]. Quaternary Sciences, 18(4): 297−307 (in Chinese with English abstract).

    Google Scholar

    [431] Zheng Y F. 2016. Oxygen isotope fractionation in phosphates: The role of dissolved complex anions in isotope exchange[J]. Isotopes in Environmental and Health Studies, 52(1/2): 47−60. doi: 10.1080/10256016.2014.999678

    CrossRef Google Scholar

    [432] Zheng Yongfei, Chen Jiangfeng. 2000. Stable Isotope Geochemistry[M]. Beijing: Science Press, 6–8, 143–195 (in Chinese).

    Google Scholar

    [433] Zhou J, Chafetz H S. 2009. The genesis of late Quaternary caliche nodules in Mission Bay, Texas: Stable isotopic compositions and palaeoenvironmental interpretation[J]. Sedimentology, 56(5): 1392−1410. doi: 10.1111/j.1365-3091.2008.01039.x

    CrossRef Google Scholar

    [434] Zhu Dayun, Wang Jianli. 2013. Progress in palaeoclimate research on the Tibet Plateau based on ice core records[J]. Progress in Geography, 32(10): 1535−1544 (in Chinese with English abstract).

    Google Scholar

    [435] Zhu Hongyan, Ren Jia, Yang Qiang, Zhou Beibei, Jia Yanwu, LvJiaojiao, Zhou Xiaoping, Nie Weibo. 2021. Sources analysis of acid drainage from Lujiang alunite mine based on stable isotope composition of hydrogen and Oxygen[J]. Resources and Environment in the Yangtze Basin, (12): 2938–2948 (in Chinese with English abstract).

    Google Scholar

    [436] 鲍睿, 盛雪芬, 陈骏. 2021. 陆生蜗牛壳体碳氧同位素组成与气候[J]. 第四纪研究, 41(4): 903–915.

    Google Scholar

    [437] 曹超, 雷怀彦. 2012. 南海北部有孔虫碳氧同位素特征与晚第四纪水合物分解的响应关系[J]. 吉林大学学报(地球科学版), 42(S1): 162–171.

    Google Scholar

    [438] 曹佳璐, 牛振川, 梁单, 冯雪, 吕梦妮, 王国卫, 刘婉玉. 2023. 氧同位素非质量分馏在CO2相关研究中的进展[J]. 地球环境学报, 14(6): 714−724.

    Google Scholar

    [439] 常凤琴, 张虎才, 雷国良, 蒲阳, 陈光杰, 张文翔, 杨伦庆. 2010. 湖相沉积物锶同位素和相关元素的地球化学行为及其在古气候重建中的应用—以柴达木盆地贝壳堤剖面为例[J]. 第四纪研究, 30(5): 962−971. doi: 10.3969/j.issn.1001-7410.2010.05.14

    CrossRef Google Scholar

    [440] 陈陆望, 桂和荣, 许光泉, 宋晓梅, 袁文华. 2003. 皖北矿区煤层底板岩溶水氢氧稳定同位素特征[J]. 合肥工业大学学报(自然科学版), (3): 374–378.

    Google Scholar

    [441] 陈瑶, 勾晓华, 刘文火, 陈巧湄, 苏佳佳, 林伟. 2017. 亚洲树轮稳定氧同位素研究进展[J]. 冰川冻土, 39(2): 308−316.

    Google Scholar

    [442] 陈志刚, 黄奕普, 刘广山, 蔡毅华, 卢阳阳, 刘润. 2010. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 25(10): 1040−1050.

    Google Scholar

    [443] 陈忠, 马海州, 曹广超, 周笃珺, 张西营, 谭红兵, 姚远. 2006. 黄土碳酸盐的研究[J]. 盐湖研究, (4): 66–72.

    Google Scholar

    [444] 程海, 艾思本, 王先锋, 汪永进, 孔兴功, 袁道先, 张美良, 林玉石, 覃嘉铭, 冉景丞. 2005. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, (2): 157–163.

    Google Scholar

    [445] 崔景伟, 黄俊华, 胡超涌. 2008. 石笋中的环境替代指标及其蕴含的古气候和古环境信息[J]. 地质科技情报, (1): 93–98.

    Google Scholar

    [446] 崔蕊, 汪季, 张成福, 史小红, 韩知明. 2019. 吉兰泰盐湖氢氧同位素及湖水来源分析[J]. 内蒙古林业科技, 45(1): 17−21. doi: 10.3969/j.issn.1007-4066.2019.01.004

    CrossRef Google Scholar

    [447] 董庆民, 胡忠贵, 陈世悦, 李世临, 蔡家兰, 朱宜新, 张玉颖. 2021. 川东北地区长兴组–飞仙关组碳酸盐岩同位素地球化学响应及其地质意义[J]. 石油与天然气地质, 42(6): 1307−1320.

    Google Scholar

    [448] 窦衍光, 李清, 吴永华, 赵京涛, 孙呈慧, 蔡峰, 陈晓辉, 张勇, 范佳慧, 石学法. 2022. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义[J]. 地学前缘, 29(4): 84−92.

    Google Scholar

    [449] 樊娟, 南生辉, 刘英锋, 周天威, 张光明. 2021. 基于水化学和氢氧同位素特征的小屯煤矿充水条件研究[J]. 安全与环境工程, (4): 80–87.

    Google Scholar

    [450] 付昌昌, 刘聪. 2022. 可可西里盐湖水化学特征及其形成机制[J]. 人民长江, 53(7): 36−41.

    Google Scholar

    [451] 郭启梅, 李保华, 王晓燕, 俞宙菲, 徐烨, 张楷. 2020. 深海底栖有孔虫在古海洋学研究中的应用[J]. 古生物学报, 59(3): 365−379.

    Google Scholar

    [452] 郭启梅, 刘静, 李保华. 2023. 沉积物单/多壳体底栖有孔虫稳定氧碳同位素组成、比较及其指示意义[J]. 微体古生物学报, 40(1): 53−65.

    Google Scholar

    [453] 韩家懋, 姜文英, 刘东生, 吕厚远, 郭正堂, 吴乃琴. 1996. 黄土碳酸盐中古气候变化的同位素记录[J]. 中国科学(D辑: 地球科学), (5): 399–404.

    Google Scholar

    [454] 韩家懋, 姜文英, 吕厚远, 吴乃琴, 郭正堂. 1995a. 黄土中钙结核的碳氧同位素研究(二)碳同位素及其古环境意义[J]. 第四纪研究, (4): 367–377.

    Google Scholar

    [455] 韩家懋, 姜文英, 吴乃琴, 郭正堂. 1995b. 黄土中钙结核的碳氧同位素研究(一)氧同位素及其古环境意义[J]. 第四纪研究, (2): 130–138.

    Google Scholar

    [456] 侯战方, 张军, 宋春晖, 李吉均, 刘佳, 刘善品, 惠争闯, 彭廷江. 2011. 青藏高原天水盆地中新世沉积物碳氧同位素对古气候演化的指示[J]. 海洋地质与第四纪地质, 31(3): 69−78.

    Google Scholar

    [457] 胡泉旭, 王先彦, 孟先强, 刘全玉, 鹿化煜. 2018. 青藏高原东北部黄土次生碳酸盐氧同位素的古气候意义[J]. 地球科学, 43(11): 4128−4137.

    Google Scholar

    [458] 黄思静, 石和, 毛晓冬, 张萌, 沈立成, 武文慧. 2003. 早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J]. 成都理工大学学报(自然科学版), (1): 9–18.

    Google Scholar

    [459] 李建森, 蔡进福, 樊启顺, 山发寿, 凌智永, 韩元红, 张永兴. 2022. 柴达木盆地盐湖K、B、Li资源的成矿地球化学系统[J]. 盐湖研究, 30(3): 12−20. doi: 10.12119/j.yhyj.202203002

    CrossRef Google Scholar

    [460] 李思远, 侯青叶, 杨忠芳, 余涛. 2024. 氮同位素分馏机制、分析测试与示踪技术及其在生态环境中的应用[J]. 中国地质, 51(5): 1617−1643. doi: 10.12029/gc20230910002

    CrossRef Google Scholar

    [461] 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析[J]. 热带地理, 38(6): 857−865.

    Google Scholar

    [462] 李小倩, 张彬, 周爱国, 刘运德. 2014. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质, 41(6): 103−109.

    Google Scholar

    [463] 李悦, 王汝建, 李文宝. 2016. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 31(3): 310−319.

    Google Scholar

    [464] 李智滔, 肖红伟, 伍作亭, 马艳, 肖扬宁, 陈振平, 陶继华. 2022. 基于水化学及氮氧同位素技术的硝酸盐来源解析—以鄱阳湖湿地为例[J]. 中国环境科学, 42(9): 4315−4322. doi: 10.3969/j.issn.1000-6923.2022.09.039

    CrossRef Google Scholar

    [465] 刘科, 侯书贵, 庞洪喜, 史贵涛, 耿雷, 胡焕婷, 宋靖, 张王滨, 邹翔, 安春雷, 于金海. 2022. 极地冰芯气候及环境记录指标研究现状与展望[J]. 极地研究, 34(4): 530−545.

    Google Scholar

    [466] 吕凤琳, 刘成林, 焦鹏程, 张华, 孙小虹, 张永明. 2018. 罗布泊中更新世以来盐湖碳酸盐碳氧同位素组成及其古环境意义[J]. 地质学报, 92(8): 1589−1604. doi: 10.3969/j.issn.0001-5717.2018.08.003

    CrossRef Google Scholar

    [467] 马正明, 姜盼武, 李庆宽, 魏海成, 李永寿, 山发寿. 2021. 哈达贺休盐湖卤水氢氧同位素特征及成因分析[J]. 盐湖研究, 29(1): 80−87. doi: 10.12119/j.yhyj.202101009

    CrossRef Google Scholar

    [468] 毛剑英, 朱建平, 肖建军. 2003. 近年来淮河干流氮污染状况与变化趋势[J]. 中国环境监测, (5): 41–43.

    Google Scholar

    [469] 苗青, 侯献华, 杨振京. 2021. 几种常用古气候代用指标在盐湖古环境研究中的应用[J]. 科学技术创新, (5): 31–32.

    Google Scholar

    [470] 苗甜, 金雅琪, 王磊, 吴高阳, 陈忠. 2021. 黄土碳酸盐古气候意义及其研究展望[J]. 盐湖研究, 29(4): 90−99. doi: 10.12119/j.yhyj.202104010

    CrossRef Google Scholar

    [471] 乔占峰, 于洲, 佘敏, 潘立银, 张天付, 李文正, 沈安江. 2023. 中国古老超深层海相碳酸盐岩储集层成因研究新进展[J]. 古地理学报, 25(6): 1257−1276.

    Google Scholar

    [472] 邱楠生, 刘鑫, 熊昱杰, 刘雨晨, 徐秋晨, 常青. 2023. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 45(5): 891−903. doi: 10.11781/sysydz202305891

    CrossRef Google Scholar

    [473] 任坤, 潘晓东, 兰干江, 彭聪, 梁嘉鹏, 曾洁. 2021. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 42(9): 4267−4274.

    Google Scholar

    [474] 沈照理, 王焰新, 郭华明. 2012. 水–岩相互作用研究的机遇与挑战[J]. 地球科学(中国地质大学学报), 37(2): 207−219.

    Google Scholar

    [475] 盛雪芬, 陈骏, 杨杰东, 季峻峰, 陈旸. 2002. 不同粒级黄土–古土壤中碳酸盐碳氧稳定同位素组成及其古环境意义[J]. 地球化学, (2): 105–112.

    Google Scholar

    [476] 田立德, 姚檀栋. 2016. 青藏高原冰芯高分辨率气候环境记录研究进展[J]. 科学通报, 61(9): 926−937.

    Google Scholar

    [477] 汪敬忠, 吴敬禄, 曾海鳌, 白瑞东. 2013. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 35(4): 104−112. doi: 10.3969/j.issn.1672-6561.2013.04.012

    CrossRef Google Scholar

    [478] 汪永进, 刘殿兵. 2016. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报, 61(9): 938−951.

    Google Scholar

    [479] 王春连, 刘成林, 徐海明, 王立成, 张林兵. 2013. 江陵凹陷古新世盐湖沉积碳酸盐碳氧同位素组成及其环境意义[J]. 地球学报, 34(5): 567−576.

    Google Scholar

    [480] 王弭力, 杨智琛, 刘成林, 谢志超, 焦鹏程, 李长华. 1996. 柴达木盆地北部盐湖钾矿床及其开发前景[M]. 北京: 地质出版社, 33–51.

    Google Scholar

    [481] 熊志方, 胡超涌, 黄俊华, 谢树成, 甘义群. 2007. 氧的非质量同位素分馏及其地学应用[J]. 地质科技情报, (2): 51–58.

    Google Scholar

    [482] 姚檀栋, 秦大河, 田立德, 焦克勤, 杨志红, 谢超, L. G. Thompson. 1996. 青藏高原2ka来温度与降水变化–古里雅冰芯记录[J]. 中国科学(D辑: 地球科学), (4): 348–353.

    Google Scholar

    [483] 喻生波, 屈君霞. 2021. 苏干湖盆地地下水氢氧稳定同位素特征及其意义[J]. 干旱区资源与环境, 35(1): 169−175.

    Google Scholar

    [484] 张弛, 季宏兵, 陈志刚. 2018. 磷酸盐氧同位素在有机磷降解研究中的应用[J]. 山东农业大学学报(自然科学版), 49(6): 1008−1014.

    Google Scholar

    [485] 张翠云, 钟佐, 沈照理. 2003. 地下水硝酸盐中氧同位素研究进展[J]. 地学前缘, (2): 287–291.

    Google Scholar

    [486] 张芳芳, 郑永宏, 潘国艳, 袁帅, 孔繁希, 起永东, 王丹. 2018. 神农架地区树轮δ18O序列的气候指示意义[J]. 地理科学进展, 37(7): 946−953.

    Google Scholar

    [487] 张鑫, 张妍, 毕直磊, 山泽萱, 任丽江, 李琦. 2020. 中国地表水硝酸盐分布及其来源分析[J]. 环境科学, 41(4): 1594−1606.

    Google Scholar

    [488] 张应华, 仵彦卿, 温小虎, 苏建平. 2006. 环境同位素在水循环研究中的应用[J]. 水科学进展, (5): 738–747.

    Google Scholar

    [489] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 2021. 东南极LGB69冰芯1712–2001年气温变化记录的初步研究[J]. 地球科学进展, 36(2): 172−184.

    Google Scholar

    [490] 赵华标, 徐柏青, 王宁练. 2014. 青藏高原冰芯稳定氧同位素记录的温度代用性研究[J]. 第四纪研究, 34(6): 1215−1226.

    Google Scholar

    [491] 赵睿涵, 韩志伟, 付勇. 2022. 同位素技术应用于示踪矿山环境污染研究进展[J]. 岩矿测试, 41(6): 947−961. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206007

    CrossRef Google Scholar

    [492] 赵甜甜, 田康, 胡文友, 黄标, 赵永存. 2022. 磷酸盐氧同位素技术在土壤磷循环中的应用[J]. 土壤学报, (5): 1204–1214.

    Google Scholar

    [493] 郑绵平, 赵元艺, 刘俊英. 1998. 第四纪盐湖沉积与古气候[J]. 第四纪研究, (4): 297–307.

    Google Scholar

    [494] 郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社, 6–8, 143–195.

    Google Scholar

    [495] 朱大运, 王建力. 2013. 青藏高原冰芯重建古气候研究进展分析[J]. 地理科学进展, 32(10): 1535−1544. doi: 10.11820/dlkxjz.2013.10.011

    CrossRef Google Scholar

    [496] 朱红艳, 任佳, 杨强, 周蓓蓓, 贾彦武, 吕佼佼, 周晓平, 聂卫波. 2021. 基于氢氧稳定同位素组成解析庐江矾矿酸性废水来源[J]. 长江流域资源与环境, (12): 2938–2948.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(23)

Tables(7)

Article Metrics

Article views(14) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint