2025 Vol. 52, No. 2
Article Contents

LI Honglei, GUO Zhijun, YI Tongsheng, QIN Yong, YANG Tongbao, JIN Jun. 2025. Enrichment mechanism, optimization and evaluation of favorable CBM areas in the Upper Permian of Northwest Guizhou[J]. Geology in China, 52(2): 597-612. doi: 10.12029/gc20220612002
Citation: LI Honglei, GUO Zhijun, YI Tongsheng, QIN Yong, YANG Tongbao, JIN Jun. 2025. Enrichment mechanism, optimization and evaluation of favorable CBM areas in the Upper Permian of Northwest Guizhou[J]. Geology in China, 52(2): 597-612. doi: 10.12029/gc20220612002

Enrichment mechanism, optimization and evaluation of favorable CBM areas in the Upper Permian of Northwest Guizhou

    Fund Project: Supported by Guizhou Provincial Geological Exploration Special Fund Project (No.208−9912−JBN−UTS0), Guizhou Provincial Scientific and Technological Program (No.ZDSYS[2023]002, No.KXJZ[2024]003).
More Information
  • Author Bio: LI Honglei, male, born in 1985, professor level senior engineer, mainly engaged in coal and CBM exploration research; E-mail: 303396581@qq.com
  • Corresponding author: GUO Zhijun, male, born in 1988, senior engineer, engaged in CBM exploration and development research; E-mail:352501017@qq.com
  • This paper is the result of energy exploration engineering.

    Objective

    The primary goal is to identify and classify favorable areas for CBM exploration and development, providing a scientific basis for future exploration efforts in Guizhou Province.

    Methods

    Based on geological exploration data and laboratory sample analyses, key reservoir characteristics of the major coal seams (No. 6, No. 14, and No. 27) were systematically assessed. Parameters such as coal seam thickness, gas content, permeability, reservoir pressure, and coal−body structure were analyzed. Using a five−index evaluation method, 19 gas−bearing areas were classified.

    Results

    (1) The three major coal seams exhibit greater thickness in the southwest and thinner deposition toward the northeast. The average gas content is 11.73 m3/t, with gas accumulation primarily controlled by synclinal structures. (2) Seven extensive gas−bearing areas were identified, with the Bide−Santang Basin and the Jinlong−Qianxi−Jinsha syncline group exhibiting gas contents exceeding 16 m3/t. (3) The average well−tested permeability of the coal seams is 0.173 mD, indicating a medium−low permeability reservoir. Permeability decreases from west to east and with increasing depth, with significant variations across different seams. (4) The average reservoir pressure is 4.98 MPa, with an average pressure coefficient of 0.86, indicating a predominantly underpressured state. A transition from underpressure to normal and overpressure is observed from east to west. (5) Coal structural characteristics vary spatially, with primary and fragmented coal types dominant in the east, while granulated and pulverized coal types are more prevalent in the west.

    Conclusions

    Based on the evaluation, seven Grade I, eight Grade II, and four Grade III favorable CBM areas were identified. The Grade I areas, including the Tucheng, Yangmeishu, Dahebian, Shuigonghe, Bide, Zhitang, and northern Jinlong synclines, demonstrate significant CBM exploration and development potential. The Grade II areas include the Gemudi, Jinpen, Santang, northern Qianxi, Jinsha, Liuchang, and Molaoba synclines, while the remaining synclines are classified as Grade III.

  • 加载中
  • [1] Bi C Q, Zhang J Q, Shan Y H, Hu Z F, Wang F G, Chi H P, Tang Y, Yuan Y, Liu Y R. 2020. Geological characteristics and co−exploration and co−production methods of Upper Permian Longtan coal measure gas in Yangmeishu Syncline, Western Guizhou Province, China[J]. China Geology, 3(1): 38−51. doi: 10.31035/cg2020020

    CrossRef Google Scholar

    [2] Cheng Yiyan, Chen Zhenlong, Li Song, Chen Shida, Guo Tao. 2021. Characteristics of coalbed methane accumulation in Bide−Santang syncline, western Guizhou and favorable sector[J]. Geological Bulletin of China, 40(7): 1140−1148 (in Chinese with English abstract).

    Google Scholar

    [3] Deng Changwen, Mo Rihe. 2007. Drilling techniques of coalbed methane parameter well in Baotian−Qingshan area of Guizhou[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 34(1): 53−54 (in Chinese with English abstract).

    Google Scholar

    [4] Feng Sanli, Ye Jianping, Zhang Suian. 2002. Coalbed methane resources in the ordos basin and its development potential[J]. Geological Bulletin of China, 21(10): 658−662.

    Google Scholar

    [5] Fu Xuehai, Qin Yong, Wei Chongtao. 2007. Coalbed Methane Geology[M]. Xuzhou: China University of Mining and Technology Press(in Chinese with English abstract).

    Google Scholar

    [6] Gao Fuliang, Lu Hongfeng, Wang Haipeng. 2014. Discusson on the block evaluatin methods for low rank cbm resouraces in China: A case study of the Junggar Basin[J]. Geology and Resources, 23(1): 142−144 (in Chinese with English abstract).

    Google Scholar

    [7] Gao Wei, Han Zhongqin, Jin Jun, Bai Lina, Zhou Peiming. 2018. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. Coal Geology & Exploration, 46(5): 81−89 (in Chinese with English abstract).

    Google Scholar

    [8] Han Jun, Shao Longyi, Xiao Jianxin, Xiao Zhenghui, Ran Maoyun, Yu Xiaohui. 2008. Application of multi−layered fuzzy mathematics in assessment of exploitation potential of coalbed methane resources[J]. Coal Geology & Exploration, 36(3): 31−36 (in Chinese with English abstract).

    Google Scholar

    [9] Hao Haiyang, Li Yong, Song Jiwei, Wang Hu, Li Yong, Dai Yunpeng. 2019. Well bore stabilization technique sin coal bearing formation in southwestern Guizhou[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 46(7): 8−13, 33 (in Chinese with English abstract).

    Google Scholar

    [10] Hu Guoyi, Guan Hui, Jiang Dengwen, Du Ping, Li Zhisheng. 2004. Analysis of condition for the formation of a coal methane accumulation in the Qinshui coal methane field[J]. Geology in China, 31(2): 213−217 (in Chinese with English abstract).

    Google Scholar

    [11] Hu Lin, Xue Xiaohui, Cheng Peng, Yang Yina, Chen Rong. 2019. Preliminary analysis of geological conditions of "three gas and exploration" reservoir of Xuanwei Formation in Xuanwei area[J]. Geological Survey and Research, 42(1): 13−17 (in Chinese with English abstract).

    Google Scholar

    [12] Jin Jun, Yang Zhaobiao, Qin Yong, Cui Yuhuan, Wang Guoling, Yi Tongsheng, Wu Caifang, Gao Wei, Chen Jie, Li Geng, Li Cunlei. 2021. Progress, potential and prospects of CBM development in Guizhou Province[J]. Journal of China Coal Society, 46(12): 1706−1718 (in Chinese with English abstract).

    Google Scholar

    [13] Li Xinzi, Wang Saiying, Wu Qun. 2013. Scheme for subdivision of tectonic coal systematics: Implications for coalbed methane development[J]. Geological Review, 59(5): 919−923 (in Chinese with English abstract).

    Google Scholar

    [14] Li Yong, Huang Mingyong, Song Jiwei, Ban Jinpeng. 2018. Research on non−reservoir horizontal well development technology of Zhijin coalbed methane reservoir in Guizhou Province[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 44(10): 31−36 (in Chinese with English abstract).

    Google Scholar

    [15] Lu Shuangfang, Shen Jianian, Wang Zhenping, Li Chun. 2003. Resource evaluation of coalbed gas and potential analysis in Hailar Basin[J]. Coal Geology & Exploration, 31(6): 28−31 (in Chinese with English abstract).

    Google Scholar

    [16] Qin Yong. 2023. Thinking and discussion for some problems of geological survey of coal measures gas[J]. Geology in China, 50(5): 1355−1374 (in Chinese with English abstract).

    Google Scholar

    [17] Qin Yong, Xiong Menghui, Yi Tongsheng, Yang Zhaobiao, Wu Caifang. 2008. On unattached multiple superposed coalbed methane system: In a case of the Shuigonghe syncline, Zhijin−Nayong Coalfield, Guizhou[J]. Geological Review, 54(1): 65−70 (in Chinese with English abstract).

    Google Scholar

    [18] Shan Yansheng, Bi Caiqin. Zhang Jiaqiang, Li Feng, Wang Guofu, Li Hui. 2018. Industrial grade coalbed methane findings in Yangmeishu syncline, Liupanshui area, western Guizhou[J]. Geology in China, 45(6): 1302−1303 (in Chinese with English abstract).

    Google Scholar

    [19] Shao Longyi, Wen Huaijun, Li Yonghong, Zhou Jun, Cai Yuliang, Jia Zhiyao, Lu Jing. 2011. Assessment of favorable areas for coalbed methane resources exploration in the Muli coalfield of Qinghai Province based on multi−layered fuzzy mathematics[J]. Geological Bulletin of China, 30(12): 1896−1903 (in Chinese with English abstract).

    Google Scholar

    [20] Sun Bin, Sun Fenjin, Tian Wenguang, Sun Qinpping, Chen Gang, Chen Hao, Feng Sheng. 2011. Controlling factors of coalbed methane enrichment in the Wushenqi Area, Ordos Basin[J]. Natural Gas Industry, 31(2): 34−38 (in Chinese with English abstract).

    Google Scholar

    [21] Tang Youyi, Tian Gaoling, Sun Siqing, Zhang Guocheng. 2004. Improvement and perfect way for the classification of the shape and cause formation of coal body texture[J]. Journal of Jiaozuo Institute of Technology (Natural Science), 23(3): 161−164 (in Chinese with English abstract).

    Google Scholar

    [22] Tang Xiangui. 2012. Occurrence regularities of coal resources in Guizhou Province[J]. Coal Geology & Exploration, 40(5): 1−5 (in Chinese with English abstract).

    Google Scholar

    [23] Tian Ya, Du Zhili, Zhang Wenlong, Chen Yi. 2019. Main controlling factors and accumulation model of Jurassic coalbed methane in Muli Basin[J]. Geological Survey of China, 6(4): 88−94 (in Chinese with English abstract).

    Google Scholar

    [24] Wang Enying, Liu Mingju, Wei Jianping. 2009. Newgenetic texture structure classification system of tectonic coal[J]. Journal of China Coal Society, 34(5): 656−660 (in Chinese with English abstract).

    Google Scholar

    [25] Wang Shengjian, Gao Wei, Guo Tianxu, Bao Shujing, Jin Jun, Xu Qiufeng. 2020. The discovery of shale gas, coalbed gas and tight sandstone gas in Permian Longtan Formation, northern Guizhou Province[J]. Geology in China, 47(1): 249−250 (in chinese with english abstract).

    Google Scholar

    [26] Wu Caifang, Liu Xiaolei, Zhang Shasha. 2018. Construction of index system of “Hierarchical progressive” geological selection of coalbed methane in multiple seam area of eastern Yunnan and western Guizhou[J]. Journal of China Coal Society, 43(6): 1647−1653 (in Chinese with English abstract).

    Google Scholar

    [27] Wu Sheng, Xu Yun, Shen Jianing, Jin Liuqing, Chen Jiyu, Li Chenchen, Hu Xiaolin. 2018. Structural control on the enrichment of CBM in Changgang syncline, northern Guizhou coalfield[J]. Coal Geology & Exploration, 46(2): 22−27 (in Chinese with English abstract).

    Google Scholar

    [28] Xie Guoyi, Liu Hu, Mao Zhixin. 2018. Guizhou natural gas energy investment corporation[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 45(5): 53−54 (in Chinese with English abstract).

    Google Scholar

    [29] Xiong Dehua, Tang Shuheng, Zhu Baocun. 2011. Comprehensive evaluation of coalbed methane exploration potential in the Jin−Shaan−Meng area[J]. Natural Gas Industry, 31(1): 32−36 (in Chinese with English abstract).

    Google Scholar

    [30] Yang Shu, Chu Yu, Yang Xiangkui, Lou Benjun. 2005. Application of the analytic hierarchy process (AHP) in the evaluation of the geo−environmental quality in the Sanjiang plain[J]. Geological Bulletin of China, 24(5): 485−490 (in Chinese with English abstract).

    Google Scholar

    [31] Ye Jianping, Wu Jianguang, Fang Chao, Wu Jian, Xiong Dehua. 2011. Regional geological and reservoir characteristics of the Panhe CBM Gas Field in the southern Qinshui Basin and their influences on CBM gas production capacity[J]. Natural Gas Industry, 31(5): 16−20 (in Chinese with English abstract).

    Google Scholar

    [32] Yi Tongsheng, Tang Xiangui, Yang Tongbao. 2019. Coal Resource Potential and Guarantee Capacity of Guizhou Province [M]. Xuzhou: China University of Mining and Technology Press(in Chinese with English abstract).

    Google Scholar

    [33] Zhao F P, Han S J, Ren H Y, Zhou X Z, Zhang J C, Xiang W X, Guo Z J, Yang Y Y. 2024. Characteristics of middle−high−rank coal reservoirs and prospects for CBM exploration and development in western Guizhou, China[J]. Natural Gas Industry B, 11: 326−339.

    Google Scholar

    [34] Zheng Shiyi, Zhang Xujiao, Yang Yan, Li Zongmin, Zhang Jinzhe, Chen Jie. 2012. The application of analytic hierarchy process to the danger evaluation of collapse and slide in Lujiang basin segment of Nujiang valley, western Yunnan Province[J]. Geological Bulletin of China, 31(2/3): 356−365 (in Chinese with English abstract).

    Google Scholar

    [35] 程轶妍, 陈贞龙, 李松, 陈世达, 郭涛. 2021. 黔西比德−三塘向斜煤层气藏特征及甜点区段[J]. 地质通报, 40(7): 1140−1148.

    Google Scholar

    [36] 邓昌文, 莫日和. 2007. 贵州保田−青山煤层气参数井钻井工艺技术[J]. 探矿工程(岩土钻掘工程), 34(1): 53−54.

    Google Scholar

    [37] 冯三利, 叶建平, 张遂安. 2002. 鄂尔多斯盆地煤层气资源及开发潜力分析[J]. 地质通报, 21(10): 658−662.

    Google Scholar

    [38] 傅雪海, 秦勇, 韦重韬. 2007. 煤层气地质学[M]. 徐州: 中国矿业大学出版社.

    Google Scholar

    [39] 高福亮, 鲁红峰, 王海鹏. 2014. 中国低煤阶煤层气资源区块评价方法讨论—以准噶尔盆地为例[J]. 地质与资源, 23(1): 142−144.

    Google Scholar

    [40] 高为, 韩忠勤, 金军, 白利娜, 周培明. 2018. 六盘水煤田煤层气赋存特征及有利区评价[J]. 煤田地质与勘探, 46(5): 81−89. doi: 10.3969/j.issn.1001-1986.2018.05.013

    CrossRef Google Scholar

    [41] 韩俊, 邵龙义, 肖建新, 肖正辉, 冉茂云, 于晓辉. 2008. 多层次模糊数学在煤层气开发潜力评价中的应用[J]. 煤田地质与勘探, 36(3): 31−36. doi: 10.3969/j.issn.1001-1986.2008.03.008

    CrossRef Google Scholar

    [42] 郝海洋, 李勇, 宋继伟, 王虎, 李勇, 代云鹏. 2019. 黔西南地区煤系地层井壁稳定技术探讨[J]. 探矿工程(岩土钻掘工程), 46(7): 8−13,33.

    Google Scholar

    [43] 胡国艺, 关辉, 蒋登文, 杜平, 李志生. 2004. 山西沁水煤层气田煤层气成藏条件分析[J]. 中国地质, 31(2): 213−217. doi: 10.3969/j.issn.1000-3657.2004.02.015

    CrossRef Google Scholar

    [44] 胡琳, 薛晓辉, 成鹏, 杨怡娜, 陈蓉. 2019. 滇东宣威地区宣威组“三气兼探”储层地质条件初步分析[J]. 地质调查与研究, 42(1): 13−17.

    Google Scholar

    [45] 金军, 杨兆彪, 秦勇, 崔玉环, 王国玲, 易同生, 吴财芳, 高为, 陈捷, 李庚, 李存磊. 2021. 贵州省煤层气开发进展、潜力及前景[J]. 煤炭学报, 46(12): 1706−1718.

    Google Scholar

    [46] 李辛子, 王赛英, 吴群. 2013. 论不同构造煤类型煤层气开发[J]. 地质论评, 59(5): 919−923.

    Google Scholar

    [47] 李勇, 黄明勇, 宋继伟, 班金彭. 2017. 贵州织金煤层气非储层水平井开发技术研究[J]. 探矿工程(岩土钻掘工程), 44(10): 31−36.

    Google Scholar

    [48] 卢双舫, 申家年, 王振平, 李椿. 2003. 海拉尔盆地煤层气资源评价及潜力分析[J]. 煤田地质与勘探, 31(6): 28−31. doi: 10.3969/j.issn.1001-1986.2003.06.009

    CrossRef Google Scholar

    [49] 秦勇, 熊孟辉, 易同生, 杨兆彪, 吴财芳. 2008. 论多层叠置独立含煤层气系统—以贵州织金−纳雍煤田水公河向斜为例[J]. 地质论评, 54(1): 65−70. doi: 10.3321/j.issn:0371-5736.2008.01.008

    CrossRef Google Scholar

    [50] 单衍胜, 毕彩芹, 张家强, 李锋, 王福国, 李惠. 2018. 黔西六盘水杨梅树发现工业级煤层气[J]. 中国地质, 45(6): 1302−1303. doi: 10.12029/gc20180618

    CrossRef Google Scholar

    [51] 邵龙义, 文怀军, 李永红, 周俊, 蔡玉良, 贾志燿, 鲁静. 2011. 青海省天峻县木里煤田煤层气有利区块的多层次模糊数学评判[J]. 地质通报, 30(12): 1896−1903.

    Google Scholar

    [52] 孙斌, 孙粉锦, 田文广, 孙钦平, 陈刚, 陈浩, 冯圣. 2011. 鄂尔多斯盆地乌审旗地区煤层气富集主控因素及其勘探方向[J]. 天然气工业, 31(2): 34−38. doi: 10.3787/j.issn.1000-0976.2011.02.008

    CrossRef Google Scholar

    [53] 汤友谊, 田高岭, 孙四清, 张国成. 2004. 对煤体结构形态及成因分类的改进和完善[J]. 焦作工学院学报(自然科学版), 23(3): 161−164.

    Google Scholar

    [54] 唐显贵. 2012. 贵州省煤炭资源赋存规律[J]. 煤田地质与勘探, 40(5): 1−5. doi: 10.3969/j.issn.1001-1986.2012.05.003

    CrossRef Google Scholar

    [55] 田亚, 杜治利, 张文龙, 陈夷. 2019. 木里盆地侏罗系煤层气主控因素及成藏模式[J]. 中国地质调查, 6(4): 88−94.

    Google Scholar

    [56] 王恩营, 刘明举, 魏建平. 2009. 构造煤成因−结构−构造分类新方案[J]. 煤炭学报, 34(5): 656−660. doi: 10.3321/j.issn:0253-9993.2009.05.016

    CrossRef Google Scholar

    [57] 王胜建, 高为, 郭天旭, 包书景, 金军, 徐秋枫. 2020. 黔北金沙地区二叠系龙潭组取得页岩气、煤层气和致密砂岩气协同发现[J]. 中国地质, 47(1): 249−250. doi: 10.12029/gc20200120

    CrossRef Google Scholar

    [58] 吴财芳, 刘小磊, 张莎莎. 2018. 滇东黔西多煤层地区煤层气“层次递阶”地质选区指标体系构建[J]. 煤炭学报, 43(6): 1647−1653.

    Google Scholar

    [59] 吴圣, 徐韵, 沈家宁, 金留青, 陈基瑜, 李臣臣, 胡小林. 2018. 黔北煤田长岗向斜煤层气富集的构造控制作用[J]. 煤田地质与勘探, 46(2): 22−27. doi: 10.3969/j.issn.1001-1986.2018.02.004

    CrossRef Google Scholar

    [60] 谢国毅, 刘虎, 毛志新. 2018. 贵州岩溶地区煤层气钻井关键技术[J]. 探矿工程(岩土钻掘工程), 45(5): 53−54.

    Google Scholar

    [61] 熊德华, 唐书恒, 朱宝存. 2011. 晋陕蒙地区煤层气勘查潜力综合评价[J]. 天然气工业, 31(1): 32−36. doi: 10.3787/j.issn.1000-0976.2011.01.006

    CrossRef Google Scholar

    [62] 杨澍, 初禹, 杨湘奎, 娄本君. 2005. 层次分析法(AHP)在三江平原地质环境质量评价中的应用[J]. 地质通报, 24(5): 485−490.

    Google Scholar

    [63] 叶建平, 吴建光, 房超, 吴见, 熊德华. 2011. 沁南潘河煤层气田区域地质特征与煤储层特征及其对产能的影响[J]. 天然气工业, 31(5): 16−20. doi: 10.3787/j.issn.1000-0976.2011.05.004

    CrossRef Google Scholar

    [64] 易同生, 唐显贵, 杨通保. 2019. 贵州省煤炭资源潜力与保障能力[M]. 徐州: 中国矿业大学出版社.

    Google Scholar

    [65] 郑师谊, 张绪教, 杨艳, 李宗敏, 张晋喆, 陈洁. 2012. 层次分析法在滇西怒江河谷潞江盆地段崩塌与滑坡地质灾害危险性评价中的应用[J]. 地质通报, 31(2/3): 356−365.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(6)

Article Metrics

Article views(53) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint