Citation: | QI Qunjia, SUN Tao, YIN Shunyuan, XIA Zixin, MA Zhiyuan, LI Zeshan. 2025. Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan[J]. Geology in China, 52(3): 1002-1021. doi: 10.12029/gc20240203001 |
This paper is the result of mineral exploration engineering.
Beryllium is a rare metal element, which plays an irreplaceable role in national economic construction and national defense science and technology. The Wazha W−Be deposit is located in the northeastern part of the Laojunshan granite. The two−mica granites of the Laojunshan complex, mica schist and gneiss in the second section of the Paleoproterozoic Nanyangtian Formation, and pegmatite veins are mainly exposed. The beryllium mineralization occurs in pegmatite veins which with obvious zoning. Discussion on the genesis of beryllium−bearing pegmatites is of great significance to the study on the genesis of regional tungsten−beryllium deposits and the exploration of beryllium minerals.
In this paper, LA−ICP−MS zircon U−Pb dating, whole−rock major and trace elements, Sr−Nd isotopes and inclusions in beryl were studied to discuss the genesis of beryllium−bearing pegmatite.
The formation age of beryllium−bearing pegmatite veins in the mining area is (187.9±1.4) Ma, and the veins are characterized by high silicon, rich aluminum and rich alkali. The light rare earth elements are relatively enriched, while the heavy rare earth elements are depleted. The samples enriched in Rb, Th, U, Ta, etc, depleted in Ba, Nd, Sm and Ti. The initial 87Sr/86Sr ratios and εNd(t) of the Wazha pegmatite are from 0.702740 to 0.732013 and from −10.3 to −10.6, respectively.
The pegmatites formed by partial melting of continental crust, with mineralization involving amedium−temperature, moderate−salinity NaCl−H2O−CO2−CH4±N2. Fluid immiscibility occurred in the pegmatite during the mineralization process.
[1] | Agrawal A, Cronin J P, Agrawal A, Tonazzi J C, Adams L, Ashley K, Brisson M J, Duran B, Whitney J, Burrell A K. 2008. Extraction and optical fluorescence method for the measurement of trace beryllium in soils[J]. Environmental Science & Technology, 42(6): 2066−2071. |
[2] | Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 53: 197−214. doi: 10.1016/0016-7037(89)90286-X |
[3] | Barton M, Young S. 2002. Non-pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy & Geochemistry, 50: 591−691. |
[4] | Bulnaev K B. 2006. Fluorine−beryllium deposits of the Vitim Highland, western Transbaikal region: Mineral types, localization conditions, magmatism, and age[J]. Geology of Ore Deposits, 48(4): 277−289. doi: 10.1134/S1075701506040039 |
[5] | Černý P. 2002. Mineralogy of beryllium in granitic pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 405−444. doi: 10.2138/rmg.2002.50.10 |
[6] | Chen Zizhan, Guo Ranqi, Han Mei, Li Fangqin. 2023. Risk analysis of beryllium resource supply in China[J]. Acta Geoscientica Sinica, 44(2): 369−377 (in Chinese with English abstract). |
[7] | Cheng Yanbo, Mao Jingwen, Xie Guiqing, Chen Maohong, Zhao Caisheng, Yang Zongxi, Zhai Haijie, Li Xiangqian. 2008. Preliminary study of the petrogenesis of Laochang−Kafang granite in the Gejiu area, Yunnan province: Constraints from geochemistry and zircon U−Pb dating[J]. Acta Geologica Sinica, 81(11): 1478−1493 (in Chinese with English abstract). |
[8] | Damdinova L B, Smirnov S Z, Damdinov B B. 2015. Formation conditions of high−grade beryllium ore at the Snezhnoe deposit, Eastern Sayan[J]. Geology of Ore Deposits, 57(6): 454−464. doi: 10.1134/S1075701515060033 |
[9] | Feng J, Mao J, Pei R. 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits[J]. Mineralogy & Petrology, 107(4): 573−589. |
[10] | Feng Jiarui, Mao Jingwen, Pei Rongfu, Zhou Zhenhua, Yang Zhongxi. 2010. SHRIMP zircon U−Pb dating and geochemical characteristics of Laojunshan grantite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J]. Acta Petrologica Sinica, 26(3): 845−857 (in Chinese with English abstract). |
[11] | Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 112: 1−20. doi: 10.1016/j.gexplo.2011.09.009 |
[12] | Grew E S, Hazen R M. 2014. Beryllium mineral evolution[J]. American Mineralogist, 99(5/6): 999−1021. doi: 10.2138/am.2014.4675 |
[13] | Grew E S. 2002. Mineralogy, petrology and geochemistry of beryllium: An introduction and list of beryllium minerals[J]. Reviews in Mineralogy & Geochemistry, 50(1): 1−76. |
[14] | Guan Junlei, Geng Quanru, Peng Zhimin, Zhang Zhang, Wang Guozhi, Chen Yuanyuan. 2016. Petrology, petrochemistry and zircon U−Pb dating and Hf isotope features of Xiamari granites in Tanggula magmatic belt, Qinghai−Tibet plateau[J]. Acta Geologica Sinica, 90(2): 304−333 (in Chinese with English abstract). |
[15] | Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 83(1): 197−202. doi: 10.2113/gsecongeo.83.1.197 |
[16] | Hanson S L, Zito G. 2019. Beryllium mineralization in pegmatites and quartz dikes of Mount Rosa Complex Area, Colorado front range, Colorado, USA beryllium mineralization in Mount Rosa Complex Area[J]. The Canadian Mineralogist, 57(5): 757−759. doi: 10.3749/canmin.AB00014 |
[17] | Hu Zhikang. 2019. Fluid Inclusions Features and Genesis of Beryls from Cuonadong Gneiss Dome, Southern Tibet [D]. Beijing: China University of Geosciences (Beijing), 1−78 (in Chinese with English abstract). |
[18] | Huang Wenqing, Shui Ting, Ni Pei. 2017. Fluid inclusion studies on emeralds from Malipo area, Yunnan Province, China[J]. Acta Mineralogica Sinica, 37(1): 75−83 (in Chinese with English abstract). |
[19] | Kol'Tsov V Y, Yudina T B, Azarova Y V, Semenov A A, Lizunov A V, Lesina I G. 2017. Comparative geological and mineral-petrological analysis of ore-bearing rock in lithium and beryllium deposits for modeling the behavior of ore minerals during processing[J]. Atomic Energy, 122(2): 1−6. |
[20] | Li Dongxu, Xu Shunshan. 2000. Rotation−shearing genesis of metamorphic core complex—Structural analysis if metamorphic core complex in Laojunshan, southeastern Yunnan Province[J]. Geological Review, 46(2): 113−119 (in Chinese with English abstract). |
[21] | Li H, Li J W, Algeo T J, Wu J H, Cisse M. 2018. Zircon indicators of fluid sources and ore genesis in a multi−stage hydrothermal system: The Dongping Au deposit in North China[J]. Lithos, 314: 463−478. |
[22] | Li Jiankang, Wang Denghong, Li Huaqin, Chen Zhenghui, Mei Yuping. 2013. Late Jurassic−Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province[J]. Earth Science—Journal of China University of Geoscience, 38(5): 1023−1026 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.100 |
[23] | Li Jiankang, Zou Tianren, Wang Denghong, Ding Xin. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951−978 (in Chinese with English abstract). |
[24] | Li Jinwen, Pei Rongfu, Wang Yonglei, She Hongquan, Feng Chengyou, Guo Zhijun, Wang Haolin, Xu Ke. 2013. Isotopic chronological studies of Dulong tin-zinc deposit in Yunnan Province[J]. Mineral Deposits, 32(4): 767−782 (in Chinese with English abstract). |
[25] | Li Na, Gao Aihong, Wang Xiaoning. 2019. Global beryllium resource supply and demand situation and suggestions[J]. China Mining, 28(4): 69−73 (in Chinese with English abstract). |
[26] | Li Zaihui, Tang Fawei, Lin Shiliang, Cong Feng, XieE Tao, Zou Guangfu. 2014. Zircon LA−ICPMS U−Pb geochronology of the beryl−bearing pegmatite and its geological significance, western Yunnan, southwest China[J]. Journal of Jilin University (Earth Science Edition), 44(2): 554−565 (in Chinese with English abstract). |
[27] | Linnen R L, Lichtervelde M V, Cerny P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275−280. doi: 10.2113/gselements.8.4.275 |
[28] | Liu Tao, Tian Shihong, Wang Dengong, Zhang Yujie, Li Xianfang, Hou Kejun, Jieken·Kalimuhan, Zang Zhongli, Wang Yongqiang, Zhao Yue, Qin Yan. 2020. Genetic relationship between granite and pegmatite in Kalu’an hard−rock−type lithium deposit in Xinjiang: Results from zircon U−Pb dating, Hf−O isotopes and whole rock geochemistry[J]. Acta Geologica Sinica, 94(11): 3293−3320 (in Chinese with English abstract). |
[29] | Liu Yanbin, Mo Xuanxue, Zhang Da, Que Chaoyang, Di Yongjun, Pu Xingming, Cheng Guoshun, Ma Huihui. 2014. Petrogenesis of the late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province[J]. Acta Petrologica Sinica, 30(11): 3271−3286 (in Chinese with English abstract). |
[30] | Liu Yuping, Li Zhengxiang, Li Huimin, Guo Liguo, Xu Wei, Ye Lin, Li Chaoyang, Pi Daohui. 2007. U−Pb geochronology of cassiterite and zircon from the Dulong Sn−Zn deposit: Evidence for Cretaceous large−scale granitic magmatism and mineralization events in southeastern Yunnan Province, China[J]. Acta Petrologica Sinica, 23(5): 967−976 (in Chinese with English abstract). |
[31] | Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2014. Fluid Inclusion [M]. Beijing: Science Press, 1−419 (in Chinese). |
[32] | Lü Z H, Zhang H, Tang Y, Liu Y L, Zhang X. 2018. Petrogenesis of syn−orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U−Pb age and Hf isotope[J]. Ore Geology Reviews, 95: 161−181. doi: 10.1016/j.oregeorev.2018.02.022 |
[33] | Lyalina L, Selivanova E, Zozulya D, Ivanyuk G. 2018. Beryllium mineralogy of the Kola Peninsula, Russia—A Review[J]. Minerals, 9(1): 12. |
[34] | Maas R, Grew E S, Carson C J. 2015. Isotopic constraints (Pb, Rb−Sr, Sm−Nd) on the sources of early Cambrian pegmatites with boron and beryllium minerals in the Larsemann Hills, Prydz Bay, Antatcticathe Canadian Mineralogist[J]. The Canadian Mineralogist, 53(2): 249−272. doi: 10.3749/canmin.1400081 |
[35] | Malyukova N, Kim V, Tulyaev R. 2005. Zonation of polymetallic, rare−earth, molybdenum, zirconium, beryllium and tantalum−niobium mineralization in the Ak-Tyuz ore deposits (Northern Tien Shan) [C]// Mineral Deposit Research: Meeting the Global Challenge. Berlin: Springer, 18–21. |
[36] | Müller R B. 2017. The sveconorwegian pegmatite province-Thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 55(2): 283−315. doi: 10.3749/canmin.1600075 |
[37] | Pan Jinbo, Zhang Da, Que Chaoyang, Di Yongjun, Huang Kongwen, Bi Minfeng, Xu Jianzhen. 2015. Geochemistry and ziron U−Pb chronology of the Laochengpo gneissic granite in the southeast Yunnan Area and their implications [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 795−803 (in Chinese with English abstract). |
[38] | Ran Zilong, Li Yanjun. 2021. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 40(2): 13−23 (in Chinese with English abstract). |
[39] | Ripp G S, Izbrodin I A, Rampilov M O, Tomilenko A A, Lastochkin E A, Posokhov V F. 2020. Relationship of F−Be mineralization to granites and syenites at the ermakovka deposit (western transbaikalia)[J]. Geologica Acta, 18: 1−13. |
[40] | Romer R L, Förster H J, Hahne K. 2012. Strontium isotopes — A persistent tracer for the recycling of Gondwana crust in the Variscan orogeny[J]. Gondwana Research, 22(1): 262−278. doi: 10.1016/j.gr.2011.09.005 |
[41] | Schilling J, Bingen B, Skår Ø, Wenzel T, Markl G. 2015. Formation and evolution of the Høgtuva beryllium deposit, Norway[J]. Contributions to Mineralogy and Petrology, 170: 1−21. doi: 10.1007/s00410-015-1154-3 |
[42] | Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics in Ocean Basalt: Implication for Mantle Composition and Processes[C]//Saunders A D, Norry M J. (eds.), Magmatism in the Ocean Basins: Geological Society, London, Special Publications, 42(1): 313−345. |
[43] | Tian S, Hou Z, Mo X, Tian Y, Zhao Y, Hou K, Zhang Y. 2020. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet[J]. Gondwana Research, 77: 168−183. doi: 10.1016/j.gr.2019.07.016 |
[44] | Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xue Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqin, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Jiankang, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on study of regularity of major mineral resources and regional metallogenic regularity in China: A review[J]. Acta Geologica Sinica, 88(12): 2176−2191 (in Chinese with English abstract). |
[45] | Wu Changnian, Zhu Jinchu, Liu Changshi, Yang Shengzu, Zhu Bingyu, Ning Guangjin. 1995. The physic-chemical conditions of formation of beryl in the Kuwei pegmatite, Altay, Xinjiang[J]. Acta Mineralogica Sinica, 15(3): 346−351 (in Chinese with English abstract). |
[46] | Wu Runqiu, Rao Chan, Wang Qi, Zhang Di. 2020. Electron probe microanalysis of the key metal beryllium[J]. Chinese Sicence Bulletin, 65(20): 2161−2168 (in Chinese). doi: 10.1360/TB-2020-0082 |
[47] | Wu Yuanbao, Zheng Yongfei. 2004. Mineralogical study of zircon origin and constraint interpretation for the U-Pb ages of zircons[J]. Chinese Sicence Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 |
[48] | Xu Bin. 2015. Muti-stage Magmatism in Laojunshan of SE Yunnan, China: Geochemistry, Geodynamic Implication and Related Mineralization [D]. Nanjing: Nanjing University, 1−140 (in Chinese with English abstract). |
[49] | Xu Wei. 2007. A Preliminary Study on the Chronology and Geochemistry of the Nanwenhe Granite in Southeastern Yunnan [D]. Guiyang: Institute of Geochemistry, CAS (in Chinese with English abstract). |
[50] | Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. 2020. Concept of high−temperature granite−pegmatite Li−Be metallogenic system with a primary study in the middle Altyn−Tagh[J]. Acta Petrologica Sinica, 36(12): 3572−3592 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.02 |
[51] | Xu Zhe, Zhang Fushen, Zhang Fangrong, Zhang Yong, Zhou Yu, Xu Jin, Huang Chengwei, He Bin, Long Lixue. 2024. U–Pb dating of monazite from the beryllium mineralized pegmatite and its geological significance in the Guyangzhai area at the southern margin of Jiuling, Jiangxi[J]. Journal of East China University of Technology (Natural Science), 47(1): 13−21. |
[52] | Yu Meng. 2020. Mineral Genesis Study of Migmatite–granite–pegmatite in Convergent Continental Margins and its Constraints on Petrogenesis [D]. Anhui: University of Science and Technology of China, 1−150 (in Chinese with English abstract). |
[53] | Zhang Shitao, Feng Minggang, Wang Houqiang, Lü Wei, Yang Ming. 1999. Geological features and genesis of emerald deposit in Malipo County, Yunnan Province, China[J]. Geological Science and Technology information, 18(1): 50−54 (in Chinese with English abstract). |
[54] | Zhang Zhenfa, Zhang Hui, Lü Zhenghang, Yang Hailin, Yu Wenxiu. 2018. Zircon U−Pb geochronology and the geological significance of pegmatites from the Laojunshan area, Southeastern Yunnan[J]. Geochimica, 47(1): 33−47 (in Chinese with English abstract). |
[55] | Zhao Z, Hou L, Ding J, Zhang Q, Wu S. 2017. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: A case study of the Dulong Sn−dominant polymetallic deposit[J]. Ore Geology Reviews, 93: 268−289. |
[56] | Zhou Jinjie, Lü Zhenghang, Liu Kun, Tang Yong, Zhang Hui. 2024. Enrichment characteristics of rare metals in the initial magma of anatectic pegmatite[J]. Acta Geologica Sinica, 98(5): 1507−1526. |
[57] | 陈子瞻, 郭冉启, 韩梅, 李芳琴. 2023. 中国铍资源供给风险分析[J]. 地球学报, 44(2): 369−377. doi: 10.3975/cagsb.2022.112802 Zhou Qifeng, Qin Kezhang, Zhu Liqun, Zhao Junxing. 2023. Discussion on the genesis of granitic pegmatites: Magmatic differentiation versus anatexis[J]. Earth Science Frontiers, 30(5): 26−39. doi: 10.3975/cagsb.2022.112802 |
[58] | 陈子瞻, 郭冉启, 韩梅, 李芳琴. 2023. 中国铍资源供给风险分析[J]. 地球学报, 44(2): 369−377. Zhou Qifeng, Qin Kezhang, Zhu Liqun, Zhao Junxing. 2023. Discussion on the genesis of granitic pegmatites: Magmatic differentiation versus anatexis[J]. Earth Science Frontiers, 30(5): 26−39. |
[59] | 程彦博, 毛景文, 谢桂青, 陈懋弘, 赵财胜, 杨宗喜, 赵海杰, 李向前. 2008. 云南个旧老厂—卡房花岗岩体成因初探: 锆石U−Pb年代学和岩石地球化学约束[J]. 地质学报, 81(11): 1478−1493. doi: 10.3321/j.issn:0001-5717.2008.11.003 |
[60] | 冯佳睿, 毛景文, 裴荣富, 周振华, 杨宗喜. 2010. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U−Pb定年、地球化学特征及成因探讨[J]. 岩石学报, 26(3): 845−857. |
[61] | 关俊雷, 耿全如, 彭智敏, 张璋, 王国芝, 陈园园. 2016. 西藏唐古拉岩浆岩带夏玛日花岗岩体的岩石学、岩石地球化学、锆石U−Pb测年及Hf同位素组成[J]. 地质学报, 90(2): 304−333. doi: 10.3969/j.issn.0001-5717.2016.02.008 |
[62] | 胡志康. 2019. 藏南绿柱石的包裹体研究及成因探讨[D]. 北京: 中国地质大学, 1−78. |
[63] | 黄文清, 水汀, 倪培. 2017. 云南麻栗坡祖母绿的流体包裹体研究[J]. 矿物学报, 37(1): 75−83. |
[64] | 李东旭, 许顺山. 2000. 变质核杂岩的旋扭成因——滇东南老君山变质核杂岩的构造解析[J]. 地质论评, 46(2): 113−119. doi: 10.3321/j.issn:0371-5736.2000.02.001 |
[65] | 李建康, 王登红, 李华芹, 陈郑辉, 梅玉萍. 2013. 云南老君山矿集区的晚侏罗世−早白垩世成矿事件[J]. 地球科学—中国地质大学学报, 38(5): 1023−1026. |
[66] | 李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951−978. |
[67] | 李进文, 裴荣富, 王永磊, 佘宏全, 丰成友, 郭志军, 王浩琳, 徐可. 2013. 云南都龙锡锌矿区同位素年代学研究[J]. 矿床地质, 32(4): 767−782. doi: 10.3969/j.issn.0258-7106.2013.04.010 |
[68] | 李娜, 高爱红, 王小宁. 2019. 全球铍资源供需形势及建议[J]. 中国矿业, 28(4): 69−73. doi: 10.12075/j.issn.1004-4051.2019.04.028 |
[69] | 李再会, 唐发伟, 林仕良, 丛峰, 谢韬, 邹光富. 2014. 滇西含绿柱石伟晶岩锆石U−Pb年代学及其地质意义[J]. 吉林大学学报(地球科学版), 44(2): 554−565. |
[70] | 刘涛, 田世洪, 王登红, 张玉洁, 李贤芳, 侯可军, 杰肯•卡里木汗, 张忠利, 王永强, 赵悦, 秦燕. 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U−Pb定年、Hf−O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293−3320. doi: 10.3969/j.issn.0001-5717.2020.11.009 |
[71] | 刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因[J]. 岩石学报, 30(11): 3271−3286. |
[72] | 刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U−Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件[J]. 岩石学报, 23(5): 967−976. doi: 10.3321/j.issn:1000-0569.2007.05.010 |
[73] | 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科学出版社, 1−419. |
[74] | 潘锦波, 张达, 阙朝阳, 狄永军, 黄孔文, 毕珉烽, 徐建珍. 2015. 滇东南老城坡片麻状花岗岩地球化学特征、锆石U−Pb年龄及其意义[J]. 矿物岩石地球化学通报, 34(4): 795−803. doi: 10.3969/j.issn.1007-2802.2015.04.014 |
[75] | 冉子龙, 李艳军. 2021. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 40(2): 13−23. |
[76] | 王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 88(12): 2176−2191. |
[77] | 吴润秋, 饶灿, 王琪, 张迪. 2020. 关键金属铍的电子探针分析[J]. 科学通报, 65(20): 2161−2168. |
[78] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 |
[79] | 吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1995. 新疆阿尔泰库威伟晶岩中绿柱石形成的物理化学条件[J]. 矿物学报, 15(3): 346−351. doi: 10.3321/j.issn:1000-4734.1995.03.018 |
[80] | 徐斌. 2015. 滇东南老君山地区多期岩浆作用地球化学及成岩成矿背景研究[D]. 南京: 南京大学, 1−140. |
[81] | 徐伟. 2007. 滇东南南温河花岗岩年代学和地球化学初步研究[D]. 贵阳: 中国科学院地球化学研究所. |
[82] | 徐兴旺, 洪涛, 李杭, 牛磊, 柯强, 陈建中, 刘善科, 翟明国. 2020. 初论高温花岗岩−伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 36(12): 3572−3592. doi: 10.18654/1000-0569/2020.12.02 |
[83] | 徐喆, 张福神, 张芳荣, 张勇, 周渝, 徐进, 黄成伟, 贺彬, 龙立学. 2024. 江西九岭南缘古阳寨地区铍矿化伟晶岩独居石U–Pb定年及其地质意义[J]. 东华理工大学学报(自然科学版), 47(1): 13−21. |
[84] | 于萌. 2020. 汇聚大陆边缘混合岩−花岗岩−伟晶岩矿物成因研究及其对岩石成因的制约[D]. 安徽: 中国科学技术大学, 1−150. |
[85] | 张传昱, 曹晓民, 李文昌, 唐忠, 余海军, 陈曹军, 程涌, 李蓉. 2021. 云南省铍矿床成矿规律初探[J]. 岩石矿物学杂志, 40(2): 452−464. doi: 10.3969/j.issn.1000-6524.2021.02.018 |
[86] | 张世涛, 冯明刚, 王厚强, 吕伟, 杨明. 1999. 云南省麻栗坡县祖母绿矿区的地质特征及成因初探[J]. 地质科技情报, 18(1): 50−54. |
[87] | 张振发, 张辉, 吕正航, 杨海林, 于文修. 2018. 滇东南老君山地区伟晶岩年代学研究及其地质意义[J]. 地球化学, 47(1): 33−47. doi: 10.3969/j.issn.0379-1726.2018.01.003 |
[88] | 周晋捷, 吕正航, 刘堃, 唐勇, 张辉. 2024. 深熔成因伟晶岩初始岩浆中稀有金属富集特征[J]. 地质学报, 98(5): 1507−1526. |
[89] | 周起凤, 秦克章, 朱丽群, 赵俊兴. 2023. 花岗伟晶岩成因探讨: 岩浆分异与深熔[J]. 地学前缘, 30(5): 26−39. |
Geological map showing regional geology and polymetallic mineral deposits in Southeastern Yunnan−Western Guangxi (a, modified from Cheng Yanbo et al., 2008); Simplified geological map with the distribution of pegmatite veins in Laojunshan area, Southeastern Yunnan (b, modified from Zhang Zhenfa et al., 2018)
Geological map of Wazha W−Be deposit
Microscopic characteristics of the representative minerals in pegmatite veins of Wazha W−Be deposit
The distributed characteristics of 4 # vein (a−c); 3 # vein show the mineral zonation (d); Beryl crystal in feldspar quartz belt of 3 # vein (e)
Chondrite−normalized REE patterns of zircon(a, modified from Sun and McDonough,1989), diagram for the genesis identification of zircon (b, modified from Li et al., 2018)
U−Pb concordia diagram of zircon from the pegmatite vein
Micrographs of the fluid inclusions
Laser Raman spectroscopic analysis of the inclusions and subcrystal−bearing inclusions in beryls
Histogram of homogeneous temperature for the two types of inclusions (a); Histogram of freezing point temperature for the two types of inclusions (b); Salinity frequency histogram of gas-liquid two-phase inclusions (c); The salinity frequency histogram of subcrystal-bearing inclusions (d)
A/NK−A/CNK (a) and SiO2 versus K2O (b) classification diagrams of Wazha pegmatites and related granites in Laojunshan area
Chondrite-normalized REE patterns (a), primitive mantle-normalized immobile trace element diagrams (b) of bulk rock samples from the Wazha pegmatites.
Nd isotopic evolution diagram of the Wazha pegmatite and related granites in Laojunshan are
Boiling evidences of the inclusions (L−Liquid phase; V−Gas phase; S−Subcrystal)