2025 Vol. 52, No. 3
Article Contents

QI Qunjia, SUN Tao, YIN Shunyuan, XIA Zixin, MA Zhiyuan, LI Zeshan. 2025. Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan[J]. Geology in China, 52(3): 1002-1021. doi: 10.12029/gc20240203001
Citation: QI Qunjia, SUN Tao, YIN Shunyuan, XIA Zixin, MA Zhiyuan, LI Zeshan. 2025. Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan[J]. Geology in China, 52(3): 1002-1021. doi: 10.12029/gc20240203001

Genesis of the beryllium−bearing pegmatite in Wazha W−Be deposit, Southeastern Yunnan

    Fund Project: Supported by National Science Foundation of China (No.41862005), Yunnan Fundamental Research Projects (No.202401AS070124, No.202301AT070116) and the New Round of Prospecting Operation and Geological Prospecting Fund Project in Yunnan Province (No.Y202406).
More Information
  • Author Bio: QI Qunjia, female, born in 1997, master, mainly engaged in mineral resource research and development planning; E-mail:1768724056@qq.com
  • Corresponding author: SUN Tao, male, born in 1983, professor, mainly engaged in magmatic deposit research; E-mail:suntao06@126.com
  • This paper is the result of mineral exploration engineering.

    Objective

    Beryllium is a rare metal element, which plays an irreplaceable role in national economic construction and national defense science and technology. The Wazha W−Be deposit is located in the northeastern part of the Laojunshan granite. The two−mica granites of the Laojunshan complex, mica schist and gneiss in the second section of the Paleoproterozoic Nanyangtian Formation, and pegmatite veins are mainly exposed. The beryllium mineralization occurs in pegmatite veins which with obvious zoning. Discussion on the genesis of beryllium−bearing pegmatites is of great significance to the study on the genesis of regional tungsten−beryllium deposits and the exploration of beryllium minerals.

    Methods

    In this paper, LA−ICP−MS zircon U−Pb dating, whole−rock major and trace elements, Sr−Nd isotopes and inclusions in beryl were studied to discuss the genesis of beryllium−bearing pegmatite.

    Results

    The formation age of beryllium−bearing pegmatite veins in the mining area is (187.9±1.4) Ma, and the veins are characterized by high silicon, rich aluminum and rich alkali. The light rare earth elements are relatively enriched, while the heavy rare earth elements are depleted. The samples enriched in Rb, Th, U, Ta, etc, depleted in Ba, Nd, Sm and Ti. The initial 87Sr/86Sr ratios and εNd(t) of the Wazha pegmatite are from 0.702740 to 0.732013 and from −10.3 to −10.6, respectively.

    Conclusions

    The pegmatites formed by partial melting of continental crust, with mineralization involving amedium−temperature, moderate−salinity NaCl−H2O−CO2−CH4±N2. Fluid immiscibility occurred in the pegmatite during the mineralization process.

  • 加载中
  • [1] Agrawal A, Cronin J P, Agrawal A, Tonazzi J C, Adams L, Ashley K, Brisson M J, Duran B, Whitney J, Burrell A K. 2008. Extraction and optical fluorescence method for the measurement of trace beryllium in soils[J]. Environmental Science & Technology, 42(6): 2066−2071.

    Google Scholar

    [2] Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 53: 197−214. doi: 10.1016/0016-7037(89)90286-X

    CrossRef Google Scholar

    [3] Barton M, Young S. 2002. Non-pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy & Geochemistry, 50: 591−691.

    Google Scholar

    [4] Bulnaev K B. 2006. Fluorine−beryllium deposits of the Vitim Highland, western Transbaikal region: Mineral types, localization conditions, magmatism, and age[J]. Geology of Ore Deposits, 48(4): 277−289. doi: 10.1134/S1075701506040039

    CrossRef Google Scholar

    [5] Černý P. 2002. Mineralogy of beryllium in granitic pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 405−444. doi: 10.2138/rmg.2002.50.10

    CrossRef Google Scholar

    [6] Chen Zizhan, Guo Ranqi, Han Mei, Li Fangqin. 2023. Risk analysis of beryllium resource supply in China[J]. Acta Geoscientica Sinica, 44(2): 369−377 (in Chinese with English abstract).

    Google Scholar

    [7] Cheng Yanbo, Mao Jingwen, Xie Guiqing, Chen Maohong, Zhao Caisheng, Yang Zongxi, Zhai Haijie, Li Xiangqian. 2008. Preliminary study of the petrogenesis of Laochang−Kafang granite in the Gejiu area, Yunnan province: Constraints from geochemistry and zircon U−Pb dating[J]. Acta Geologica Sinica, 81(11): 1478−1493 (in Chinese with English abstract).

    Google Scholar

    [8] Damdinova L B, Smirnov S Z, Damdinov B B. 2015. Formation conditions of high−grade beryllium ore at the Snezhnoe deposit, Eastern Sayan[J]. Geology of Ore Deposits, 57(6): 454−464. doi: 10.1134/S1075701515060033

    CrossRef Google Scholar

    [9] Feng J, Mao J, Pei R. 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits[J]. Mineralogy & Petrology, 107(4): 573−589.

    Google Scholar

    [10] Feng Jiarui, Mao Jingwen, Pei Rongfu, Zhou Zhenhua, Yang Zhongxi. 2010. SHRIMP zircon U−Pb dating and geochemical characteristics of Laojunshan grantite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J]. Acta Petrologica Sinica, 26(3): 845−857 (in Chinese with English abstract).

    Google Scholar

    [11] Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 112: 1−20. doi: 10.1016/j.gexplo.2011.09.009

    CrossRef Google Scholar

    [12] Grew E S, Hazen R M. 2014. Beryllium mineral evolution[J]. American Mineralogist, 99(5/6): 999−1021. doi: 10.2138/am.2014.4675

    CrossRef Google Scholar

    [13] Grew E S. 2002. Mineralogy, petrology and geochemistry of beryllium: An introduction and list of beryllium minerals[J]. Reviews in Mineralogy & Geochemistry, 50(1): 1−76.

    Google Scholar

    [14] Guan Junlei, Geng Quanru, Peng Zhimin, Zhang Zhang, Wang Guozhi, Chen Yuanyuan. 2016. Petrology, petrochemistry and zircon U−Pb dating and Hf isotope features of Xiamari granites in Tanggula magmatic belt, Qinghai−Tibet plateau[J]. Acta Geologica Sinica, 90(2): 304−333 (in Chinese with English abstract).

    Google Scholar

    [15] Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 83(1): 197−202. doi: 10.2113/gsecongeo.83.1.197

    CrossRef Google Scholar

    [16] Hanson S L, Zito G. 2019. Beryllium mineralization in pegmatites and quartz dikes of Mount Rosa Complex Area, Colorado front range, Colorado, USA beryllium mineralization in Mount Rosa Complex Area[J]. The Canadian Mineralogist, 57(5): 757−759. doi: 10.3749/canmin.AB00014

    CrossRef Google Scholar

    [17] Hu Zhikang. 2019. Fluid Inclusions Features and Genesis of Beryls from Cuonadong Gneiss Dome, Southern Tibet [D]. Beijing: China University of Geosciences (Beijing), 1−78 (in Chinese with English abstract).

    Google Scholar

    [18] Huang Wenqing, Shui Ting, Ni Pei. 2017. Fluid inclusion studies on emeralds from Malipo area, Yunnan Province, China[J]. Acta Mineralogica Sinica, 37(1): 75−83 (in Chinese with English abstract).

    Google Scholar

    [19] Kol'Tsov V Y, Yudina T B, Azarova Y V, Semenov A A, Lizunov A V, Lesina I G. 2017. Comparative geological and mineral-petrological analysis of ore-bearing rock in lithium and beryllium deposits for modeling the behavior of ore minerals during processing[J]. Atomic Energy, 122(2): 1−6.

    Google Scholar

    [20] Li Dongxu, Xu Shunshan. 2000. Rotation−shearing genesis of metamorphic core complex—Structural analysis if metamorphic core complex in Laojunshan, southeastern Yunnan Province[J]. Geological Review, 46(2): 113−119 (in Chinese with English abstract).

    Google Scholar

    [21] Li H, Li J W, Algeo T J, Wu J H, Cisse M. 2018. Zircon indicators of fluid sources and ore genesis in a multi−stage hydrothermal system: The Dongping Au deposit in North China[J]. Lithos, 314: 463−478.

    Google Scholar

    [22] Li Jiankang, Wang Denghong, Li Huaqin, Chen Zhenghui, Mei Yuping. 2013. Late Jurassic−Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province[J]. Earth Science—Journal of China University of Geoscience, 38(5): 1023−1026 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.100

    CrossRef Google Scholar

    [23] Li Jiankang, Zou Tianren, Wang Denghong, Ding Xin. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951−978 (in Chinese with English abstract).

    Google Scholar

    [24] Li Jinwen, Pei Rongfu, Wang Yonglei, She Hongquan, Feng Chengyou, Guo Zhijun, Wang Haolin, Xu Ke. 2013. Isotopic chronological studies of Dulong tin-zinc deposit in Yunnan Province[J]. Mineral Deposits, 32(4): 767−782 (in Chinese with English abstract).

    Google Scholar

    [25] Li Na, Gao Aihong, Wang Xiaoning. 2019. Global beryllium resource supply and demand situation and suggestions[J]. China Mining, 28(4): 69−73 (in Chinese with English abstract).

    Google Scholar

    [26] Li Zaihui, Tang Fawei, Lin Shiliang, Cong Feng, XieE Tao, Zou Guangfu. 2014. Zircon LA−ICPMS U−Pb geochronology of the beryl−bearing pegmatite and its geological significance, western Yunnan, southwest China[J]. Journal of Jilin University (Earth Science Edition), 44(2): 554−565 (in Chinese with English abstract).

    Google Scholar

    [27] Linnen R L, Lichtervelde M V, Cerny P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275−280. doi: 10.2113/gselements.8.4.275

    CrossRef Google Scholar

    [28] Liu Tao, Tian Shihong, Wang Dengong, Zhang Yujie, Li Xianfang, Hou Kejun, Jieken·Kalimuhan, Zang Zhongli, Wang Yongqiang, Zhao Yue, Qin Yan. 2020. Genetic relationship between granite and pegmatite in Kalu’an hard−rock−type lithium deposit in Xinjiang: Results from zircon U−Pb dating, Hf−O isotopes and whole rock geochemistry[J]. Acta Geologica Sinica, 94(11): 3293−3320 (in Chinese with English abstract).

    Google Scholar

    [29] Liu Yanbin, Mo Xuanxue, Zhang Da, Que Chaoyang, Di Yongjun, Pu Xingming, Cheng Guoshun, Ma Huihui. 2014. Petrogenesis of the late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province[J]. Acta Petrologica Sinica, 30(11): 3271−3286 (in Chinese with English abstract).

    Google Scholar

    [30] Liu Yuping, Li Zhengxiang, Li Huimin, Guo Liguo, Xu Wei, Ye Lin, Li Chaoyang, Pi Daohui. 2007. U−Pb geochronology of cassiterite and zircon from the Dulong Sn−Zn deposit: Evidence for Cretaceous large−scale granitic magmatism and mineralization events in southeastern Yunnan Province, China[J]. Acta Petrologica Sinica, 23(5): 967−976 (in Chinese with English abstract).

    Google Scholar

    [31] Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2014. Fluid Inclusion [M]. Beijing: Science Press, 1−419 (in Chinese).

    Google Scholar

    [32] Lü Z H, Zhang H, Tang Y, Liu Y L, Zhang X. 2018. Petrogenesis of syn−orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U−Pb age and Hf isotope[J]. Ore Geology Reviews, 95: 161−181. doi: 10.1016/j.oregeorev.2018.02.022

    CrossRef Google Scholar

    [33] Lyalina L, Selivanova E, Zozulya D, Ivanyuk G. 2018. Beryllium mineralogy of the Kola Peninsula, Russia—A Review[J]. Minerals, 9(1): 12.

    Google Scholar

    [34] Maas R, Grew E S, Carson C J. 2015. Isotopic constraints (Pb, Rb−Sr, Sm−Nd) on the sources of early Cambrian pegmatites with boron and beryllium minerals in the Larsemann Hills, Prydz Bay, Antatcticathe Canadian Mineralogist[J]. The Canadian Mineralogist, 53(2): 249−272. doi: 10.3749/canmin.1400081

    CrossRef Google Scholar

    [35] Malyukova N, Kim V, Tulyaev R. 2005. Zonation of polymetallic, rare−earth, molybdenum, zirconium, beryllium and tantalum−niobium mineralization in the Ak-Tyuz ore deposits (Northern Tien Shan) [C]// Mineral Deposit Research: Meeting the Global Challenge. Berlin: Springer, 18–21.

    Google Scholar

    [36] Müller R B. 2017. The sveconorwegian pegmatite province-Thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 55(2): 283−315. doi: 10.3749/canmin.1600075

    CrossRef Google Scholar

    [37] Pan Jinbo, Zhang Da, Que Chaoyang, Di Yongjun, Huang Kongwen, Bi Minfeng, Xu Jianzhen. 2015. Geochemistry and ziron U−Pb chronology of the Laochengpo gneissic granite in the southeast Yunnan Area and their implications [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 795−803 (in Chinese with English abstract).

    Google Scholar

    [38] Ran Zilong, Li Yanjun. 2021. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 40(2): 13−23 (in Chinese with English abstract).

    Google Scholar

    [39] Ripp G S, Izbrodin I A, Rampilov M O, Tomilenko A A, Lastochkin E A, Posokhov V F. 2020. Relationship of F−Be mineralization to granites and syenites at the ermakovka deposit (western transbaikalia)[J]. Geologica Acta, 18: 1−13.

    Google Scholar

    [40] Romer R L, Förster H J, Hahne K. 2012. Strontium isotopes — A persistent tracer for the recycling of Gondwana crust in the Variscan orogeny[J]. Gondwana Research, 22(1): 262−278. doi: 10.1016/j.gr.2011.09.005

    CrossRef Google Scholar

    [41] Schilling J, Bingen B, Skår Ø, Wenzel T, Markl G. 2015. Formation and evolution of the Høgtuva beryllium deposit, Norway[J]. Contributions to Mineralogy and Petrology, 170: 1−21. doi: 10.1007/s00410-015-1154-3

    CrossRef Google Scholar

    [42] Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics in Ocean Basalt: Implication for Mantle Composition and Processes[C]//Saunders A D, Norry M J. (eds.), Magmatism in the Ocean Basins: Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [43] Tian S, Hou Z, Mo X, Tian Y, Zhao Y, Hou K, Zhang Y. 2020. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet[J]. Gondwana Research, 77: 168−183. doi: 10.1016/j.gr.2019.07.016

    CrossRef Google Scholar

    [44] Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xue Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqin, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Jiankang, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on study of regularity of major mineral resources and regional metallogenic regularity in China: A review[J]. Acta Geologica Sinica, 88(12): 2176−2191 (in Chinese with English abstract).

    Google Scholar

    [45] Wu Changnian, Zhu Jinchu, Liu Changshi, Yang Shengzu, Zhu Bingyu, Ning Guangjin. 1995. The physic-chemical conditions of formation of beryl in the Kuwei pegmatite, Altay, Xinjiang[J]. Acta Mineralogica Sinica, 15(3): 346−351 (in Chinese with English abstract).

    Google Scholar

    [46] Wu Runqiu, Rao Chan, Wang Qi, Zhang Di. 2020. Electron probe microanalysis of the key metal beryllium[J]. Chinese Sicence Bulletin, 65(20): 2161−2168 (in Chinese). doi: 10.1360/TB-2020-0082

    CrossRef Google Scholar

    [47] Wu Yuanbao, Zheng Yongfei. 2004. Mineralogical study of zircon origin and constraint interpretation for the U-Pb ages of zircons[J]. Chinese Sicence Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [48] Xu Bin. 2015. Muti-stage Magmatism in Laojunshan of SE Yunnan, China: Geochemistry, Geodynamic Implication and Related Mineralization [D]. Nanjing: Nanjing University, 1−140 (in Chinese with English abstract).

    Google Scholar

    [49] Xu Wei. 2007. A Preliminary Study on the Chronology and Geochemistry of the Nanwenhe Granite in Southeastern Yunnan [D]. Guiyang: Institute of Geochemistry, CAS (in Chinese with English abstract).

    Google Scholar

    [50] Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. 2020. Concept of high−temperature granite−pegmatite Li−Be metallogenic system with a primary study in the middle Altyn−Tagh[J]. Acta Petrologica Sinica, 36(12): 3572−3592 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.02

    CrossRef Google Scholar

    [51] Xu Zhe, Zhang Fushen, Zhang Fangrong, Zhang Yong, Zhou Yu, Xu Jin, Huang Chengwei, He Bin, Long Lixue. 2024. U–Pb dating of monazite from the beryllium mineralized pegmatite and its geological significance in the Guyangzhai area at the southern margin of Jiuling, Jiangxi[J]. Journal of East China University of Technology (Natural Science), 47(1): 13−21.

    Google Scholar

    [52] Yu Meng. 2020. Mineral Genesis Study of Migmatite–granite–pegmatite in Convergent Continental Margins and its Constraints on Petrogenesis [D]. Anhui: University of Science and Technology of China, 1−150 (in Chinese with English abstract).

    Google Scholar

    [53] Zhang Shitao, Feng Minggang, Wang Houqiang, Lü Wei, Yang Ming. 1999. Geological features and genesis of emerald deposit in Malipo County, Yunnan Province, China[J]. Geological Science and Technology information, 18(1): 50−54 (in Chinese with English abstract).

    Google Scholar

    [54] Zhang Zhenfa, Zhang Hui, Lü Zhenghang, Yang Hailin, Yu Wenxiu. 2018. Zircon U−Pb geochronology and the geological significance of pegmatites from the Laojunshan area, Southeastern Yunnan[J]. Geochimica, 47(1): 33−47 (in Chinese with English abstract).

    Google Scholar

    [55] Zhao Z, Hou L, Ding J, Zhang Q, Wu S. 2017. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: A case study of the Dulong Sn−dominant polymetallic deposit[J]. Ore Geology Reviews, 93: 268−289.

    Google Scholar

    [56] Zhou Jinjie, Lü Zhenghang, Liu Kun, Tang Yong, Zhang Hui. 2024. Enrichment characteristics of rare metals in the initial magma of anatectic pegmatite[J]. Acta Geologica Sinica, 98(5): 1507−1526.

    Google Scholar

    [57] 陈子瞻, 郭冉启, 韩梅, 李芳琴. 2023. 中国铍资源供给风险分析[J]. 地球学报, 44(2): 369−377. doi: 10.3975/cagsb.2022.112802

    CrossRef Google Scholar

    Zhou Qifeng, Qin Kezhang, Zhu Liqun, Zhao Junxing. 2023. Discussion on the genesis of granitic pegmatites: Magmatic differentiation versus anatexis[J]. Earth Science Frontiers, 30(5): 26−39. doi: 10.3975/cagsb.2022.112802

    CrossRef Google Scholar

    [58] 陈子瞻, 郭冉启, 韩梅, 李芳琴. 2023. 中国铍资源供给风险分析[J]. 地球学报, 44(2): 369−377.

    Google Scholar

    Zhou Qifeng, Qin Kezhang, Zhu Liqun, Zhao Junxing. 2023. Discussion on the genesis of granitic pegmatites: Magmatic differentiation versus anatexis[J]. Earth Science Frontiers, 30(5): 26−39.

    Google Scholar

    [59] 程彦博, 毛景文, 谢桂青, 陈懋弘, 赵财胜, 杨宗喜, 赵海杰, 李向前. 2008. 云南个旧老厂—卡房花岗岩体成因初探: 锆石U−Pb年代学和岩石地球化学约束[J]. 地质学报, 81(11): 1478−1493. doi: 10.3321/j.issn:0001-5717.2008.11.003

    CrossRef Google Scholar

    [60] 冯佳睿, 毛景文, 裴荣富, 周振华, 杨宗喜. 2010. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U−Pb定年、地球化学特征及成因探讨[J]. 岩石学报, 26(3): 845−857.

    Google Scholar

    [61] 关俊雷, 耿全如, 彭智敏, 张璋, 王国芝, 陈园园. 2016. 西藏唐古拉岩浆岩带夏玛日花岗岩体的岩石学、岩石地球化学、锆石U−Pb测年及Hf同位素组成[J]. 地质学报, 90(2): 304−333. doi: 10.3969/j.issn.0001-5717.2016.02.008

    CrossRef Google Scholar

    [62] 胡志康. 2019. 藏南绿柱石的包裹体研究及成因探讨[D]. 北京: 中国地质大学, 1−78.

    Google Scholar

    [63] 黄文清, 水汀, 倪培. 2017. 云南麻栗坡祖母绿的流体包裹体研究[J]. 矿物学报, 37(1): 75−83.

    Google Scholar

    [64] 李东旭, 许顺山. 2000. 变质核杂岩的旋扭成因——滇东南老君山变质核杂岩的构造解析[J]. 地质论评, 46(2): 113−119. doi: 10.3321/j.issn:0371-5736.2000.02.001

    CrossRef Google Scholar

    [65] 李建康, 王登红, 李华芹, 陈郑辉, 梅玉萍. 2013. 云南老君山矿集区的晚侏罗世−早白垩世成矿事件[J]. 地球科学—中国地质大学学报, 38(5): 1023−1026.

    Google Scholar

    [66] 李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951−978.

    Google Scholar

    [67] 李进文, 裴荣富, 王永磊, 佘宏全, 丰成友, 郭志军, 王浩琳, 徐可. 2013. 云南都龙锡锌矿区同位素年代学研究[J]. 矿床地质, 32(4): 767−782. doi: 10.3969/j.issn.0258-7106.2013.04.010

    CrossRef Google Scholar

    [68] 李娜, 高爱红, 王小宁. 2019. 全球铍资源供需形势及建议[J]. 中国矿业, 28(4): 69−73. doi: 10.12075/j.issn.1004-4051.2019.04.028

    CrossRef Google Scholar

    [69] 李再会, 唐发伟, 林仕良, 丛峰, 谢韬, 邹光富. 2014. 滇西含绿柱石伟晶岩锆石U−Pb年代学及其地质意义[J]. 吉林大学学报(地球科学版), 44(2): 554−565.

    Google Scholar

    [70] 刘涛, 田世洪, 王登红, 张玉洁, 李贤芳, 侯可军, 杰肯•卡里木汗, 张忠利, 王永强, 赵悦, 秦燕. 2020. 新疆卡鲁安硬岩型锂矿床花岗岩与伟晶岩成因关系: 锆石U−Pb定年、Hf−O同位素和全岩地球化学证据[J]. 地质学报, 94(11): 3293−3320. doi: 10.3969/j.issn.0001-5717.2020.11.009

    CrossRef Google Scholar

    [71] 刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因[J]. 岩石学报, 30(11): 3271−3286.

    Google Scholar

    [72] 刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U−Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件[J]. 岩石学报, 23(5): 967−976. doi: 10.3321/j.issn:1000-0569.2007.05.010

    CrossRef Google Scholar

    [73] 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科学出版社, 1−419.

    Google Scholar

    [74] 潘锦波, 张达, 阙朝阳, 狄永军, 黄孔文, 毕珉烽, 徐建珍. 2015. 滇东南老城坡片麻状花岗岩地球化学特征、锆石U−Pb年龄及其意义[J]. 矿物岩石地球化学通报, 34(4): 795−803. doi: 10.3969/j.issn.1007-2802.2015.04.014

    CrossRef Google Scholar

    [75] 冉子龙, 李艳军. 2021. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 40(2): 13−23.

    Google Scholar

    [76] 王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 88(12): 2176−2191.

    Google Scholar

    [77] 吴润秋, 饶灿, 王琪, 张迪. 2020. 关键金属铍的电子探针分析[J]. 科学通报, 65(20): 2161−2168.

    Google Scholar

    [78] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [79] 吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1995. 新疆阿尔泰库威伟晶岩中绿柱石形成的物理化学条件[J]. 矿物学报, 15(3): 346−351. doi: 10.3321/j.issn:1000-4734.1995.03.018

    CrossRef Google Scholar

    [80] 徐斌. 2015. 滇东南老君山地区多期岩浆作用地球化学及成岩成矿背景研究[D]. 南京: 南京大学, 1−140.

    Google Scholar

    [81] 徐伟. 2007. 滇东南南温河花岗岩年代学和地球化学初步研究[D]. 贵阳: 中国科学院地球化学研究所.

    Google Scholar

    [82] 徐兴旺, 洪涛, 李杭, 牛磊, 柯强, 陈建中, 刘善科, 翟明国. 2020. 初论高温花岗岩−伟晶岩锂铍成矿系统: 以阿尔金中段地区为例[J]. 岩石学报, 36(12): 3572−3592. doi: 10.18654/1000-0569/2020.12.02

    CrossRef Google Scholar

    [83] 徐喆, 张福神, 张芳荣, 张勇, 周渝, 徐进, 黄成伟, 贺彬, 龙立学. 2024. 江西九岭南缘古阳寨地区铍矿化伟晶岩独居石U–Pb定年及其地质意义[J]. 东华理工大学学报(自然科学版), 47(1): 13−21.

    Google Scholar

    [84] 于萌. 2020. 汇聚大陆边缘混合岩−花岗岩−伟晶岩矿物成因研究及其对岩石成因的制约[D]. 安徽: 中国科学技术大学, 1−150.

    Google Scholar

    [85] 张传昱, 曹晓民, 李文昌, 唐忠, 余海军, 陈曹军, 程涌, 李蓉. 2021. 云南省铍矿床成矿规律初探[J]. 岩石矿物学杂志, 40(2): 452−464. doi: 10.3969/j.issn.1000-6524.2021.02.018

    CrossRef Google Scholar

    [86] 张世涛, 冯明刚, 王厚强, 吕伟, 杨明. 1999. 云南省麻栗坡县祖母绿矿区的地质特征及成因初探[J]. 地质科技情报, 18(1): 50−54.

    Google Scholar

    [87] 张振发, 张辉, 吕正航, 杨海林, 于文修. 2018. 滇东南老君山地区伟晶岩年代学研究及其地质意义[J]. 地球化学, 47(1): 33−47. doi: 10.3969/j.issn.0379-1726.2018.01.003

    CrossRef Google Scholar

    [88] 周晋捷, 吕正航, 刘堃, 唐勇, 张辉. 2024. 深熔成因伟晶岩初始岩浆中稀有金属富集特征[J]. 地质学报, 98(5): 1507−1526.

    Google Scholar

    [89] 周起凤, 秦克章, 朱丽群, 赵俊兴. 2023. 花岗伟晶岩成因探讨: 岩浆分异与深熔[J]. 地学前缘, 30(5): 26−39.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(6)

Article Metrics

Article views(7) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint