Citation: | XU Qingjun, ZHANG Zhixin, YE Fawang, ZHANG Chuan, WANG Yilong, LI Ruiwei, TIAN Cheng, LI Xinchun. 2025. Shortwave infrared spectral characteristics of white mica in hydrothermal deposits and its application in geological exploration[J]. Geology in China, 52(3): 1022-1035. doi: 10.12029/gc20230509004 |
This paper is the result of mineral exploration engineering.
White mica is widely developed in the hydrothermal deposits, and the shortwave infrared spectrum of white mica contains rich geological information, recording the hydrothermal environment it formed and its relationship with mineralization. Analyzing the variation patterns and geological influencing factors to short wave infrared spectra of white mica in hydrothermal deposits not only provides important theoretical support for the in−depth exploration and application of hyperspectral mineral mapping technology, but also further improves the identification system for exploration of altered minerals.
This paper systematically summarizes the characteristics of the short wave infrared spectral changes of white mica in hydrothermal deposits, and analyzes the relationship between the chemical composition and content of white mica, and geological factors such as hydrothermal fluid temperature, acid−base properties, pressure, and their shortwave infrared spectral characteristics.
The absorption characteristics of shortwave infrared spectra in white mica are closely related to the two main hydrogen containing groups Al−OH and H2O in its structure, and the two main characteristic absorption peaks are located near 2200 nm (main absorption peak) and 2350 nm (secondary absorption peak), respectively. Since the Al−OH characteristic absorption−peak positions of white mica are influenced by geological factors such as hydrothermal fluid temperature, pressure, acidity and alkalinity, white mica mainly undergoes Tschermak substitutionVIAl3+ + IVAl3+νIVSi4+ +VI (Fe2+, Mg2+, Mn2+), resulting in changes in the content of Si, Al, Fe, Mg, K, and Na plasma, which results in a shift in the Al−OH characteristic absorption−peak position varying between 2180 nm and 2230 nm. Geological factors, such as original rock components, other altered minerals, fluid components, rock permeability, and water/rock ratios, can also affect the changes in the wavelength of the Al−OH characteristic absorption peaks of white mica.
The relationship between the Al−OH characteristic absorption peak wavelength of white mica and mineralization may exhibit a positive or negative correlation depending on the geological environment, therefore, when delineating the hydrothermal mineralization center, it is necessary to comprehensively consider the geological characteristics of the deposits. The illite maturity or crystallinity (ISM or SWIR−IC) of white mica is consistent in different hydrothermal deposit systems, that is, the maturity values of illite near the hydrothermal mineralization center are relatively large, while the maturity values of illite far away from the hydrothermal mineralization center are relatively small. In the future, in order to promote the in−depth geological application of satellite and airborne hyperspectral remote sensing mineral mapping technology, it should strengthen the fine and quantitative satellite and airborne hyperspectral remote sensing inversion researches on spectral characteristics of white mica, and establish a demonstration of hyperspectral remote sensing inversion application for mineralization hydrothermal characteristics of typical hydrothermal deposits.
[1] | Beran A. 2002. Infrared spectroscopy of micas[J]. Reviews in Mineralogy and Geochemistry, 46: 351−369. doi: 10.2138/rmg.2002.46.07 |
[2] | Buschette M J, Piercey S J. 2016. Hydrothermal alteration and litho–geochemistry of the Boundary volcanogenic massive sulphide deposit, central Newfoundland, Canada[J]. Canadian Journal of Earth Sciences, 53: 1−22. doi: 10.1139/cjes-2015-0107 |
[3] | Cao Ye, Li Shengrong, Shen Junfeng, Yao Meijuan, Li Qingkang, Mao Fulong. 2008. Application of portable infrared mineral analyzer (PIMA) in the Qianhe gold mine, Henan Province[J]. Geology and Exploration, 44(2): 82−86 (in Chinese with English abstract). |
[4] | Carsten L. 2011. Short wave infrared functional groups of rock forming minerals[J]. CSIRO Earth Science and Resource Engineering, Kensington, 1−14. |
[5] | Cassady L H, Brian M, Gregory M J. 2013. Shortwave infrared spectral analysis of hydrothermal alteration associated with the pebble porphyry copper–gold–molybdenum deposit, Iliamna, Alaska[J]. Economic Geology, 108: 483−494. doi: 10.2113/econgeo.108.3.483 |
[6] | Chang Z S, Hedenquist J W, White N C, Cooke D R, Roach M, Deyell C L, Garcia J J, Gemmel J B, McKnight S, Cuison L A. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion–centered Cu–Au district, Luzon, Philippines[J]. Economic Geology, 106(8): 1365−1398. doi: 10.2113/econgeo.106.8.1365 |
[7] | Chen Huayong, Xiao Bing, Zhang Shitao. 2021. Identification System for Exploration of Altered Minerals[M]. Beijing: Science Press (in Chinese). |
[8] | Chen Hongzhi, Zeng Zailin. 2014. Genetic Type of Deposit[M]. Beijing: Geological Publishing House. |
[9] | Chen Long. 2017. Application of Short Wavelength Infrared (SWIR) Technique and Geochemical Prospecting Indications Inexploration of Duobaoshan porphyry Cu Deposit inHeilongjiang Province, China[D]. Beijing: China University of Geosciences (Beijing), 1−156 (in Chinese). |
[10] | Clark R N, King T V V, Klejwa M, Swayze G A, Vergo N. 1990. High spectral resolution reflectance spectroscopy of minerals[J]. Journal of Geophysical Research, 95: 12653−12680. doi: 10.1029/JB095iB08p12653 |
[11] | Cloutier J, Piercey S J. 2020. Tracing mineralogy and alteration intensity using the spectral alteration index and depth ratios at the northwest zone of the Lemarchant volcanogenic massive sulfide deposit, Newfoundland, Canada[J]. Economic Geology, 115(5): 1055−1078. doi: 10.5382/econgeo.4723 |
[12] | Doublier M P, Roache T, Potel S. 2015. Short–wavelength infrared spectroscopy: A new petrological tool in low–grade to very low–grade pelites[J]. Geology, 38(11): 1031−1034. |
[13] | Du Xiaodi, Tang Yue, Liu Dechang, Li Zhao, Wang Haida. 2015. The application of aerial hyperspectral technology to the geological survey for oil and gas in the East Junggar Basin[J]. Geology in China, 42(1): 275−287 (in Chinese with English abstract). |
[14] | Dufréchou G, Grandjean G, Bourguignon A. 2014. Geometrical analysis of laboratory soil spectra in the short−wave infrared domain: Clay composition and estimation of the swelling potential[J]. Geoderma, 243/244: 92−107. |
[15] | Duke E F. 1994. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remotesensing[J]. Geology, 22(7): 621−624. |
[16] | Frey M. 1987. Very low–grade metamorphism ofclastic sedimentary rocks[C]//Frey M. Lowtemperature Metamorphism. New York, Chapmam and Hall, 9–58. |
[17] | Gan Fuping, Wang Runsheng, Ma Ainai. 2003. Spectral identification tree(sit) for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 10(2): 445−454 (in Chinese with English abstract). |
[18] | Guo N, Cudahy T, Tang J X, Tong Q X. 2019. Mapping white mica alteration associated with the Jiama porphyry–skarn Cu deposit, central Tibet using field SWIR spectrometry[J]. Ore Geology Reviews, 108: 147−157. |
[19] | Guo Na, Guo Ke, Zhang Tingting, Liu Tinghan, Hu Bin, Wang Zhongwu. 2012. Hydrothermal alteration distribution model of the Jiama(Gyama) copper–polymetallic deposit based on shortwave technique[J]. Acta Geoscientica Sinica, 33(4): 641−653 (in Chinese with English abstract). |
[20] | Guo Na, Shi Weixin, Huang Yiru, Zheng Long, Tang Nan, Wang Cheng, Fu Yuan. 2018. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 37(2/3): 446−457 (in Chinese with English abstract). |
[21] | Halley S, Dilles J H, Tosdal R M. 2015. Footprints: hydrothermal alteration and geochemical dispersion around porphyry copper deposits[J]. Society of Economic Geologists Newsletter, 100(1): 12−17. |
[22] | Herrmann W, Blake M, Doyle M. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway–Reward, Queensland[J]. Economic Geology, 96: 939−955. |
[23] | Hou Jianpeng, Xu Qingjun, Ye Fawang, Zhang Chuan, Meng Shu. 2018. Alteration zonation of drilling cores in the Baiyanghe uranium deposit of Xinjiang and its geological implications[J]. Geology in China, 45(4): 839−850 (in Chinese with English abstract). |
[24] | Huang Jianhan, Chen Huayong, Han Jinsheng, Lu Wanjian, Zhang Weifeng. 2016. Spacial and temporal characteristics of mineralization and alteration zonation of the Honghai VMS Cu–Zn deposit in the Kalatag District, East Tianshan, NW China[J]. Geochimica, 45(6): 582−600 (in Chinese with English abstract). |
[25] | Jones S, Herrmann W, Gemmell J B. 2005. Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Myra Falls volcanic–hosted massive sulfide camp, Vancouver Island, British Columbia, Canada[J]. Economic Geology, 100(2): 273−294. doi: 10.2113/gsecongeo.100.2.273 |
[26] | Karabinos P. 1981. Deformation and Metamorphism of Cambrian and Precambrian Rocks on the East Limb of the Green Mountains Anticlinorium near Jamaica. Vermont (Doctoral thesis) [D]. Maryland: The Johns Hopkins University, 1−196. |
[27] | Kübler B. 1967. La cristallinitéd’illite et les zonestout à fait supérieures de métamorphisme, in Schaer, J. P. , ed., Étages tectoniques [J]. Colloquede Neuchâtel, 1966, 105–122. |
[28] | Laakso K, Peter J M, Rivard B. 2016. Short–wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn–Cu–Pb–Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring[J]. Economic Geology, 111(5): 1223−1239. doi: 10.2113/econgeo.111.5.1223 |
[29] | Laakso K, Rivard B, Peter J M. 2015. Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian Arctic: Recognition and characterization of volcanogenic massive sulfide–associated hydrothermal alteration in the Izok Lake deposit area, Nunavut, Canada[J]. Economic Geology, 110: 925−941. doi: 10.2113/econgeo.110.4.925 |
[30] | Lee D E, Loenen R E V, Brandt E L M, Gleason J D. 1987. Chemical and stable-isotope data for micas from metaclastic rocks of eastern White Pine County, Nevada[J]. Geological Survey Bulletin, 1694: 41−53. |
[31] | Leng C B, Wang D Z, Yu H J, Tian F, Zhang X C. 2024. Mapping hydrothermal alteration zones with short wavelength infrared (SWIR) spectra and magnetic susceptibility at the Pulang porphyry Cu−Au deposit, Yunnan, SW China[J]. Mineralium Deposita, 59(4): 699. |
[32] | Lian Yunchang, Zhang Ge, Yuan Chunhua, Yang Kai. 2005. Application of SWIR reflectance spectroscopy in mapping of hydrothermal alteration minerals: A case study of the Tuwu porphyry copper prospect, Xinjiang[J]. Geology in China, 32(3): 483−495 (in Chinese with English abstract). |
[33] | Liang Shuneng, Gan Fuping, Yan Bokun, Wang Runsheng, Yang Summing, Zhang Zhijun. 2012. Relationship between composition and spectral feature of muscovite[J]. Remote Sensing for Land & Resources, (3): 111−115 (in Chinese with English abstract). |
[34] | Liu Bihong, Liu He. 2016. Short–wave infrared spectroscopy study on wall rock alteration of the Ganzhuershande Silver–Lead–Zinc deposit in Inner Mongolia[J]. Geology and Exploration, 52(4): 703−711 (in Chinese with English abstract). |
[35] | Liu Dechang, Tian Feng, Qiu Junting, Ye Fawang, Yan Bokun, Sun Yu, Wang Zitao. 2017. Application of hyperspectral remote sensing in solid ore exploration in the Liuyuan–Fangshankouarea[J]. Acta Geologica Sinica, 91(12): 2781–2795 (in Chinese with English abstract). |
[36] | Liu Shengwei, Gan Fuping, Yan Bokun, Yang Suming, Wang Runsheng, Wang Qinghua, Tang Panke. 2006. Application of the imaging spectroscopic technique in mineral identification and mapping[J]. Geology in China, 33(1): 178−186 (in Chinese with English abstract). |
[37] | Lu Yan. 2018. Applications of Hyperspectral Mineral Mapping Inmineral and Petroleum Exploration[D]. Beijing: China University of Geosciences (Beijing), 1–106 (in Chinese). |
[38] | Mauger A J, Ehrig K, Kontonikas–Charos A, Kamenetsky V S, Ehrig K. 2016. Alteration at the Olympic Dam IOCG–U deposit: Insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy[J]. Australian Journal of Earth Sciences, 63(8): 959−972. |
[39] | Post J L, Noble P N. 1993. The near–infrared combination and frequencies of dioctahedral smectites, micas, and illite[J]. Clays and Clay Minerals, 41(6): 639−644. doi: 10.1346/CCMN.1993.0410601 |
[40] | Scott H, Richard M T. 2015. Footprints: Hydrothermal alteration andgeochemical dispersion around porphyry copper deposits[J]. SEG newsletter, 100: 12−17. |
[41] | Swayze G A. 1999. The Hydrothermal and Structural History of the Cu Prite Mining District, Southwest Nevada: An Integrated Geological and Geophysical Approach [D]. University of Colorado at Boulder. Colorado, 430. |
[42] | Tappert M C, Rivard B, Giles D, Tappert R, Mauger A. 2011. Automated drill core logging using visible and near–infrared reflectance spectroscopy: A case study from the Olympic Dam IOCG deposit, South Australia[J]. Economic Geology, 106: 289−296. doi: 10.2113/econgeo.106.2.289 |
[43] | Tappert M C, Rivard B, Giles D, Tappert R, Mauger A. 2013. The mineral chemistry, near–infrared, and mid–infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J]. Ore Geology Reviews, 53: 26−38. doi: 10.1016/j.oregeorev.2012.12.006 |
[44] | Travers S J, Wilson C J L. 2015. Reflectance spectroscopy and alteration assemblages at the Leven Star gold deposit, Victoria, Australia[J]. Australian Journal of Earth Sciences, 62(7): 873−882. doi: 10.1080/08120099.2015.1114525 |
[45] | Uribe–Mogollon C, Maher K. 2018. White mica geochemistry of the copper cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration[J]. Economic Geology, 113(6): 1269−1295. doi: 10.5382/econgeo.2018.4591 |
[46] | Uribe–Mogollon C, Maher K. 2020. White mica geochemistry: Discriminating between barren and mineralized porphyry systems[J]. Economic Geology, 115(2): 325−354. doi: 10.5382/econgeo.4706 |
[47] | USGS. 1999. USGS spectroscopy Lab[R]. U. S. Geological Survey, New York. |
[48] | van der Meer F. 2004. Analysis of spectral absorption features in hyperspectral imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 5: 55−68. |
[49] | van Ruitenbeek F J A, Cudahy T, Hale M, Hale, M, van der Meer F. 2005. Tracing fluid pathways in fossil hydrothermal systems with near–infraredspectroscopy[J]. Geology, 33: 597−600. |
[50] | Velde B. 1985. Clay minerals: A physico–chemical explanation of their occurrence: Developments in sedimentology, Amsterdam [J]. Elsevier, 427. |
[51] | Wang Jinrong, Lü Xinbiao, Huang Zhaoqiang, Sun He, Qin Zhiping, Zou Ruixin, Fan Xinglu, Huang Xiaoyu. 2017. A study of near–infrared spectroscopy on altered minerals in the Nuri copper–polymetallic deposit, Tibet[J]. Geology and Exploration, 53(1): 141−150 (in Chinese with English abstract). |
[52] | Wang L, Percival J B, Hedenquist J W, Hattori H K, Qin K Z. 2021. Alteration mineralogy of the Zhengguang epithermal Au–Zn deposit, Northeast China: Interpretation of shortwave infrared analyses during mineral exploration and assessment[J]. Economic Geology, 116(2): 389−406. doi: 10.5382/econgeo.4792 |
[53] | Wang R, Tom C, Carsten L, John L W, Adam B, Mei Y, Carl Y, Tony J R, Andrew J, Malcolm R, Andrew B, Jamie L. 2017. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, Western Australia[J]. Economic Geology, 112: 1153−1176. doi: 10.5382/econgeo.2017.4505 |
[54] | Wang Runsheng, Gan Fuping, Yan Bokun, Yang Suming, Wang Qinghua. 2010. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land & Resources, 88(1): 1−12 (in Chinese with English abstract). |
[55] | Xiu Lianchun, Zheng Zhizhong, Yu Zhengkui, Huang Junjie, Chen Chunxia, Yin Liang, Wang, Mijian, Zhang Qiuning, Huang Bin, Xiu Tiejun, Wu Ping. 2009. Study on method of measuring altered minerals in rocks with near−infrared spectrometer[J]. Rock and Mineral Analysis, 28(6): 519−523.(in Chinese with English Abstract). |
[56] | Xu Chao, Chen Huayong, Noel White, Qi Jinping, Zhang Lejun, Zhang Shuang, Duan Gan. 2017. Alteration and mineralization of Xinan Cu–Mo ore deposit in Zijinshan ore field, Fujian Province, and application of short wavelength infra–red technology(SWIR) to exploration[J]. Mineral Deposits, 36(5): 1013−1038 (in Chinese with English abstract). |
[57] | Xu Q J, Ye F W, Liu S F, Zhang Z X, Zhang C. 2017. Hyperspectral alteration information from drill cores and deep uranium exploration in the Baiyanghe uranium deposit in the Xuemisitan area, Xinjiang, China[J]. Remote Sensing, 9: 451. doi: 10.3390/rs9050451 |
[58] | Yang K, Browne P R L, Huntington J F, Walshe J L. 2001. Characterising the hydrothermal alteration of the Broadlands–Ohaaki geothermal system, New Zealand, using shortwaveinfrared spectroscopy[J]. Journal of Volcanology and Geothermal Research, 106: 53−65. doi: 10.1016/S0377-0273(00)00264-X |
[59] | Yang K, Huntington J F, Gemmell J B, Scott K M. 2011. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy[J]. Journal of Geochemical Exploring, 108: 143−156. |
[60] | Yang K, Lian C, Huntington J F, Peng Q, Wang Q. 2005. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu–Au deposit, Xinjiang, China[J]. Mineralium Deposita, 40(3): 324−336. doi: 10.1007/s00126-005-0479-7 |
[61] | Yang Zhiming, Hou Zengqian, Yang Zhusen, Qu Huanchun, Li Zhenqing, Liu Yunfei. 2012. Application of short wavelength infrared(SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Tibet[J]. Mineral Deposits, 31(4): 699−717 (in Chinese with English abstract). |
[62] | Ye Fawang, Meng Shu, Zhang Chuan, Xu Qingjun, Liu Hongcheng, Wu Ding. 2018. Mineragenystudy of high–Al, medium–Al, and low–Al sericites identified by airborne hyperspectral remote sensing technology[J]. Acta Geologica Sinica, 92(2): 395−412 (in Chinese with English abstract). |
[63] | Zhang C, Liu S F, Ye F W, Qiu J T, Zhang Z X, Wang J G. 2019. Three–dimensional modeling of alteration information with hyperspectral core imaging and application to uranium exploration in the Heyuanbei uranium deposit, Xiangshan, Jiangxi, China[J]. Journal of Applied Remote Sensing, 13(1): 014524. |
[64] | Zhang Chuan, Ye Fawang, Xu Qingjun, Liu Hongcheng, Meng Shu. 2017. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district, Xinjiang[J]. Remote Sensing for Land & Resources, 29(2): 160−166 (in Chinese with English abstract). |
[65] | Zhang Chuan. 2020. Core Imaging Spectroscopy and Three–dimensional Alteration Modeling for Uranium Deposit in Xiangshan Jiangxi [D]. Beijing: China University of Geosciences (Beijing), 1–179 (in Chinese). |
[66] | Zhang Ge, Lian Yunchang, Wang Runsheng. 2005. Application of the portable infrared mineral analyser (PIMA) in mineral mapping in the Qulong copper prospect, Mozhugongka County Tibet[J]. Regional Geology of China, 24(5): 480−484 (in Chinese with English abstract). |
[67] | 曹烨, 李胜荣, 申俊峰, 要梅娟, 李庆康, 毛付龙. 2008. 便携式短波红外光谱矿物测量仪 (PIMA)在河南前河金矿热液蚀变研究中的应用[J]. 地质与勘探, 44(2): 82−86. |
[68] | 陈华勇, 肖兵, 张世涛. 2021. 蚀变矿物勘查标识体系[M]. 北京: 科学出版社. |
[69] | 陈龙. 2017. 黑龙江多宝山斑岩铜金矿短波红外光谱技术找矿应用与地球化学找矿标志[D]. 北京: 中国地质大学(北京), 1−156. |
[70] | 陈洪治, 曾载淋. 2014. 矿床成因类型[M]. 北京: 地质出版社. |
[71] | 杜小弟, 唐跃, 刘德长, 李昭, 王海达. 2015. 航空高光谱探测技术在准噶尔盆地东部地区油气调查中的应用[J]. 中国地质, 42(1): 275−287. doi: 10.3969/j.issn.1000-3657.2015.01.022 |
[72] | 甘甫平, 王润生, 马霭乃. 2003. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 10(2): 445−454. doi: 10.3321/j.issn:1005-2321.2003.02.024 |
[73] | 郭娜, 郭科, 张婷婷, 刘廷晗, 胡斌, 汪重午. 2012. 基于短波红外勘查技术的西藏甲玛铜多金属矿热液蚀变矿物分布模型研究[J]. 地球学报, 33(4): 641−653. doi: 10.3975/cagsb.2012.04.24 |
[74] | 郭娜, 史维鑫, 黄一入, 郑龙, 唐楠, 王成, 伏媛. 2018. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图–勘查模型构建[J]. 地质通报, 37(2/3): 446−457. |
[75] | 侯腱膨, 徐清俊, 叶发旺, 张川, 孟树. 2018. 新疆白杨河铀矿床钻孔岩芯蚀变分带特征及地质意义[J]. 中国地质, 45(4): 839−850. doi: 10.12029/gc20180413 |
[76] | 黄健瀚, 陈华勇, 韩金生, 陆万俭, 张维峰. 2016. 新疆东天山卡拉塔格红海VMS铜锌矿床蚀变与矿化时空分布特征[J]. 地球化学, 45(6): 582−600. doi: 10.3969/j.issn.0379-1726.2016.06.003 |
[77] | 连云长, 章革, 元春华, 杨凯. 2005. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 32(3): 483−495. |
[78] | 梁树能, 甘甫平, 闫柏琨, 王润生, 杨苏明, 张志军. 2012. 白云母矿物成分与光谱特征的关系研究[J]. 国土资源遥感, (3): 111−115. |
[79] | 刘碧洪, 刘鹤. 2016. 内蒙古干珠尔善德银铅锌矿床的短波红外光谱研究[J]. 地质与勘探, 52(4): 703−711. |
[80] | 刘德长, 田丰, 邱骏挺, 叶发旺, 闫珀琨, 孙雨, 王子涛. 2017. 柳园–方山口地区航空高光谱遥感固体矿产探测及找矿效果[J]. 地质学报, 91(12): 2781−2795. doi: 10.3969/j.issn.0001-5717.2017.12.014 |
[81] | 刘圣伟, 甘甫平, 闫柏琨, 杨苏明, 王润生, 王青华, 唐攀科. 2006. 成像光谱技术在典型蚀变矿物识别和填图中的应用[J]. 中国地质, 33(1): 178−186. doi: 10.3969/j.issn.1000-3657.2006.01.020 |
[82] | 卢燕. 2018. 高光谱矿物填图技术在金属矿产和油气勘查中的应用研究 [D]. 北京: 中国地质大学(北京), 1–106. |
[83] | 王锦荣, 吕新彪, 黄照强, 孙赫, 秦志平, 邹睿馨, 范兴炉, 黄啸宇. 2017. 西藏努日铜多金属矿床蚀变矿物的近红外光谱学研究[J]. 地质与勘探, 53(1): 141−150. doi: 10.12134/j.dzykt.2017.01.014 |
[84] | 王润生, 甘甫平, 闫柏琨, 杨苏明, 王青华. 2010. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 88(1): 1−12. |
[85] | 修连存, 郑志忠, 俞正奎, 黄俊杰, 陈春霞, 殷靓, 王弥建, 张秋宁, 黄宾, 修铁军, 吴萍. 2009. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 28(6): 519−523. |
[86] | 许超, 陈华勇, White N, 祁进平, 张乐骏, 张爽, 段甘. 2017. 福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究[J]. 矿床地质, 36(5): 1013−1038. |
[87] | 杨志明, 候增谦, 杨竹森, 曲焕春, 李振清, 刘云飞. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 31(4): 699−717. doi: 10.3969/j.issn.0258-7106.2012.04.004 |
[88] | 叶发旺, 孟树, 张川, 徐清俊, 刘洪成, 武鼎. 2018. 航空高光谱识别的高、中、低铝绢云母矿物成因学研究[J]. 地质学报, 92(2): 395−412. doi: 10.3969/j.issn.0001-5717.2018.02.013 |
[89] | 张川, 叶发旺, 徐清俊, 刘洪成, 孟树. 2017. 新疆白杨河铀铍矿区航空高光谱矿物填图及蚀变特征分析[J]. 国土资源遥感, 29(2): 160−166. |
[90] | 张川. 2020. 岩心成像光谱技术与江西相山铀相山铀矿蚀变三维建模 [D]. 北京: 中国地质大学(北京), 1–179. |
[91] | 章革, 连云长, 王润生. 2005. 便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J]. 地质通报, 24(5): 480−484. doi: 10.3969/j.issn.1671-2552.2005.05.015 |
Short wave infrared spectroscopy curves of white mica minerals (USGS, 1999)
Spectra of white mica
Ternary diagram of muscovite, Mg-celadonite and Fe-celadonite (after Tappert et al., 2013)
Four replacement processes of white mica composition changes (after Uribe−Mogollon and Maher, 2018)