2025 Vol. 52, No. 3
Article Contents

LIU Yuegao, ZHANG Jiangwei, FENG Zhixing, YANG Shunlong, WANG Yizhong, LI Jiqing, ZHAO Zhiyi, WANG Zhian, LI Shulei, CHEN Zhengguo, WANG Houfang. 2025. Exploration and research progress of magmatic copper−nickel−cobalt sulfide deposits in the north−eastern margin of the Qinghai−Tibetan Plateau[J]. Geology in China, 52(3): 972-1001. doi: 10.12029/gc20230128003
Citation: LIU Yuegao, ZHANG Jiangwei, FENG Zhixing, YANG Shunlong, WANG Yizhong, LI Jiqing, ZHAO Zhiyi, WANG Zhian, LI Shulei, CHEN Zhengguo, WANG Houfang. 2025. Exploration and research progress of magmatic copper−nickel−cobalt sulfide deposits in the north−eastern margin of the Qinghai−Tibetan Plateau[J]. Geology in China, 52(3): 972-1001. doi: 10.12029/gc20230128003

Exploration and research progress of magmatic copper−nickel−cobalt sulfide deposits in the north−eastern margin of the Qinghai−Tibetan Plateau

    Fund Project: Supported by the projects of Sanya Yazhou Bay Science and Technology City of Hainan Province (No.2021CXLH0027) and National Key Research and Development Project (No.2019YFC0605201).
More Information
  • Author Bio: LIU Yuegao, male, born in 1987, associate researcher, mainly engaged in the study of the location prediction of ore deposit, high T−P experiments (experimental petrology), and comparison and prediction of sea and land minerals resources; E−mail: liuyg@idsse.ac.cn
  • Corresponding author: ZHANG Jiangwei, male, born in 1984, senior engineer, mainly engaged in the study of the location prediction of ore deposit; E−mail: 63290005@qq.com
  • This paper is the result of mineral exploration engineering.

    Objective

    To improve the supply security of Cu−Ni−Co resources in China, it is necessary to sort out the mineralization regularity and prospecting indicators of the magmatic copper−nickel−cobalt sulfide deposit in the Phanerozoic in the Eastern Kunlun orogenic belt on the northern margin of the Qinghai−Tibet Plateau.

    Methods

    To establish the exploration model, this paper analyzed the geological characteristics and genesis of representative magmatic copper-nickel sulfide deposits, and the geological, geochronology, geochemistry, and geophysical characteristics of five stages mafic−ultramafic complexes including the Late Ordovician−Early Silurian, the Middle Silurian−Middle Devonian, the Early Carboniferous, the Middle Permian−Early Triassic, and the Middle−Late Triassic are summarized.

    Results

    There are two stages of island arc mafic or basic−ultramafic rocks in the East Kunlun during the Phanerozoic: (1) Mafic rocks formed in the Late Ordovician−Early Silurian during the northward subduction of the Proto−Tethys Ocean; (2) Mafic−ultramafic rocks formed due to the subduction of the Paleo−Tethys Ocean in the Middle Permian−Early Triassic. Correspondingly, there are two stages of post−collision extensional mafic−ultramafic rocks: From Middle−Late Silurian to Early−Middle Devonian and Middle−Late Triassic. The pyroxenite mantle may be the source of some magmatic nickel deposits in the East Kunlun, and the plate break−off model can explain the phenomenon that the mineralization age of magmatic copper−nickel−cobalt sulfide deposits is nearly same to the high−pressure−ultrahigh−pressure retrograde metamorphism age. Regarding the sulfide saturation mechanism of mantle−derived magma, the types of favorable crustal contamination and harmful crustal contamination were roughly identified, and the influence of crystal differentiation on sulfide saturation was analyzed. The preferred location of ore bodies was proposed, and the representative differences between ore−forming and non−ore−forming rock bodies in geological structure, rock type, mineralogy, age, alteration type, and surrounding rock types were compared.

    Conclusions

    Finally, this paper established a geological−geochemical−geophysical comprehensive information exploration model for magmatic copper−nickel−cobalt sulfide deposits in the East Kunlun orogenic belt.

  • 加载中
  • [1] Ao Cong, Sun Fengyue, Li Bile, Wang Guan, Li Liang, Li Shijin, Zhao Junwei. 2015. U−Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, Eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 39(6): 1176−1184 (in Chinese with English abstract).

    Google Scholar

    [2] Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine−orthopyroxene−spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 107(1): 27−40. doi: 10.1007/BF00311183

    CrossRef Google Scholar

    [3] Barnes S J, Godel B, Gürer D, Brenan J M, Robertson J, Paterson D. 2013. Sulfide−Olivine Fe−Ni exchange and the origin of anomalously Ni rich magmatic sulfides[J]. Economic Geology, 108(8): 1971−1982. doi: 10.2113/econgeo.108.8.1971

    CrossRef Google Scholar

    [4] Bi H Z, Song S G, Dong J L, Yang L M, Qi S S, Allen M B. 2018. First discovery of coesite in eclogite from East Kunlun, northwest China[J]. Science Bulletin, 63(23): 1536−1538. doi: 10.1016/j.scib.2018.11.011

    CrossRef Google Scholar

    [5] Bian Qiantao, Luo Xiaoquan, Li Hongshen, Chen Haihong, Zhao Dasheng, Li Dihui. 1999. Discovery of Early Paleozoic and Early Carboniferous−Early Permian ophiolites in the A'nyemaqen, Qinghai province, China[J]. Scientia Geologica Sinica, 34(4): 523−524 (in Chinese with English abstract).

    Google Scholar

    [6] Chen Jing, Xie Zhiyong, Li Bin, Tan Shengxiang, Ren Hua, Zhang Qimei, Li Yan. 2013. Petrogenesis of Devonian intrusive rocks in Lalingzaohuo area, Eastern Kunlun, and its geological significance[J]. Journal of Mineralogy & Petrology, 33(3): 26−34 (in Chinese with English abstract).

    Google Scholar

    [7] Chen L, Song X, Hu R, Yu S, Yi J, Kang J, Huang K. 2021. Mg–Sr–Nd isotopic insights into petrogenesis of the Xiarihamu mafic–ultramafic intrusion, northern Tibetan plateau, China[J]. Journal of Petrology, 62(2): egaa113. doi: 10.1093/petrology/egaa113

    CrossRef Google Scholar

    [8] Dong Y, He D, Sun S, Liu X, Zhou X, Zhang F, Yang Z, Cheng B, Zhao G, Li J. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    [9] Du W, Jiang C, Tang Z, Xia M, Xia Z, Ling J, Zhou W, Wang B. 2017. Discovery of the Dagele eclogite in East Kunlun, Western China and its zircon SHRIMP U−Pb ages: New constrains on the Central Kunlun Suture Zone[J]. Acta Geologica Sinica (English Edition), 91(3): 1153−1154. doi: 10.1111/1755-6724.13339

    CrossRef Google Scholar

    [10] Du Wei, Jiang Changyi, Ling Jinlan, Zhou Wei, Xia Mingzhe, Xia Zhaode. 2017. Zircon SHRIMP U−Pb geochronology, geochemistry and implications of No. II intrusion in Xiarihamu Cu−Ni deposit, East Kunlun Mountains[J]. Mineral Deposits, 36(05): 1185−1196 (in Chinese with English abstract).

    Google Scholar

    [11] Duan Jianhua, Zhang Zhaowei, Qi Changwei, Wang Yalei, Qian Bing, Zhang Jiangwei, Mi Jiaru, You Minxin, Liu Yuegao. 2017. Formation age of the gabbro in No. II intrusion at the Xiarihamu magmatic Ni−Cu sulfide deposit in the East Kunlun orogenic belt and its prospecting potential[J]. Geology and Exploration, 53(05): 880−888 (in Chinese with English abstract).

    Google Scholar

    [12] Duan Xuepeng, Meng Fancong, Fan Yazhou. 2019. The constraints of kaersutite and pargasite on metallogeny in Xiarihamu mafic−ultramafic intrusion, East Kunlun[J]. Acta Petrologica Sinica, 35(6): 1819−1832 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.11

    CrossRef Google Scholar

    [13] Enami M. 1990. Quartz pseudomorph after coesite in eclogites from Shandong Province, east China[J]. American Mineralogist, 75(3): 381−386.

    Google Scholar

    [14] Fan D, Tan S, Wang X, Qin Z, Zhao J, Yang L, Zhang W, Li X, Yan Z, Yang G, Li L. 2023. Geochronology, petrogenesis and geodynamic setting of the Kaimuqi mafic–ultramafic and dioritic intrusions in the Eastern Kunlun Orogen, NW China[J]. Minerals, 13(1): 73. doi: 10.3390/min13010073

    CrossRef Google Scholar

    [15] Feng Cengyou, Wang Song, Li Guochen, Ma Shengchao, Li Dongsheng. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678 (in Chinese with English abstract).

    Google Scholar

    [16] Fu Piaoer. 2012. Ore Genesis of Late−Paleozoic Cu−Ni Sulfide Deposit in North Xinjiang, China: Constraints from Geochemical Data and Volatile Compositions[D]. Lanzhou: Lanzhou University, 87 (in Chinese with English abstract).

    Google Scholar

    [17] Fu Y Z, Peng Z M, Wang G Z, Hu J F, Guan J L, Zhang J, Zhang Z, Liu Y H, Hao Z. 2021. Petrology and metamorphism of glaucophane eclogites in Changning−Menglian suture zone, Bangbing area, southeast Tibetan Plateau: An evidence for Paleo−Tethyan subduction[J]. China Geology, 49(1): 111−125.

    Google Scholar

    [18] Gan Caihong. 2014. Petrology, Geochemistry, U−Pb Dating and Hf Isotopic Composition of Zircons in Igneous Rocks from East Kunlun orogen, Qinghai[D]. Beijing: China University of Geosciences, 1−83 (in Chinese with English abstract).

    Google Scholar

    [19] Gao X, Thiemens M H. 1993. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites[J]. Geochimica et Cosmochimica Acta, 57(13): 3171−3176. doi: 10.1016/0016-7037(93)90301-C

    CrossRef Google Scholar

    [20] Guo Xianzheng, Jia Qunzi, Li Jinchao, Kong Huilei, Yao Xuegang, Mi Jiaru, Qian Bing, Wang Yu. 2018. Zircon U−Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High−Pressure Metamorphic Belt[J]. Earth Science, 43(12): 4300−4318 (in Chinese with English abstract).

    Google Scholar

    [21] Guo Feng, Wang Panxi, Wang Zhenning, Feng Naiqi. 2020. Geochemical and geochronology characteristics of retrograde eclogite in Xiarihamu area, East Kunlun Mountains, and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 40(4): 45−55 (in Chinese with English abstract).

    Google Scholar

    [22] He Shuyue, Sun Feifei, Li Yunping, Li Dongsheng, Yu Miao, Qian Ye, Liu Yongle, Bai Guolong, Zhao Mengqi, Zhang Peng, Zhang Aikui, Ma Shenglong, Liu Guoyan, Liu Zhigang. 2017. Geochemical and geochronological significance of the Binggounan garbbro in the Qiman Tage Region, Qinghai Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582−592 (in Chinese with English abstract).

    Google Scholar

    [23] Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu, Xu Bo, Wang Changming, Zhang Hongrui. 2020. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 94(10): 2797−2815 (in Chinese with English abstract).

    Google Scholar

    [24] Hu C, Li M, Feng C, Zha X, Meng J. 2023. Petrogenesis and metallogenic potential of the early devonian Yugusayi mafic−ultramafic complex in Qimantagh, East Kunlun orogeic belt[J]. International Geology Review, 65(7): 1056−1076.

    Google Scholar

    [25] Huang Jiqing. 1984. New researches on the tectonic characteristics of China[J]. Bulletin of the Chinese Academy of Geological Sciences, (9): 5−18 (in Chinese with English abstract).

    Google Scholar

    [26] Huang Xuzhao, Fan Zhengguo, He Jingzi, Ge Tengfei, Wang Sixun, Man Yi, Wang Peng, Li Jun, Wang Heng. 2022. A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper−nickel deposits[J]. Geophysical and Geochemical Exploration, 46(3): 597−607 (in Chinese with English abstract).

    Google Scholar

    [27] Jia L, Chen Y, Su B, Mao Q, Zhang D. 2022a. Oxygen−fugacity evolution of magmatic Ni−Cu sulfide deposits in East Kunlun: Insights from Cr−spinel composition[J]. American Mineralogist, 107(10): 1968−1981. doi: 10.2138/am-2022-8050

    CrossRef Google Scholar

    [28] Jia L, Chen Y, Mao Q, Zhang D, Yuan J, Li X, Wu S, Zhang D. 2022b. Simultaneous in−situ determination of major, trace elements and Fe3+/∑ Fe in spinel using EPMA[J]. Atomic Spectroscopy, 43(1): 42−52.

    Google Scholar

    [29] Jia L, Meng F, Feng H. 2018. The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai−Tibet Plateau—crustal relics of the Paleo−Tethys ocean[J]. Mineralogy and Petrology, 112(3): 317−339. doi: 10.1007/s00710-017-0544-9

    CrossRef Google Scholar

    [30] Jia L H, Mao J W, Li B L, Zhang D Y, Sun T T. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic–ultramafic intrusion, NW China: Implications for the tectonic setting and magmatic Ni−Cu mineralization in the East Kunlun Orogenic Belt[J]. International Geology Review, 63(5): 549−570. doi: 10.1080/00206814.2020.1722969

    CrossRef Google Scholar

    [31] Jia Lihui, Meng Fancong, Feng Huibin. 2014. Fluid activity during eclogite−facies peak metamorphism: Evidence from a quartz vein in eclogite in the East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(8): 2339−2350 (in Chinese with English abstract).

    Google Scholar

    [32] Jiang Changyi, Ling Jinlan, Zhou Wei, Du Wei, Wang Zixi, Fan Yazhou, Song Yanfang, Song Zhongbao. 2015. Petrogenesis of the Xiarihamu Nibearing layered mafic−ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment[J]. Acta Petrological Sinica, 31(4): 1117−1136 (in Chinese with English abstract).

    Google Scholar

    [33] Jiang Chunfa. 2004. An introduction to opening−closing tectonics[J]. Geological Bulletin of China, 23(3): 200−207 (in Chinese with English abstract).

    Google Scholar

    [34] Jiang J, Zhu Y. 2017. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T–pH–fO2fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Reviews, 91: 216−235. doi: 10.1016/j.oregeorev.2017.10.005

    CrossRef Google Scholar

    [35] Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 37(5): 415−418. doi: 10.1130/G25527A.1

    CrossRef Google Scholar

    [36] Kong Huilei, Li Jinchao, Guo Xianzheng, Yao Xuegang, Jia Qunzi. 2019a. The discovery of Early Devonian pyroxene peridotite from the Xiwangmu magmatic Ni−Cu sulfide ore spot in East Kunlun Mountains[J]. Geology in China, 46(1): 205−206 (in Chinese with English abstract).

    Google Scholar

    [37] Kong Huilei, Li Jinchao, Li Yazhi, Jia QunZi, Guo Xianzheng. 2017. Zircon LA−ICP−MS U−Pb dating and its geological significance of the Jiadang gabbro in the eastern section of East Kunlun, Qinghai Province[J]. Geology and Exploration, 53(5): 889−902 (in Chinese with English abstract).

    Google Scholar

    [38] Kong Huilei, Li Jinchao, Li Yazhi, Jia Qunzi, Guo Xianzheng, Zhang Bin. 2018. Zircon U−Pb dating and geochemistry of the Jiadang olivine gabbro in the eastern section of East Kunlun, Qinghai Province and their geological significance[J]. Acta Geologica Sinica, 92(5): 964−979 (in Chinese with English abstract).

    Google Scholar

    [39] Kong Huilei, Li Jinchao, Jia Qunzi, Guo Xianzheng, Wang Yu, Yao Xuegang, Li Yazhi. 2021. Petrogenesis of Xiwanggou olivine gabbro in East Kunlun: Constraints from geochemistry, zircon U−Pb dating and Hf isotopes[J]. Geology in China, 48(1): 173−188 (in Chinese with English abstract).

    Google Scholar

    [40] Kong Huilei, Li Yazhi, Li Jinchao, Jia Qunzi, Guo Xianzheng, Zhang Bin. 2019b. LA−ICP−MS zircon U−Pb daing and geochemical characteristics of the Xiwanggou olivine pyroxenolite in East Kunlun[J]. Journal of Geomechanics, 25(3): 440−452 (in Chinese with English abstract).

    Google Scholar

    [41] Labidi J, Cartigny P, Moreira M. 2013. Non−chondritic sulphur isotope composition of the terrestrial mantle[J]. Nature, 501(7466): 208−211. doi: 10.1038/nature12490

    CrossRef Google Scholar

    [42] Lacono−Marziano G, Ferraina C, Gaillard F, Carlo I, Arndt N. 2017. Assimilation of sulfate and carbonaceous rocks: Experimental study, thermodynamic modeling and application to the Noril’sk−Talnakh region (Russia)[J]. Ore Geology Reviews, 90: 399−413. doi: 10.1016/j.oregeorev.2017.04.027

    CrossRef Google Scholar

    [43] Li C, Ripley E M. 2009. Sulfur contents at sulfide−liquid or anhydrite saturation in silicate melts: Empirical equations and example applications[J]. Economic Geology, 104(3): 405−412. doi: 10.2113/gsecongeo.104.3.405

    CrossRef Google Scholar

    [44] Li C, Ripley E M, Naldrett A J, Schmitt A K, Moore C H. 2009. Magmatic anhydrite−sulfide assemblages in the plumbing system of the Siberian Traps[J]. Geology, 37(3): 259−262. doi: 10.1130/G25355A.1

    CrossRef Google Scholar

    [45] Li C S, Zhang Z W, Li W Y, Wang Y L, Sun T, Ripley E M. 2015. Geochronology, petrology and Hf–S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China[J]. Lithos, 216: 224−240.

    Google Scholar

    [46] Li H R, Qian Y, Sun F Y, Sun J L, Wang G. 2020. Zircon U−Pb dating and sulfide Re−Os isotopes of the Xiarihamu Cu−Ni sulfide deposit in Qinghai Province, Northwestern China[J]. Canadian Journal of Earth Sciences, 57(8): 885−902. doi: 10.1139/cjes-2019-0107

    CrossRef Google Scholar

    [47] Li Jianping. 2016. The Ore−forming Magmatism of Xiarihamu Ni−Cu Sulfide Deposit in Eastern Kunlun Orogenic Belt, China: Constraints from Petrochemistry and Volatile Geochemistry[D]. Lanzhou: Lanzhou University, 1−64 (in Chinese with English abstract).

    Google Scholar

    [48] Li L, Sun F Y, Li B L, Li S J, Chen G J, Wang W, Yan J M, Zhao T F, Dong J, Zhang D X. 2018. Geochronology, geochemistry and Sr−Nd−Pb−Hf isotopes of No.I Complex from the Shitoukengde Ni–Cu sulfide deposit in the Eastern Kunlun Orogen, Western China: Implications for the magmatic source, geodynamic setting and genesis[J]. Acta Geologica Sinica (English Edition), 92(1): 106−126. doi: 10.1111/1755-6724.13497

    CrossRef Google Scholar

    [49] Li L, Zhang D, Tan S, Sun F, Wang C, Zhao T, Li S, Yang Y. 2021. The parental magma composition, crustal contamination process, and metallogenesis of the Shitoukengde Ni−Cu sulfide deposit in the Eastern Kunlun Orogenic Belt, NW China[J]. Resource Geology, 71: 339−62. doi: 10.1111/rge.12267

    CrossRef Google Scholar

    [50] Li R B, Pei X Z, Li Z C, Pei L, Chen G C, Liu Z Q, Chen Y X, Liu C J, Wang M, Zhang M. 2022. Paleo−tethyan ocean evolution and indosinian orogenesis in the East Kunlun Orogen, Northern Tibetan Plateau[J]. Minerals, 12: 1590.

    Google Scholar

    [51] Li Shijin., Sun Fengyue, Gao Yongwei, Zhao Junwei, Li Liansong, Yang Qian. 2012. The theoretical guidance and the practice of small intrusions forming large deposits: The enlightenment and significance for searching breakthrough of Cu−Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai[J]. Northwestern Geology, 45(4): 185−191 (in Chinese with English abstract).

    Google Scholar

    [52] Li Wenyuan. 2015. Metallogenic geological characteristics and newly discovered orebodies in Northwest China[J]. Geology in China, 42(3): 365−380 (in Chinese with English abstract).

    Google Scholar

    [53] Li Wenyuan. 2022. Study of ore−forming theoretical innovation and prospecting breakthrough of magmatic copper–nickel–cobalt sulfide deposits in China[J]. Journal of Geomechanics, 28(5): 793−820 (in Chinese with English abstract).

    Google Scholar

    [54] Li Wenyuan, Wang Yalei, Qian Bing, Liu Yuegao, Han Yixiao. 2020. Discussion on the formation of magmatic Cu−Ni−Co sulfide deposits in margin of Tarim Block[J]. Earth Science Frontiers, 27(2): 276−293 (in Chinese with English abstract).

    Google Scholar

    [55] Li X H, Su L, Chung S L, Li Z X, Liu Y, Song B, Liu D Y, 2005. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni−Cu sulfide deposit: Associated with the 825 Ma south China mantle plume? [J]. Geochemistry, Geophysics, Geosystems, 6(11): 1−16.

    Google Scholar

    [56] Li Yulong, Cai Shengshun, Chang Tao, Hu Jichun, Chen Jian, Shu Shulan. 2018. The new evidence of Permian ocean-continent subduction in the east section of East Kunlun: Constraint from U–Pb age dating of Xiwanggou gabbro[J]. Journal of Mineralogy and Petrology, 38(1): 91−98 (in Chinese with English abstract).

    Google Scholar

    [57] Liou J G, Ernst W G, Song S G, Jahn B M. 2009. Tectonics and HP–UHP metamorphism of northern Tibet – preface[J]. Journal of Asian Earth Sciences, 35(3): 191−198.

    Google Scholar

    [58] Liu Bin, Ma Changqian, Jiang Hongan, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 29(6): 2093−2106 (in Chinese with English abstract).

    Google Scholar

    [59] Liu Bin, Ma Changqian, Zhang Jinyang, Xiong Fuhao, Huang Jian, Jiang Hongan. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes[J]. Acta Petrologica Sinica, 28(6): 1785−1807 (in Chinese with English abstract).

    Google Scholar

    [60] Liu Chendong, Mo Xuexue, Luo Zhaohua, Yu Xuehui, Chen Hongwei, Li Shuwei, Zhao Xin. 2004. Crust−mantle magma mixing in East Kunlun: Evidence from zircon SHRIMP chronology[J]. Chinese Science Bulletin, 49(6): 596−602 (in Chinese with English abstract). doi: 10.1360/csb2004-47-6-596

    CrossRef Google Scholar

    [61] Liu S, Fedi M, Hu X, Ou Y, Baniamerian J, Zuo B, Liu Y, Zhu R. 2018. 3D inversion of magnetic data in the simultaneous presence of significant remanent magnetization and self−demagnetization: Example from Daye iron−ore deposit, Hubei Province, China[J]. Geophysical Journal International, 215: 614−634. doi: 10.1093/gji/ggy299

    CrossRef Google Scholar

    [62] Liu Y, Samaha N T, Baker D R. 2007. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts[J]. Geochimica et Cosmochimica Acta, 71(7): 1783−1799. doi: 10.1016/j.gca.2007.01.004

    CrossRef Google Scholar

    [63] Liu Y, Chou I M, Chen J, Wu N, Li W, Bagas L, Ren M, Liu Z, Mei S, Wang L, 2023. Oldhamite: A new link in upper mantle for C−O−S−Ca cycles and an indicator for planetary habitability[J]. National Science Review 10: nwad159.

    Google Scholar

    [64] Liu Y G, Chen Z G, Li W Y, Xu X H, Kou X, Jia Q Z, Zhang Z W, Liu F, Wang Y L, You M X. 2019. The Cu−Ni mineralization potential of the Kaimuqi mafic−ultramafic complex and the indicators for the magmatic Cu−Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai−Tibet Plateau, China[J]. Journal of Geochemical Exploration, 198: 41−53. doi: 10.1016/j.gexplo.2018.12.002

    CrossRef Google Scholar

    [65] Liu Y G, Li W Y, Jia Q Z, Zhang Z W, Wang Z A, Zhang Z B, Zhang J W, Qian B. 2018. The dynamic sulfide saturation process and a possible slab break−off model for the Giant Xiarihamu magmatic nickel ore deposit in the East Kunlun Orogenic Belt, Northern Qinghai−Tibet Plateau, China[J]. Economic Geology, 113(6): 1383−1417. doi: 10.5382/econgeo.2018.4596

    CrossRef Google Scholar

    [66] Liu Y G, Li W Y, Lü X B, Liu Y R, Ruan B X, Liu X. 2017. Sulfide saturation mechanism of the Poyi magmatic Cu−Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 91: 419−431. doi: 10.1016/j.oregeorev.2017.09.013

    CrossRef Google Scholar

    [67] Liu Y G, Lü X B, Yang L S, Wang H F, Meng Y F, Yi Q, Zhang B, Wu J L, Ma J. 2015. Metallogeny of the Poyi magmatic Cu−Ni deposit: Revelation from the contrast of PGE and olivine composition with other Cu−Ni sulfide deposits in the Early Permian, Xinjiang, China[J]. Geosciences Journal, 19(4): 613−620. doi: 10.1007/s12303-015-0008-3

    CrossRef Google Scholar

    [68] Liu Yuegao, Lü Xinbiao, Ruan Banxiao, Liu Xiao, Liu Shuang, Feng Jing, Deng Gang, Wang Heng, Zeng Huadong, Wang Peng, Wang Wei, Lu Qiang. 2019. A comprehensive information exploration model for magmatic Cu−Ni sulfide deposits in Beishan, Xinjiang[J]. Mineral Deposits, 38(3): 644−666 (in Chinese with English abstract).

    Google Scholar

    [69] Liu Zhanqing, Pei Xianzhi, Li Ruibao, Li Zuochen, Zhang Xiaofei, Liu Zhigang, Chen Guochao, Chen Youxin, Ding Saping, Guo Junfeng. 2011. LA−ICP−MS zircon U−Pb geochronology of the two suites of ophiolites at the Buqingshan area of the A'nyemaqen Orogenic Belt in the southern margin of East Kunlun and its tectonic implication[J]. Acta Geologica Sinica, 85(2): 185−194 (in Chinese with English abstract).

    Google Scholar

    [70] Luo Mingfei, Mo Xuanxue, Yu Xuehui, Li Xiaowei, Huang Xiongfei, Yu Junchuan. 2014. Zircon LA−ICP−MS U−Pb age dating, petrogenesis and tectonic implications of the Late Triassic granites from the Xiangride area, East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3229−3241 (in Chinese with English abstract).

    Google Scholar

    [71] Luo Zhaohua, Ke Shan, Cao Yongqing, Deng Jinfu, Chen Hongwei. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6): 292−297 (in Chinese with English abstract).

    Google Scholar

    [72] Mavrogenes J A, O’Neill H S C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J]. Geochimica et Cosmochimica Acta, 63(7): 1173−1180.

    Google Scholar

    [73] Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007

    CrossRef Google Scholar

    [74] Meng Jie, Hu Chaobin, Xiao Peixi. 2019. Genesis and tectonic significance of the Yugusayi basic−ultrabasic complex in Qimantage area of East Kunlun[J]. Geology and Mineral Resources of South China, 35(2): 171−185 (in Chinese with English abstract).

    Google Scholar

    [75] Meng Qingpeng. 2019. Study on Geological Characteristics and Genesis of Langmuri Copper−Nickel Deposit in Eastern Kunlun, Qinghai[D]. Changchun: Jilin University, 1−86 (in Chinese with English abstract).

    Google Scholar

    [76] Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Yuan Wanming, Liu Yunhua. 2007. Granitoids and crustal growth in the East- Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414 (in Chinese with English abstract).

    Google Scholar

    [77] Norbu N, Li J, Liu Y, Jia Q, Kong H. 2020. Tectonomagmatic setting and Cu−Ni mineralization potential of the Gayahedonggou Complex, Northern Qinghai, Tibetan Plateau, China[J]. Minerals, 10(11): 950. doi: 10.3390/min10110950

    CrossRef Google Scholar

    [78] Pan Tong, Zhang Yong. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt[J]. Geotectonica et Metallogenia, 44(3): 447−464 (in Chinese with English abstract).

    Google Scholar

    [79] Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Liu Zhanqing, Chen Guochao, Li Xiaobing, Wang Meng. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of East Kunlun orogen[J]. Earth Science, 43(12): 4498−4520 (in Chinese with English abstract).

    Google Scholar

    [80] Peng B, Sun F Y, Li B L, Wang G, Li S J, Zhao T F, Li L, Zhi Y B. 2016. The geochemistry and geochronology of the Xiarihamu II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni–Cu sulfide deposits[J]. Ore Geology Reviews, 73: 13−28. doi: 10.1016/j.oregeorev.2015.10.014

    CrossRef Google Scholar

    [81] Qi Shengsheng, Song Shuguang, Shi Lianchang, Cai Hangjia, Hu Jichun. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu−Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3345−3356 (in Chinese with English abstract).

    Google Scholar

    [82] Qi Xiaopeng, Fan Xiangang, Yang Jie, Cui Jiantang, Wang Bangyao, Fan Yazhou, Yang Gaoxue, Li Zhen, Chao Wendi. 2016. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance[J]. Geological Bulletin of China, 35(11): 1771−1783 (in Chinese with English abstract).

    Google Scholar

    [83] Qin Kezhang, Tang Dongmei, Su Benxun, Mao Yajing, Xue Shengchao, Tian Ye, Sun He, San Jinzhu, Xiao Qinghua, Deng Gang. 2012. The tectonic setting, style, basic feature, relative erosion deee, ore−bearing evacuation sign, potential analysis of mineralization of Cu−Ni−bearing Permian mafic−ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 45(4): 83−116 (in Chinese with English abstract).

    Google Scholar

    [84] Ripley E M, Li C. 2013. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni−Cu−(PGE) ore genesis?[J]. Economic Geology, 108(1): 45−58. doi: 10.2113/econgeo.108.1.45

    CrossRef Google Scholar

    [85] Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle−derived melts[J]. Science, 316(5823): 412−417. doi: 10.1126/science.1138113

    CrossRef Google Scholar

    [86] Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine−free mantle source of Hawaiian shield basalts[J]. Nature, 434(7033): 590. doi: 10.1038/nature03411

    CrossRef Google Scholar

    [87] Song Mengxin. 2015. Xiarihamu Cu−Ni Deposit Comprehensive Interpretation of Electromagnetic Data Research[D]. Beijing: China University of Geosciences, 1− 58 (in Chinese with English abstract).

    Google Scholar

    [88] Song S, Bi H, Qi S, Yang L, Allen M B, Niu Y, Su L, Li W. 2018. HP–UHP metamorphic belt in the East Kunlun Orogen: Final closure of the Proto−Tethys Ocean and formation of the Pan−North−China Continent[J]. Journal of Petrology, 59(11): 2043−2060. doi: 10.1093/petrology/egy089

    CrossRef Google Scholar

    [89] Song S, Niu Y, Su L, Zhang C, Zhang L. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China[J]. Earth−Science Reviews, 129: 59−84. doi: 10.1016/j.earscirev.2013.11.010

    CrossRef Google Scholar

    [90] Song X Y, Yi J N, Chen L M, She Y W, Liu C Z, Dang X Y, Yang Q A, Wu S K. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29

    CrossRef Google Scholar

    [91] Sun Yangui, Zhang Guowei, Wang Jin, Zhan Fayu, Zhang Zhiyong. 2004. 40Ar/39Ar age of the basic sill swarms of two periods in the junction area of Qinling and Kunlun and its tectonic significance[J]. Acta Geologica Sinica, 78(1): 65−71 (in Chinese with English abstract).

    Google Scholar

    [92] Tian Nan. 2022. Metallogenesis of Cu−Ni Sulfide Deposits in the Eastern Section of East Kunlun Orogenic belt, Qinghai Province[D]. Changchun: Jilin University, 1−257 (in Chinese with English abstract).

    Google Scholar

    [93] Wang Bingzhang, Luo Zhaohua, Pan Tong, Song Taizhong, Xiao Peixi, Zhang Zhiqing. 2012. Petrotectonic assemblages and LA−ICP−MS zircon U−Pb age of Early Paleozoic volcanic rocks in Qimantag area, Tibetan Plateau[J]. Geological Bulletin of China, 31(6): 860−874 (in Chinese with English abstract).

    Google Scholar

    [94] Wang C, Zhang Z, Zhang C, Chen C, Li Y, Qian B. 2020. Constraints on sulfide saturation by crustal contamination in the Shitoukengde Cu−Ni deposit, East Kunlun orogenic belt, northern Qinghai−Tibet Plateau, China[J]. Geosciences Journal, 24(6): 1−15. doi: 10.1007/s12303-020-0025-8

    CrossRef Google Scholar

    [95] Wang Guan. 2014. Metallogenesis of Nickel Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 1−200 (in Chinese with English abstract).

    Google Scholar

    [96] Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Ao Cong, Yang Qian. 2014. Petrography, Zircon U−Pb geochronology and geochemistry of the mafic−ultramafic intrusion in Xiarihamu Cu−Ni deposit from East Kunlun, with implications for geodynamic setting[J]. Earth Science Frontiers, 21(6): 381−401 (in Chinese with English abstract).

    Google Scholar

    [97] Wang Guocan, Zhang Tianping, Liang Bin, Chen Nengsong, Zhu Yunhai, Zhu Jie, Bai Yongshan. 1999. Composite ophiolitic melange zone in the central part of the Eastern Kunlun orogenic zone and geological significance of fault belt in central part of eastern section of Eastern Kunlun orogenic zone[J]. Earth Science, 24(2): 129−133 (in Chinese with English abstract).

    Google Scholar

    [98] Wang K Y, Song X Y, Yi J N, Barnes S J, She Y W, Zheng W Q, Schoneveld L E. 2019. Zoned orthopyroxenes in the Ni−Co sulfide ore−bearing Xiarihamu mafic−ultramafic intrusion in northern Tibetan Plateau, China: Implications for multiple magma replenishments[J]. Ore Geology Reviews, 113: 103082. doi: 10.1016/j.oregeorev.2019.103082

    CrossRef Google Scholar

    [99] Wang Ruiting, He Ying, Wang Dongsheng, Liu Minwu. 2003. Re−Os isotopic age and its application to the Jianchaling nickel−copper sulfide deposit, Luyang, Shanxxi Provine[J]. Geological Review, 49(2): 205−211 (in Chinese with English abstract).

    Google Scholar

    [100] Wang Qimeng. 2020. Geochemical characteristics and geological significance of eclogite in Airikehansen Area, Dulan County, Qinghai Province[J]. Northwestern Geology, 53(1): 1−12 (in Chinese with English abstract).

    Google Scholar

    [101] Wang X, Liou J, Mao H. 1989. Coesite−bearing eclogite from the Dabie Mountains in central China[J]. Geology, 17(12): 1085−1088. doi: 10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2

    CrossRef Google Scholar

    [102] Wang Yalei, Zhang Zhaowei, Zhang Jiangwei, Qian Bing, Liu Yuegao, You Minxin. 2017. Early Mesozoic mantle−derived magmatic events and their geological significance in the East Kunlun Orogenic Belt[J]. Geology & Exploration, 53(5): 855−866 (in Chinese with English abstract).

    Google Scholar

    [103] Wang Zhian. 2019. Extraction of Comprehensive Prospecting Information and Application of Xiarihamu Cu−Ni Exploration Area in the East Kunlun, Qinghai Province[D]. Changchun: Jilin University, 1−51 (in Chinese with English abstract).

    Google Scholar

    [104] Wendlandt R F. 1982. Sulfide saturation of basalt and andesite melts at high pressures and temperatures[J]. American Mineralogist, 67: 877−885.

    Google Scholar

    [105] Wu Jianliang, Lü Xinbiao, Feng Jing, Wang Heng, Liu Yuegao, Yin Xianke, Zhang Wei, Liu Wen. 2018. Mineralogical characteristics of chromite from the Poyi mafic−ultramafic intrusion in Beishan, Xinjiang, and its geological significance[J]. Geotectonica et Metallogenia, 42(2): 348−364 (in Chinese with English abstract).

    Google Scholar

    [106] Xia Mingzhe, Fan Yazhou, Xia Zhaode, Rui Huichao, Jiang Changyi. 2018. Geochronology, geochemical characteristics and ore−forming conditions of the Dalakuan mafic−ultramafic intrusion, East Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 34(8): 2380−2392 (in Chinese with English abstract).

    Google Scholar

    [107] Xiao Peixi, Gao Xiaofeng, Hu Yunxu, Xie Congrui, Guo Lei, Xi Rengang, Dong Zengchan, Kang Lei. 2014. Study on the Geological Background of the Metallogenic Belt in the Western Section of the Altun−East Kunlun Mountains[M]. Beijing: Geological Publishing House, 1−261 (in Chinese).

    Google Scholar

    [108] Xin W, Sun F, Zhang Y, Fan X, Wang Y, Li L. 2019. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic[J]. Lithos, 346: 105159.

    Google Scholar

    [109] Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin, Jiang Hongan, Huang Jian. 2011. Zircon LA−ICP−MS U−Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance[J]. Geological Bulletin of China, 30(8): 1196−1202 (in Chinese with English abstract).

    Google Scholar

    [110] Xiong F, Ma C, Jiang H A, Liu B, Huang J. 2014. Geochronology and geochemistry of Middle Devonian mafic dykes in the East Kunlun orogenic belt, Northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny[J]. Chemie der Erde − Geochemistry, 74(2): 225−235. doi: 10.1016/j.chemer.2013.07.004

    CrossRef Google Scholar

    [111] Xiong Fuhao, Ma Changqian. 2016. Petrological evidence for the deep subduction of the proto−Tethys oceanic crust in the central East Kunlun[C]//Symposium on New Advances in Resource Environment and Geospatial Information Technology. Chengdu: Sichuan, China (in Chinese).

    Google Scholar

    [112] Xiong S. 2021. Research achievements of the Qinghai−Tibet Plateau based on 60 years of aeromagnetic surveys[J]. China Geology, 4(1): 147−177.

    Google Scholar

    [113] Yan J, Sun F, Li B, Li L, Zhang W, Yan Z, Zhang Y. 2020. Geochronological, geochemical, and mineralogical characteristics of the Akechukesai−I mafic–ultramafic complex in the eastern Kunlun area of the northern Tibet Plateau, west China: Insights into ore potential[J]. Ore Geology Reviews, 121: 103468. doi: 10.1016/j.oregeorev.2020.103468

    CrossRef Google Scholar

    [114] Yan J, Sun F, Li L, Yang Y, Zhang D. 2019a. A slab break−off model for mafic–ultramafic igneous complexes in the East Kunlun Orogenic Belt, northern Tibet: insights from Early Palaeozoic accretion related to post−collisional magmatism[J]. International Geology Review, 61(10): 1171−1188. doi: 10.1080/00206814.2018.1501618

    CrossRef Google Scholar

    [115] Yan J, Sun F, Qian Y, Li L, Zhang Y, Yan Z. 2019b. Geochemistry, geochronology, and Hf−S−Pb isotopes of the Akechukesai IV mafic−ultramafic complex, Western China[J]. Minerals, 9(5): 275. doi: 10.3390/min9050275

    CrossRef Google Scholar

    [116] Yan J, Sun G, Sun F, Li L, Li H, Gao Z, Hua L, Yan Z. 2019c. Geochronology, geochemistry, and Hf isotopic compositions of monzogranites and mafic−ultramafic complexes in the Maxingdawannan area, eastern Kunlun orogen, western China: Implications for magma sources, geodynamic setting, and petrogenesis[J]. Journal of Earth Science, 30(2): 335−347. doi: 10.1007/s12583-018-1203-8

    CrossRef Google Scholar

    [117] Yan Wei, Qiu Dianming, Ding Qingfeng, Liu Fei. 2016. Geochronology, petrogenesis, source and its structural significance of Houtougou monzogranite of Wulonggou Area in Eastern Kunlun Orogen[J]. Journal of Jilin University, 46(2): 443−460 (in Chinese with English abstract).

    Google Scholar

    [118] Yang Liu, Zhou Hanwen, Zhu Yunhai, Dai Xiong, Lin Qixiang, Ma Zhanqing, Jian Kunkun, Zhang Minyue. 2014. Geochemical characteristics and LA−ICP−MS zircon U−Pb ages of intermediate to mafic dyke swarms in Haxiya area, Golmud, Qinghai Province[J]. Geological Bulletin of China, 33(6): 804−819 (in Chinese with English abstract).

    Google Scholar

    [119] Yang J, Xu Z, Dobrzhinetskaya L F, Green II H W, Pei X, Shi R, Wu C, Wooden J L, Zhang J, Wan Y. 2003. Discovery of metamorphic diamonds in central China: An indication of a > 4000−km−long zone of deep subduction resulting from multiple continental collisions[J]. Terra Nova, 15(6): 370−379. doi: 10.1046/j.1365-3121.2003.00511.x

    CrossRef Google Scholar

    [120] Yang J, Xu Z, Zhang J, Song S, Wu C, Shi R, Li H, Brunel M. 2002. Early Palaeozoic North Qaidam UHP metamorphic belt on the north−eastern Tibetan plateau and a paired subduction model[J]. Terra Nova, 14(5): 397−404. doi: 10.1046/j.1365-3121.2002.00438.x

    CrossRef Google Scholar

    [121] Yang Weiran. 2004. Some problems of opening−closing tectonics[J]. Geological Bulletin of China, 23(3): 195−199 (in Chinese with English abstract).

    Google Scholar

    [122] Yang Ximing, Sun Fengyue, Zhao Tuofei, Liu Jinlong, Peng Bo. 2018. Zircon U−Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt[J]. Geological Bulletin of China, 37(10): 1842−1852 (in Chinese with English abstract).

    Google Scholar

    [123] Yuan Wanming, Mo Xuanxue, Wang Xiaohong. 1998. Geochemical characteristics and tectonic setting of the Early Carboniferous volcanic rocks in East Kunlun Mountains[J]. Acta Petrrologica et Mineralogica, 17(4): 289−295 (in Chinese with English abstract).

    Google Scholar

    [124] Zhang J X, Mattinson C G, Yu S Y, Li J P, Meng F. 2010. U−Pb zircon geochronology of coesite−bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: Spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of Metamorphic Geology, 28(9): 955−978. doi: 10.1111/j.1525-1314.2010.00901.x

    CrossRef Google Scholar

    [125] Zhang J, Lei H, Ma C, Li J, Pan Y. 2021. Silurian−Devonian granites and associated intermediate−mafic rocks along the Eastern Kunlun Orogen, western China: Evidence for a prolonged post−collisional lithospheric extension[J]. Gondwana Research, 89: 131−146. doi: 10.1016/j.gr.2020.08.019

    CrossRef Google Scholar

    [126] Zhang M, Kamo S L, Li C, Hu P, Ripley E, 2010. Precise U–Pb zircon–baddeleyite age of the Jinchuan sulfide ore−bearing ultramafic intrusion, western China[J]. Mineralium Deposita 45(1), 3–9.

    Google Scholar

    [127] Zhang M, Liu Y, Chen A, Liang K, Yang Y, Xu W. 2023. The tectonic links between Palaeozoic eclogites and mafic magmatic Cu−Ni−Co mineralization in East Kunlun orogenic belt, western China[J]. International Geology Review, 65(7): 1158−1178. doi: 10.1080/00206814.2021.1885504

    CrossRef Google Scholar

    [128] Zhang Z W, Tang Q Y, Li C S, Wang Y L, Ripley E M. 2017. Sr−Nd−Os−S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai–Tibet plateau, China[J]. Mineralium Deposita, 52: 51−68. doi: 10.1016/j.oregeorev.2018.04.027

    CrossRef Google Scholar

    [129] Zhang Z W, Wang Y L, Qian B, Liu Y G, Zhang D Y, Lü P R, Dong J. 2018. Metallogeny and tectonomagmatic setting of Ni−Cu magmatic sulfide mineralization, number I Shitoukengde mafic−ultramafic complex, East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 96: 236−246.

    Google Scholar

    [130] Zhang Zhaochong, Yan Shenghao, Chen Bailin, He Lixin, He Yongsheng, Zhou Gang. 2003. Geochemistry of the Kalatongke basic complex in Xinjiang and its constraints on genesis of the deposit[J]. Acta Petrologica et Mineralogica, 22(3): 217−224 (in Chinese with English abstract).

    Google Scholar

    [131] Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yalei, Li Shijin, Liu Changzheng, Zhang Jiangwei, Yang Qian, You Minxin, Wang Zhian. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance[J]. Geology in China, 42(3): 438−451 (in Chinese with English abstract).

    Google Scholar

    [132] Zhang Zhaowei, Li Wenyuan, Qian Bing, Li Wenyuan, Wang Yalei, Zhang Jiangwei, You Minxin, Liu Yuegao. 2017. The discovery of Early Paleozoic eclogite from the Xiarihamu magmatic Ni−Cu sulfide deposit in eastern Kunlun orogenic belt: Zircon U−Pb chronologic evidence[J]. Geology in China, 44(4): 816−817 (in Chinese with English abstract).

    Google Scholar

    [133] Zhang Zhaowei, Qian Bing, Wang Yalei, Li Wenyuan. 2024. Tectonic settings discussion of magmatic nickel−cobalt sulfide deposits in the eastern Kunlun orogenic belt[J]. Geology in China, 51(2): 371−384 (in Chinese with English abstract).

    Google Scholar

    [134] Zhang Z W, Wang Y L, Wang C Y, Qian B, Li W Y, Zhang J W, You M X. 2019. Mafic−ultramafic magma activity and copper−nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology, 2(4): 467−477.

    Google Scholar

    [135] Zhao Caisheng, Yang Fuquan, Dai Junzhi. 2006. Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance[J]. Mineral Deposits, 25(S1): 427−430 (in Chinese with English abstract).

    Google Scholar

    [136] Zhao Haichao, Zhang Jinling, Liu Caile, Sun Tingting, Wang Yongde. 2018. Copper−nickel−cobalt sulfide deposit prospecting model of Xiarihamu in Qinghai Province[J]. Science Technology and Engineering, 18(36): 166−174 (in Chinese with English abstract).

    Google Scholar

    [137] Zhao Tuofei. 2021. Study on Metallogenesis of Nickel and Copper Deposits in Kaerqueka−Akechukesai Area, Western Segment of the East Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 1−227 (in Chinese with English abstract).

    Google Scholar

    [138] Zhou Wei. 2016. Petrogenesis of Shitoukengde Mafic−Ultramafic Intrusion and Analysis of its Metallogenic Potential, East Kunlun [D]. Xi'an: Chang'an University, 1−99 (in Chinese with English abstract).

    Google Scholar

    [139] Zhu Yunhai, Lin Qixiang, Jia Chunxing, Wang Guocan. 2005. Zircon SHRIMP age of Early Paleozoic volcanic rocks in the East Kunlun Orogenic Belt and its geological significance[J]. Science China−Earth Sciences, 35(12): 1112−1119 (in Chinese).

    Google Scholar

    [140] 奥琮, 孙丰月, 李碧乐, 王冠, 李良, 李世金, 赵俊伟. 2015. 东昆仑祁漫塔格地区小尖山辉长岩地球化学特征、U−Pb年代学及其构造意义[J]. 大地构造与成矿学, 39(6): 1176−1184.

    Google Scholar

    [141] 边千韬, 罗小全, 李红生, 陈海泓, 赵大升, 李涤徽. 1999. 阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现[J]. 地质科学, 34(4): 523−524.

    Google Scholar

    [142] 陈静, 谢智勇, 李彬, 谈生祥, 任华, 张启梅, 李燕. 2013. 东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J]. 矿物岩石, 33(2): 26−34.

    Google Scholar

    [143] 杜玮, 姜常义, 凌锦兰, 周伟, 夏明哲, 夏昭德. 2017. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义[J]. 矿床地质, 36(5): 1185−1196.

    Google Scholar

    [144] 段建华, 张照伟, 祁昌炜, 王亚磊, 钱兵, 张江伟, 弥佳茹, 尤敏鑫, 刘月高. 2017. 东昆仑夏日哈木铜镍矿床 Ⅱ 号岩体辉长岩形成年龄与找矿潜力[J]. 地质与勘探, 53(5): 880−888.

    Google Scholar

    [145] 段雪鹏, 孟繁聪, 范亚洲. 2019. 东昆仑夏日哈木镁铁−超镁铁岩中的钛闪石−韭闪石对成矿过程的约束[J]. 岩石学报, 35(6): 1819−1932.

    Google Scholar

    [146] 丰成友, 王松, 李国臣, 马圣钞, 李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 311−324.

    Google Scholar

    [147] 傅飘儿. 2012. 新疆北部晚古生代岩浆铜镍硫化物矿床成因: 岩石及流体地球化学制约[D]. 兰州: 兰州大学, 1−87.

    Google Scholar

    [148] 甘彩红. 2014. 青海东昆仑造山带火成岩岩石学、地球化学、锆石U−Pb年代学及Hf同位素特征研究[D]. 北京: 中国地质大学(北京), 1−83.

    Google Scholar

    [149] 国显正, 贾群子, 李金超, 孔会磊, 姚学钢, 弥佳茹, 钱兵, 王宇. 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义[J]. 地球科学, 43(12): 4300−4318.

    Google Scholar

    [150] 郭峰, 王盘喜, 王振宁, 冯乃琦. 2020. 东昆仑夏日哈木退变质榴辉岩地球化学, 年代学特征及其地质意义[J]. 沉积与特提斯地质, 40(4): 45−55.

    Google Scholar

    [151] 贾丽辉, 孟繁聪, 冯惠彬. 2014. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 30(8): 2339−2350.

    Google Scholar

    [152] 何书跃, 孙非非, 李云平, 李东生, 于淼, 钱烨, 刘永乐, 白国龙, 赵梦琪, 张鹏. 张爱奎, 马生龙, 刘国燕, 刘智刚. 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 36(4): 582−592.

    Google Scholar

    [153] 侯增谦, 郑远川, 卢占武, 许博, 王长明, 张洪瑞. 2020. 青藏高原巨厚地壳: 生长、加厚与演化[J]. 地质学报, 94(10): 2797−2815.

    Google Scholar

    [154] 黄汲清. 1984. 中国大地构造特征的新研究[J]. 中国地质科学院院报, (9): 5−18.

    Google Scholar

    [155] 黄旭钊, 范正国, 何敬梓, 葛藤菲, 王思浔, 满毅, 王鹏, 李军, 王恒. 2022. 隐伏岩浆型铜镍矿空—地—井协同勘查技术体系[J]. 物探与化探, 46(3): 597−607.

    Google Scholar

    [156] 姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质−超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 31(4): 1117−1136.

    Google Scholar

    [157] 姜春发. 2004. 开合构造概述[J]. 地质通报, 23(3): 200−207.

    Google Scholar

    [158] 孔会磊, 李金超, 栗亚芝, 贾群子, 国显正. 2017. 青海东昆仑东段加当辉长岩 LA−ICP−MS 锆石 U−Pb 测年及其地质意义[J]. 地质与勘探, 53(5): 889−902

    Google Scholar

    [159] 孔会磊, 李金超, 栗亚芝, 贾群子, 国显正, 张斌. 2018. 青海东昆仑东段加当橄榄辉长岩锆石 U−Pb 年代学, 地球化学及地质意义[J]. 地质学报, 92(5): 964−978.

    Google Scholar

    [160] 孔会磊, 李金超, 国显正, 姚学钢, 贾群子. 2019a. 青海东昆仑希望沟铜镍矿点发现早泥盆世辉橄岩[J]. 中国地质, 46(1): 205−206.

    Google Scholar

    [161] 孔会磊, 栗亚芝, 李金超, 贾群子, 国显正, 张斌. 2019b. 东昆仑希望沟橄榄辉石岩LA−ICP−MS锆石U−Pb定年及岩石地球化学特征[J]. 地质力学学报, 25(3): 440−452.

    Google Scholar

    [162] 孔会磊, 李金超, 贾群子, 国显正, 王宇, 姚学钢, 栗亚芝. 2021. 东昆仑希望沟橄榄辉长岩的岩石成因: 地球化学、锆石U−Pb年龄与Hf同位素制约[J]. 中国地质, 48(1): 173−188.

    Google Scholar

    [163] 李建平. 2016. 东昆仑造山带夏日哈木铜镍硫化物矿床成矿岩浆作用: 岩石及流体地球化学制约[D]. 兰州: 兰州大学, 1−64.

    Google Scholar

    [164] 李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践—青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191.

    Google Scholar

    [165] 李文渊. 2015. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 42(3): 365−380.

    Google Scholar

    [166] 李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 2020. 塔里木陆块周缘岩浆Cu−Ni−Co硫化物矿床形成的探讨[J]. 地学前缘, 27(2): 276−293.

    Google Scholar

    [167] 李文渊. 2022. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 28(5): 793−820. doi: 10.12090/j.issn.1006-6616.20222810

    CrossRef Google Scholar

    [168] 李玉龙, 蔡生顺, 常涛, 胡继春, 陈健, 舒树兰. 2018. 东昆仑东段中二叠世洋陆俯冲的新证据: 来自希望沟辉长岩U–Pb年龄的约束[J]. 矿物岩石, 38(1): 91−98.

    Google Scholar

    [169] 刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据[J]. 岩石学报, 29(6): 2093−2106.

    Google Scholar

    [170] 刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 28(6): 1785−1807.

    Google Scholar

    [171] 刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004. 东昆仑壳−幔岩浆混合作用: 来自锆石 SHRIMP 年代学的证据[J]. 科学通报, 49(6): 596−602.

    Google Scholar

    [172] 刘月高, 吕新彪, 阮班晓, 柳潇, 刘双, 冯京, 邓刚, 王恒, 曾华栋, 王鹏, 王伟, 王磊, 陆强. 2019. 新疆北山早二叠世岩浆型铜镍硫化物矿床综合信息勘查模式[J]. 矿床地质, 38(3): 644−666.

    Google Scholar

    [173] 刘战庆, 裴先治, 李瑞保, 李佐臣, 张晓飞, 刘智刚, 陈国超, 陈有炘, 丁仨平, 郭俊锋. 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA−ICP−MS锆石U−Pb定年及其构造意义[J]. 地质学报, 85(2): 185−194.

    Google Scholar

    [174] 罗明非, 莫宣学, 喻学惠, 李小伟, 黄雄飞, 于峻川. 2014. 东昆仑香日德地区晚三叠世花岗岩LA−ICP−MS锆石U−Pb定年、岩石成因和构造意义[J]. 岩石学报, 30(11): 3229−3241.

    Google Scholar

    [175] 罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 21(6): 292−297.

    Google Scholar

    [176] 孟杰, 胡朝斌, 校培喜. 2019. 东昆仑祁漫塔格地区玉古萨依基性超基性岩体成因及构造意义[J]. 华南地质与矿产, 35(2): 171−185.

    Google Scholar

    [177] 孟庆鹏. 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 长春: 吉林大学, 1−86.

    Google Scholar

    [178] 莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414.

    Google Scholar

    [179] 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 43(12): 4498−4520.

    Google Scholar

    [180] 潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应[J]. 大地构造与成矿学, 44(3): 447−464.

    Google Scholar

    [181] 祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木−苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356.

    Google Scholar

    [182] 祁晓鹏, 范显刚, 杨杰, 崔建堂, 汪帮耀, 范亚洲, 杨高学, 李真, 晁文迪. 2016. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义[J]. 地质通报, 35(11): 1771−1783. doi: 10.3969/j.issn.1671-2552.2016.11.002

    CrossRef Google Scholar

    [183] 秦克章, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱, 肖庆华, 邓刚. 2012. 北疆二叠纪镁铁−超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 45(4): 83−116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    CrossRef Google Scholar

    [184] 宋梦馨. 2015. 夏日哈木铜镍矿电磁法资料综合解释研究[D]. 北京: 中国地质大学, 1−58.

    Google Scholar

    [185] 孙延贵, 张国伟, 王瑾, 詹发余, 张智勇. 2004. 秦昆结合区两期基性岩墙群40Ar/39Ar定年及其构造意义[J]. 地质学报, 78(1): 65−71.

    Google Scholar

    [186] 田楠. 2022. 青海省东昆仑造山带东段铜镍硫化物矿床成矿作用[D]. 长春: 吉林大学, 1−257

    Google Scholar

    [187] 王秉璋, 罗照华, 潘彤, 宋泰忠, 校培喜, 张志青. 2012. 青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 31(6): 860−874.

    Google Scholar

    [188] 王冠. 2014. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 1−200.

    Google Scholar

    [189] 王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014. 东昆仑夏日哈木铜镍矿镁铁质−超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21: 381−401.

    Google Scholar

    [190] 王国灿, 张天平, 梁斌, 陈能松, 朱云海, 朱杰, 拜永山. 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义[J]. 地球科学, 24(2): 129−133.

    Google Scholar

    [191] 王瑞廷, 赫英, 王东生, 刘民武. 2003. 略阳煎茶岭铜镍硫化物矿床 Re−Os 同位素年龄及其地质意义[J]. 地质论评, 49(2): 205−211. doi: 10.3321/j.issn:0371-5736.2003.02.014

    CrossRef Google Scholar

    [192] 王启蒙. 2020. 青海省都兰县艾日克汗森地区榴辉岩地球化学特征及其地质意义[J]. 西北地质, 53(1): 1−12.

    Google Scholar

    [193] 王亚磊, 张照伟, 张江伟, 钱兵, 刘月高, 尤敏鑫. 2017. 东昆仑造山带早中生代幔源岩浆事件及其地质意义[J]. 地质与勘探, 53(5): 855−866.

    Google Scholar

    [194] 王治安. 2019. 青海省东昆仑夏日哈木铜镍矿勘查区综合找矿信息提取及应用[D]. 长春: 吉林大学, 1−51.

    Google Scholar

    [195] 吴建亮, 吕新彪, 冯金, 王恒, 邓刚, 刘月高, 尹显科, 张伟, 刘文. 2018. 新疆北山坡一基性−超基性岩体铬铁矿矿物学特征及其指示意义[J]. 大地构造与成矿学, 42(2): 348−364.

    Google Scholar

    [196] 夏明哲, 范亚洲, 夏昭德, 芮会超, 姜常义. 2018. 新疆东昆仑达拉库岸镁铁−超镁铁质岩体年代学、地球化学及成矿条件[J]. 岩石学报, 34(8): 2380−2392.

    Google Scholar

    [197] 校培喜, 高晓峰, 胡云绪, 谢从瑞, 过磊, 奚仁刚, 董增产, 康磊. 2014. 阿尔金−东昆仑西段成矿带地质背景研究[M]: 北京: 地质出版社, 261.

    Google Scholar

    [198] 熊富浩, 马昌前, 张金阳, 刘彬, 蒋红安, 黄坚. 2011. 东昆仑造山带白日其利辉长岩体 LA− ICP−MS 锆石 U−Pb 年龄及地质意义[J]. 地质通报, 30(8): 1196−1201.

    Google Scholar

    [199] 熊富浩, 马昌前. 2016. 东昆仑中部原特提斯洋壳深俯冲事件的岩石学证据[C]//资源环境与地学空间信息技术新进展学术讨论会. 成都: 四川.

    Google Scholar

    [200] 严威, 邱殿明, 丁清峰, 刘飞. 2016. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义[J]. 吉林大学学报(地球科学版), 46(2): 443−460.

    Google Scholar

    [201] 杨柳, 周汉文, 朱云海, 代雄, 林启祥, 马占青, 菅坤坤, 张旻玥. 2014. 青海格尔木哈希牙地区中基性岩墙群地球化学特征与LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 33(6): 804−819. doi: 10.3969/j.issn.1671-2552.2014.06.004

    CrossRef Google Scholar

    [202] 杨巍然. 2004. 开合构造研究中的几个问题[J]. 地质通报, 23(3): 195−199. doi: 10.3969/j.issn.1671-2552.2004.03.004

    CrossRef Google Scholar

    [203] 杨锡铭, 孙丰月, 赵拓飞, 刘金龙, 彭勃. 2018. 东昆仑阿克楚克塞地区辉长岩地球化学特征、锆石U-Pb年龄及其构造意义[J]. 地质通报, 37(10): 1842−1852.

    Google Scholar

    [204] 袁万明, 莫宣学, 喻学惠, 罗照华, 王晓红. 1998. 东昆仑早石炭世火山岩的地球化学特征及其构造背景[J]. 岩石矿物学杂志, 17(4): 289−295. doi: 10.3969/j.issn.1000-6524.1998.04.001

    CrossRef Google Scholar

    [205] 张招崇, 闫升好, 陈柏林, 何立新, 何永胜, 周刚. 2003. 新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J]. 岩石矿物学杂志, 22(3): 217−224.

    Google Scholar

    [206] 张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 42(3): 438−451. doi: 10.3969/j.issn.1000-3657.2015.03.004

    CrossRef Google Scholar

    [207] 张照伟, 钱兵, 李文渊, 王亚磊, 张江伟, 尤敏鑫, 刘月高. 2017. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U−Pb定年证据[J]. 中国地质, 44(4): 816−817. doi: 10.12029/gc20170415

    CrossRef Google Scholar

    [208] 张照伟, 钱兵, 王亚磊, 李文渊. 2024. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨[J]. 中国地质, 51(2): 371−384. doi: 10.12029/gc20200829001

    CrossRef Google Scholar

    [209] 赵财胜, 杨富全, 代军治. 2006. 青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J]. 矿床地质, 25(S1): 427−430. doi: 10.3969/j.issn.0258-7106.2006.04.007

    CrossRef Google Scholar

    [210] 赵海超, 张金玲, 刘彩乐, 孙婷婷, 王永德. 2018. 青海省夏日哈木铜镍钴硫化物矿床找矿模型[J]. 科学技术与工程, 18(36): 166−174. doi: 10.3969/j.issn.1671-1815.2018.36.027

    CrossRef Google Scholar

    [211] 赵拓飞. 2021. 青海东昆仑西段卡尔却卡−阿克楚克赛地区镍、铜成矿作用研究[D]. 长春: 吉林大学, 1−227.

    Google Scholar

    [212] 周伟. 2016. 东昆仑石头坑德镁铁−超镁铁质岩体岩石成因与成矿潜力分析[D]. 西安: 长安大学, 1−99.

    Google Scholar

    [213] 朱云海, 林启祥, 贾春兴, 王国灿. 2005. 东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义[J]. 中国科学: 地球科学, 35(12): 1112−1119.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(3)

Article Metrics

Article views(6) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint