2025 Vol. 52, No. 4
Article Contents

HU Zhaoxin, LUO Weiqun, WU Zeyan, XIE Yunqiu, LIU Shaohua, TU Chun. 2025. Pollution risk assessment and source analysis of soil heavy metals in Tiandong County, Guangxi based on land use[J]. Geology in China, 52(4): 1408-1424. doi: 10.12029/gc20240424004
Citation: HU Zhaoxin, LUO Weiqun, WU Zeyan, XIE Yunqiu, LIU Shaohua, TU Chun. 2025. Pollution risk assessment and source analysis of soil heavy metals in Tiandong County, Guangxi based on land use[J]. Geology in China, 52(4): 1408-1424. doi: 10.12029/gc20240424004

Pollution risk assessment and source analysis of soil heavy metals in Tiandong County, Guangxi based on land use

    Fund Project: Supported by the projects of National Key Research and Development Program of China (No.2022YFF1300702), China Geological Survey (No.DD20160324, No.DD20230453) and Guangxi Scientific Base and Talents Project (No.Guike 22-035-130-05).
More Information
  • Author Bio: HU Zhaoxin, male, born in 1990, master, mainly engaged in soil geochemistry research; E-mail:hzhaoxin@mail.cgs.gov.cn
  • This paper is the result of environmental geological survey engineering.

    Objective

    This study aims to characterize the heavy metal content in soil, assess topsoil pollution risk and apportion the sources of topsoil heavy metals, thereby providing a scientific basis for green agriculture development, soil heavy metal pollution prevention and land resource management in Tiandong County, Guangxi.

    Methods

    A total of 2779 topsoil and 704 subsoil samples were collected systematically, which were formed into 704 topsoil and 176 subsoil analysis samples. The content of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn was determined. Statistical analysis methods were applied to analyze the characteristics of heavy metal content. For paddy fields, drylands, orchards, and towns with strong human activity impacts, topsoil heavy metal pollution risk was assessed against the “Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (Trial)” (GB15618—2018) and “Soil Environmental Quality Risk Control Standard for Soil Contamination of Construction Land (Trial)” (GB36600—2018). For forest land, shrub land, other woodlands, other grasslands, other orchards, and bare land with weak human activity impacts, topsoil heavy metal pollution risk was assessed by using the single−factor pollution index and the Nemerow comprehensive pollution index, with subsoil metal content as the background. The heavy metal sources were analyzed using correlation analysis, factor analysis, and the Absolute Principal Component−Multiple Linear Regression (APCS−MLR) model.

    Results

    The average content of heavy metals in topsoil and subsoil was both significantly higher than the corresponding national background values. The average content of heavy metal elements in karst soil were significantly higher than that in non-karst soil. The risk assessment for paddy fields, dry land, orchards, and towns showed that the dry land posed the highest pollution risk. In dry land, 33.59% of soil samples exceeded Cd pollution risk screening value. The risk assessment for forest land, shrub land, other woodlands, other grasslands, other orchards, and bare land showed that pollution by heavy metals other than Cd was largely absent or mild. The proportions of samples with mild, moderate and severe Cd pollution were 15.06%, 19.20% and 10.74%, respectively. Topsoil heavy metals in the study area originated from soil parent material and anthropogenic sources, contributing 78.58% and 21.42%, respectively.

    Conclusion

    Soil heavy metals in the study area exhibited high content. Cd was the primary pollution prevention and control element in the study area. The heavy metal content was primarily controlled by the geological background, with human activities contributing to their further accumulation.

  • 加载中
  • [1] Anaman R, Peng C, Jiang Z C, Liu X, Zhou Z R, Guo Z H, Xiao X Y. 2022. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF[J]. Science of the Total Environment, 823: 153759. doi: 10.1016/j.scitotenv.2022.153759

    CrossRef Google Scholar

    [2] Bi Shuhai, Zhou Wenhui, Yuan Guoli, Gao Qi, Li Yongchun, Tai Surigala. 2025. Distribution characteristics and ecological risk assessment of soil heavy metal in Yuanzhou District of Guyuan City, Ningxia[J]. Geology in China, 52(1): 289−299 (in Chinese with English abstract).

    Google Scholar

    [3] Cao Jianhua, Yuan Daoxian, Zhang Cheng, Jiang Zhongcheng. 2004. Karst ecosystem constrained by geological conditions in Southwest China[J]. Earth and Environment, 32(1): 1−8 (in Chinese with English abstract).

    Google Scholar

    [4] Chai L, Wang Y H, Wang X, Ma L, Cheng Z X, Su L M, Liu M X. 2021. Quantitative source apportionment of heavy metals in cultivated soil and associated model uncertainty[J]. Ecotoxicology and Environmental Safety, 215: 112150. doi: 10.1016/j.ecoenv.2021.112150

    CrossRef Google Scholar

    [5] Chen Biao, Lu Bingke, Qiu Wei. 2022. Source and ecological risk assessment of heavy metals in soil in karst landforms of Guangxi[J]. Environmental Pollution and Control, 44(5): 639−644 (in Chinese with English abstract).

    Google Scholar

    [6] Chen H Y, Teng Y G, Lu S J, Wang Y Y, Wang J S. 2015. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 512/513: 143−153.

    Google Scholar

    [7] Chen Nengchang, Zheng Yuji, He Xiaofeng, Li Xiaofei, Zhang Xiaoxia. 2017. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro−Environment Science, 36(9): 1689−1692 (in Chinese with English abstract).

    Google Scholar

    [8] Chen T B, Zheng Y M, Lei M, Huang Z C, Wu H T, Chen H, Fan K K, Yu K, Wu X, Tian Q Z. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China[J]. Chemosphere, 60(4): 542−551. doi: 10.1016/j.chemosphere.2004.12.072

    CrossRef Google Scholar

    [9] Chen Z, Zhou Q P, Lv J S, Jiang Y H, Yang H, Yang H, Mei S J, Jia Z Y, Zhang H, Jin Y, Liu L, Shen R J. 2023. Assessment of groundwater quality using APCS−MLR Model: A case study in the pilot promoter region of Yangtze River Delta Integration Demonstration Zone, China[J]. Water, 15(2): 225. doi: 10.3390/w15020225

    CrossRef Google Scholar

    [10] Cheng W, Lei S G, Bian Z F, Zhao Y B, Li Y C, Gan Y D. 2020. Geographic distribution of heavy metals and identification of their sources in soils near large, open−pit coal mines using positive matrix factorization[J]. Journal of Hazardous Materials, 387: 121666. doi: 10.1016/j.jhazmat.2019.121666

    CrossRef Google Scholar

    [11] Cheng Xianda, Sun Jianwei, Jia Xu, Liu Xiangdong, Zhao Yuanyi. 2023. Pollution characteristics and health risk assessment of heavy metals in farmland soil around the molybdenum mining area in Luanchuan, Henan Province[J]. Geology in China, 50(6): 1871−1886 (in Chinese with English abstract).

    Google Scholar

    [12] Dai Wenting, Zhang Hui, Wu Xia, Zhong Ming, Duan Guilan, Dong Jihong, Zhang Peipei, Fan Hongming. 2024. Pollution characteristic and source analysis of soil heavy metal in coal mine area near the Yellow River in Shandong[J]. Environmental Science, 45(5): 2952−2961 (in Chinese with English abstract).

    Google Scholar

    [13] Fei X F, Lou Z H, Xiao R, Ren Z Q, Lv X N. 2022. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities[J]. Journal of Cleaner Production, 341: 130942. doi: 10.1016/j.jclepro.2022.130942

    CrossRef Google Scholar

    [14] Hu Pengjie, Zhan Juan, Liu Juan, Li Xinyang, Du Yanpei, Wu Longhua, Luo Yongming. 2023. Research progress on the causes, risks, and control of high geological background of heavy metals in soils[J]. Acta Pedologica Sinica, 60(5): 1363−1377 (in Chinese with English abstract).

    Google Scholar

    [15] Hu Zhaoxin, Luo Weiqun, Jiang Zhongcheng, Wu Zeyan, Tang Qingjia. 2024. Ecological governance zoning in typical karst areas based on ecosystem vulnerability assessment[J]. Carsologica Sinica, 43(3): 661−671 (in Chinese with English abstract).

    Google Scholar

    [16] Jian Ruifeng, Yue Fujun, Zhu Zhaozhou, Liu Xiaolong, Zhang Luyao. 2023. Temporal and spatial variation of heavy metals in coastal wetlands around the Bohai Sea and analysis of their sources[J]. China Environmental Science, 43(11): 6025−6038 (in Chinese with English abstract).

    Google Scholar

    [17] Jiang H H, Cai L M, Wen H H, Hu G C, Chen L G, Luo J. 2020. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals[J]. Science of the Total Environment, 701: 134466. doi: 10.1016/j.scitotenv.2019.134466

    CrossRef Google Scholar

    [18] Jiang Jingye, Cheng Jianping, Qi Shihua, Xiang Wu. 2006. Applied Geochemistry [M]. Wuhan: China University of Geosciences Press, 1−340 (in Chinese).

    Google Scholar

    [19] Jiang Z C, Lian Y Q, Qin X Q. 2014. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth−Science Reviews, 132: 1−12. doi: 10.1016/j.earscirev.2014.01.005

    CrossRef Google Scholar

    [20] Jiang Zhongcheng, Luo Weiqun, Tong Liqiang, Cheng Yang, Yang Qiyong, Wu Zeyan, Liang Jianhong. 2016. Evolution features of rocky desertification and influence factors in karst areas of Southwest China in the 21st century[J]. Carsologica Sinica, 35(5): 461−468 (in Chinese with English abstract).

    Google Scholar

    [21] Jiang Zhongcheng. 2004. The main research progress in the field of karst and its ecological environment in Guangxi in the past decade[J]. Land and Resources of Southem China, (11): 19−22 (in Chinese).

    Google Scholar

    [22] Jin G Q, Fang W, Shafi M, Wu D T, Li Y Q, Zhong B, Ma J W, Liu D. 2019. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China[J]. Ecotoxicology and Environmental Safety, 184: 109495. doi: 10.1016/j.ecoenv.2019.109495

    CrossRef Google Scholar

    [23] Li Guofen. 1996. Karst hydrogeologic characteristics and water resources in guangxi[J]. Carsologica Sinica, 15(3): 48−53 (in Chinese with English abstract).

    Google Scholar

    [24] Li Hang, Tan Keyan, Zhang Longlong, Yuan Xin, Zhu Xiaohua, Wang Yu, Cai Jingyi. 2022. Geochemical characteristics and environmental assessment of soil heavy metals: A case study of Ertai Town, Zhangbei County[J]. Acta Geoscientica Sinica, 43(5): 665−675 (in Chinese with English abstract).

    Google Scholar

    [25] Li Jie, Zhu Lixin, Kang Zhiqiang. 2018. Characteristics of transfer and their influencing factors of heavy metals in soil−crop system of peri−urban agricultural soils of Nanning, South China[J]. Carsologica Sinica, 37(1): 43−52 (in Chinese with English abstract).

    Google Scholar

    [26] Liu Nan, Tang Yingying, Chen Meng, Pan Yongxing. 2023. Source apportionment of soil heavy metals in lead-zinc area based on APCS−MLR and PMF[J]. China Environmental Science, 43(3): 1267−1276 (in Chinese with English abstract).

    Google Scholar

    [27] Liu Pinzhen, Jia Yaqi, Cheng Zhifei, Yang Zhen, Du Qilu, Wu Di. 2018. Ecological risk assessment of heavy metals in farmland soils around karst coal mining areas: A comparison of various methods[J]. Carsologica Sinica, 37(3): 371−378 (in Chinese with English abstract).

    Google Scholar

    [28] Lu A X, Li B G, Li J, Chen W, Xu L. 2018. Heavy metals in paddy soil-rice systems of industrial and township areas from subtropical China: Levels, transfer and health risks[J]. Journal of Geochemical Exploration, 194: 210−217. doi: 10.1016/j.gexplo.2018.08.003

    CrossRef Google Scholar

    [29] Lu Yuefeng, Xie Li, Sun Hua, Gu Wei. 2019. Criterion selection in assessment of soil heavy metal pollution in farmland on county scale[J]. China Environmental Science, 39(11): 4743−4751 (in Chinese with English abstract).

    Google Scholar

    [30] Luo Zhenghua. 2023. Comprehensive management measures and achievements of stone desertification in Tiandong County[J]. South China Agriculture, 17(2): 221−223 (in Chinese).

    Google Scholar

    [31] Lü J S, Liu Y, Zhang Z L, Dai B. 2014. Multivariate geostatistical analyses of heavy metals in soils: Spatial multi-scale variations in Wulian, Eastern China[J]. Ecotoxicology and Environmental Safety, 107: 140−147. doi: 10.1016/j.ecoenv.2014.05.019

    CrossRef Google Scholar

    [32] Lü J S, Liu Y, Zhang Z L, Dai J R. 2013. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi−scale variability of heavy metals in soils[J]. Journal of Hazardous Materials, 261: 387−397. doi: 10.1016/j.jhazmat.2013.07.065

    CrossRef Google Scholar

    [33] Ma Honghong, Peng Min, Liu Fei, Guo Fei, Tang Shiqi, Liu Xiujin, Zhou Yalong, Yang Ke, Li Kuo, Yang Zheng, Cheng Hangxin. 2020. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil−crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 41(1): 449−459 (in Chinese with English abstract).

    Google Scholar

    [34] Martín J A R, Arias M L, Corbí J M G. 2006. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations[J]. Environmental Pollution, 144(3): 1001−1012. doi: 10.1016/j.envpol.2006.01.045

    CrossRef Google Scholar

    [35] Qin Xingming, Ma Guobin, Jiang Zhongcheng, Hu Baoqing, Xie Weiwei, Tan Shuai, Cao Yuwei. 2022. Spatial variations and influencing factors analysis of heavy metals in the soil of typical rocky desertification peak cluster depression[J]. Bulletin of Geological Science and Technology, 41(5): 283−292 (in Chinese with English abstract).

    Google Scholar

    [36] Reimann C, Filzmoser P, Garrett R G. 2005. Background and threshold: critical comparison of methods of determination[J]. Science of the Total Environment, 346(1/3): 1−16. doi: 10.1016/j.scitotenv.2004.11.023

    CrossRef Google Scholar

    [37] Reimann C, Garrett R G. 2005. Geochemical background—concept and reality[J]. Science of the Total Environment, 350(1/3): 12−27. doi: 10.1016/j.scitotenv.2005.01.047

    CrossRef Google Scholar

    [38] Martín J A R, Ramos−Miras J J, Boluda R, Gil C. 2013. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain)[J]. Geoderma, 200−201: 180−188.

    Google Scholar

    [39] Tang Doudou, Yuan Xuyin, Wang Yimin, Ji Junfeng, Wen Yubo, Zhao Wanfu. 2018. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 37(1): 18−26 (in Chinese with English abstract).

    Google Scholar

    [40] Tang Ruiling, Xu Jinli, Liu Bin, Du Xuemiao, Gu Xue, Yu Linsong, Bi Jing. 2024. Chemical speciation, influencing factors, and regression model of heavy metals in farmland of typical carbonate area with high geological background, Southwest China[J]. Environmental Science, 45(5): 2995−3004 (in Chinese with English abstract).

    Google Scholar

    [41] Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. Geology in China, 48(6): 1697−1709 (in Chinese with English abstract).

    Google Scholar

    [42] Wang Huiyan, Peng Min, Ma Honghong, Zhang Fugui. 2023. Ecological risk assessment of cultivated land in typical areas with high heavy metal background values in Guizhou Province[J]. Geophysical and Geochemical Exploration, 47(4): 1109−1117 (in Chinese with English abstract).

    Google Scholar

    [43] Xi Chaozhuang, Wu Linfeng, Zhang Pengfei, Yang Mingtai, Fan Yunfei, Xia Haodong, Deng Huijuan. 2023. Characteristics and sources of Cd and As trace elements in soil−irrigation−rainwater−atmospheric dust−fall in Huishui County, Guizhou Province[J]. Geology in China, 50(1): 192−205 (in Chinese with English abstract).

    Google Scholar

    [44] Xi Xiaohuan, Hou Qingye, Yang Zhongfang, Ye Jiayu, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua, Yao Lan. 2021. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of Soil Geochemical Parameters of China's publication[J]. Geophysical and Geochemical Exploration, 45(5): 1095−1108 (in Chinese with English abstract).

    Google Scholar

    [45] Xu Qingyang, Dai Liangliang, Peng Zhigang, Zhang Jun, Xiao Kaiqi, Gong Hao, Wu Huanhuan. 2025. Characteristics and health risk evaluation of soil heavy metals in Longshan County, Hunan Province[J]. Geology in China, 52(3): 834−848 (in Chinese with English abstract).

    Google Scholar

    [46] Yang Qiong, Yang Zhongfang, Zhang Qizuan, Liu Xu, Zhuo Xiaoxiong, Wu Tiansheng, Wang Lei, Wei Xueji, Ji Junfeng. 2021. Ecological risk assessment of Cd and other heavy metals in soil−rice system in the karst areas with high geochemical background of Guangxi, China[J]. Science China Earth Sciences, 51(8): 1317−1331 (in Chinese with English abstract).

    Google Scholar

    [47] Yang Zhenyu, Liao Chaolin, Li Yi, Zou Yan, Xie Wujin, Chen Xiaowei, Zhang Yufei. 2023. Environmental geochemistry baseline and pollution assessment of soil heavy metals in typical river source area of northeastern Hunan Province[J]. China Environmental Science, 43(8): 4154−4163 (in Chinese with English abstract).

    Google Scholar

    [48] Yu Yuanhe, Lu Jianshu, Wang Yameng. 2018. Source identification and spatial distribution of heavy metals in soils in typical areas around the Lower Yellow River[J]. Environmental Science, 39(6): 2865−2874 (in Chinese with English abstract).

    Google Scholar

    [49] Zhang Peng, Qiu Ping. 2014. Evaluation and trend analysis of tourism ecological security in karst areas: A case study for Guangxi[J]. Carsologica Sinica, 33(4): 483−489 (in Chinese with English abstract).

    Google Scholar

    [50] Zhao Xiufang, Zhang Yongshuai, Feng Aiping, Wang Yixuan, Xia Lixian, Wang Honglei, Du Wei. 2020. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shandong Province[J]. Geophysical and Geochemical Exploration, 44(6): 1446−1454 (in Chinese with English abstract).

    Google Scholar

    [51] Zhao Yan, Guo Changlai, Cui Jian, Zhang Yanfei, Li Ying, Li Xuguang, Yu Huiming. 2024. Distribution characteristics, ecological risk assessment and source analysis of heavy metals in soil of Beizhen agricultural area, Jinzhou City, Liaoning Province[J]. Geology in China, 51(5): 1469−1484 (in Chinese with English abstract).

    Google Scholar

    [52] 毕书海, 周文辉, 袁国礼, 高琪, 李永春, 邰苏日嘎拉. 2025. 宁夏固原市原州区土壤重金属分布特征及其生态风险评价[J]. 中国地质, 52(1): 289−299. doi: 10.12029/gc20221025004

    CrossRef Google Scholar

    [53] 曹建华, 袁道先, 章程, 蒋忠诚. 2004. 受地质条件制约的中国西南岩溶生态系统[J]. 地球与环境, 32(1): 1−8. doi: 10.3969/j.issn.1672-9250.2004.01.001

    CrossRef Google Scholar

    [54] 陈彪, 卢炳科, 邱炜. 2022. 广西喀斯特地貌区土壤重金属来源与生态风险评价[J]. 环境污染与防治, 44(5): 639−644.

    Google Scholar

    [55] 陈能场, 郑煜基, 何晓峰, 李小飞, 张晓霞. 2017. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 36(9): 1689−1692. doi: 10.11654/jaes.2017-1220

    CrossRef Google Scholar

    [56] 程贤达, 孙建伟, 贾煦, 刘向东, 赵元艺. 2023. 河南栾川县钼矿区周边农田土壤重金属污染特征与健康风险评价[J]. 中国地质, 50(6): 1871−1886. doi: 10.12029/gc20221116001

    CrossRef Google Scholar

    [57] 戴文婷, 张晖, 吴霞, 钟鸣, 段桂兰, 董霁红, 张培培, 樊洪明. 2024. 黄河流域山东段近河道煤矿区土壤重金属污染特征及源解析[J]. 环境科学, 45(5): 2952−2961.

    Google Scholar

    [58] 胡鹏杰, 詹娟, 刘娟, 李欣阳, 杜彦锫, 吴龙华, 骆永明. 2023. 土壤重金属地质高背景成因、风险与管控研究进展[J]. 土壤学报, 60(5): 1363−1377.

    Google Scholar

    [59] 胡兆鑫, 罗为群, 蒋忠诚, 吴泽燕, 汤庆佳. 2024. 基于生态系统脆弱性评价的典型岩溶区生态治理分区[J]. 中国岩溶, 43(3): 661−671. doi: 10.11932/karst2024y026

    CrossRef Google Scholar

    [60] 简锐风, 岳甫均, 朱兆洲, 刘小龙, 张璐瑶. 2023. 环渤海滨海湿地重金属的时空变化及来源分析[J]. 中国环境科学, 43(11): 6025−6038. doi: 10.3969/j.issn.1000-6923.2023.11.040

    CrossRef Google Scholar

    [61] 蒋敬业, 程建萍, 祁士华, 向武. 2006. 应用地球化学[M]. 武汉: 中国地质大学出版社, 1−340.

    Google Scholar

    [62] 蒋忠诚. 2004. 广西岩溶及其生态环境领域近十年来的主要研究进展[J]. 南方国土资源, (11): 19−22.

    Google Scholar

    [63] 蒋忠诚, 罗为群, 童立强, 程洋, 杨奇勇, 吴泽燕, 梁建宏. 2016. 21世纪西南岩溶石漠化演变特点及影响因素[J]. 中国岩溶, 35(5): 461−468.

    Google Scholar

    [64] 李国芬. 1996. 广西岩溶水文地质特征及其资源[J]. 中国岩溶, 15(3): 48−53.

    Google Scholar

    [65] 李航, 谭科艳, 张隆隆, 袁欣, 朱晓华, 王玉, 蔡敬怡. 2022. 土壤重金属地球化学特征及环境评价——以张北县二台镇为例[J]. 地球学报, 43(5): 665−675. doi: 10.3975/cagsb.2022.032902

    CrossRef Google Scholar

    [66] 李杰, 朱立新, 康志强. 2018. 南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 37(1): 43−52. doi: 10.11932/karst2018y01

    CrossRef Google Scholar

    [67] 刘楠, 唐莹影, 陈盟, 潘泳兴. 2023. 基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J]. 中国环境科学, 43(3): 1267−1276. doi: 10.3969/j.issn.1000-6923.2023.03.028

    CrossRef Google Scholar

    [68] 刘品祯, 贾亚琪, 程志飞, 杨珍, 杜启露, 吴迪. 2018. 不同方法评价喀斯特煤矿区农田土壤重金属生态风险比较[J]. 中国岩溶, 37(3): 371−378. doi: 10.11932/karst20180307

    CrossRef Google Scholar

    [69] 罗正华. 2023. 田东县石漠化综合治理措施与成效[J]. 南方农业, 17(2): 221−223.

    Google Scholar

    [70] 吕悦风, 谢丽, 孙华, 谷玮. 2019. 县域尺度耕地土壤重金属污染评价中的标准选择研究[J]. 中国环境科学, 39(11): 4743−4751. doi: 10.3969/j.issn.1000-6923.2019.11.033

    CrossRef Google Scholar

    [71] 马宏宏, 彭敏, 刘飞, 郭飞, 唐世琪, 刘秀金, 周亚龙, 杨柯, 李括, 杨峥, 成杭新. 2020. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 41(1): 449−459.

    Google Scholar

    [72] 覃星铭, 马国斌, 蒋忠诚, 胡宝清, 谢薇薇, 谭帅, 曹雨薇. 2022. 典型石漠化峰丛洼地土壤重金属的空间分异特征及其影响因素[J]. 地质科技通报, 41(5): 283−292.

    Google Scholar

    [73] 唐豆豆, 袁旭音, 汪宜敏, 季峻峰, 文宇博, 赵万伏. 2018. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 37(1): 18−26. doi: 10.11654/jaes.2017-0801

    CrossRef Google Scholar

    [74] 唐瑞玲, 徐进力, 刘彬, 杜雪苗, 顾雪, 于林松, 毕婧. 2024. 西南典型碳酸盐岩高地质背景区农田重金属化学形态、影响因素及回归模型[J]. 环境科学, 45(5): 2995−3004.

    Google Scholar

    [75] 王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697−1709. doi: 10.12029/gc20210603

    CrossRef Google Scholar

    [76] 王惠艳, 彭敏, 马宏宏, 张富贵. 2023. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 47(4): 1109−1117.

    Google Scholar

    [77] 息朝庄, 吴林锋, 张鹏飞, 杨茗钛, 范云飞, 夏浩东, 邓会娟. 2023. 贵州省惠水土壤−灌溉水−雨水−大气降尘中Cd、As等微量元素特征及来源讨论[J]. 中国地质, 50(1): 192−205. doi: 10.12029/gc20210308003

    CrossRef Google Scholar

    [78] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 2021. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 45(5): 1095−1108.

    Google Scholar

    [79] 许青阳, 戴亮亮, 彭志刚, 张俊, 肖凯琦, 巩浩, 吴欢欢. 2025. 湖南省龙山县土壤重金属特征与健康风险评价[J]. 中国地质, 52(3): 834−848. doi: 10.12029/gc20230703001

    CrossRef Google Scholar

    [80] 杨琼, 杨忠芳, 张起钻, 刘旭, 卓小雄, 吴天生, 王磊, 韦雪姬, 季峻峰. 2021. 中国广西岩溶地质高背景区土壤−水稻系统Cd等重金属生态风险评价[J]. 中国科学(地球科学), 51(8): 1317−1331.

    Google Scholar

    [81] 杨振宇, 廖超林, 李毅, 邹炎, 谢伍晋, 陈晓威, 张驭飞. 2023. 湘东北典型河源区土壤重金属环境地球化学基线及污染评价[J]. 中国环境科学, 43(8): 4154−4163. doi: 10.3969/j.issn.1000-6923.2023.08.032

    CrossRef Google Scholar

    [82] 于元赫, 吕建树, 王亚梦. 2018. 黄河下游典型区域土壤重金属来源解析及空间分布[J]. 环境科学, 39(6): 2865−2874.

    Google Scholar

    [83] 张鹏, 丘萍. 2014. 岩溶地区旅游生态安全评价及趋势分析——以广西为例[J]. 中国岩溶, 33(4): 483−489. doi: 10.11932/karst20140413

    CrossRef Google Scholar

    [84] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 2020. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 44(6): 1446−1454.

    Google Scholar

    [85] 赵岩, 郭常来, 崔健, 张艳飞, 李莹, 李旭光, 于慧明. 2024. 辽宁省锦州市北镇农业区土壤重金属分布特征、生态风险评价及源解析[J]. 中国地质, 51(5): 1469−1484. doi: 10.12029/gc20220829001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(9)

Article Metrics

Article views(16) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint