2024 Vol. 51, No. 4
Article Contents

LI Chang, YANG Zhongfang, YU Tao, NIU Rongchen, GUO Rucan, YU Baocheng, XIA Xueqi, YU Chaoyang, CAO Yuanyuan. 2024. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 51(4): 1210-1242. doi: 10.12029/gc20230814001
Citation: LI Chang, YANG Zhongfang, YU Tao, NIU Rongchen, GUO Rucan, YU Baocheng, XIA Xueqi, YU Chaoyang, CAO Yuanyuan. 2024. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 51(4): 1210-1242. doi: 10.12029/gc20230814001

Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review

    Fund Project: Supported by the Key R & D Program of Ningxia Hui Autonomous Region “Research on the transformation factors of soil carbon sinks and carbon pool conservation in north−central Ningxia” (No.2022BBF02036).
More Information
  • Author Bio: LI Chang, female, born in 1999, master candidate, majors in geochemistry, engaged in environmental geochemistry research; E-mail: 1428268498@qq.com
  • Corresponding author: YANG Zhongfang, female, born in 1961, professor, engaged in environmental geochemistry and ecological geochemistry related teaching and research; E-mail: zfyang01@126.com
  • This paper is the result of environmental geological survey engineering.

    Objective

    As a pivotal component of the global carbon cycle, the role of soil inorganic carbon in arid regions as a carbon sink cannot be ignored.

    Methods

    This paper reviewed a large amount of literature related to soil inorganic carbon in arid regions at home and abroad, and focused on the confirmation of soil inorganic carbon carbon sink, carbon pool composition, source identification, and carbon sink influencing factors in a systematic summary.

    Results

    The role of inorganic carbon carbon sinks in arid regions was confirmed along with the study of negative fluxes in arid regions, but the composition of its carbon pool is very complex, including liquid−phase carbon pools and solid−phase carbon pools. The liquid−phase reservoir is mainly in the form of Dissolved Inorganic Carbon in the groundwater of the arid regions; the solid−phase reservoir is the solid−phase Soil Inorganic Carbon in the soil profile, which is divided into Lithogenic Carbonate and Pedogenic Carbonate according to different genetic sources, and the latter is subdivided into carbonaceous soil−forming carbonate and silicic soil−forming carbonate . The SPC in PC has a real long−term stable carbon sink. The factors influencing inorganic carbon sinks are complex, including natural factors: climate, soil properties and depth, biological effects, soil−forming parent material, soil organic matter, etc.; anthropogenic factors: land use and land cover, agricultural management measures (irrigation and fertilization), etc.

    Conclusions

    Soil inorganic carbon in drylands is extremely important for global carbon sequestration, and current research focuses on the identification of soil inorganic carbon sources, confirmation of carbon sink strength and quantification of carbon sequestration potential, as well as the clarification of influencing factors and assessment of the possibility of human intervention. Driven by the goal of achieving carbon peaking and carbon neutrality goals, the identification of soil inorganic carbon sources and influencing factors will be a research hotspot in the future within the global region, especially in arid and semi−arid regions. It will be a breakthrough point to solve the scientific problem of "Missing carbon sink", which will greatly promote the research of Global Carbon Cycle.

  • 加载中
  • [1] Amundson R, Stern L, Baisden T, Wang Y. 1998. The isotopic composition of soil and soil−respired CO2[J]. Geoderma, 82(1/3): 83−114. doi: 10.1016/S0016-7061(97)00098-0

    CrossRef Google Scholar

    [2] An H, Wu X, Zhang Y, Tang Z. 2019. Effects of land−use change on soil inorganic carbon: A meta−analysis[J]. Geoderma, 353: 273−282. doi: 10.1016/j.geoderma.2019.07.008

    CrossRef Google Scholar

    [3] Anand R R, Phang C, Wildman J E, Lintern M J. 1997. Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: implications for mineral exploration[J]. Australian Journal of Earth Sciences, 44(1): 87−103. doi: 10.1080/08120099708728296

    CrossRef Google Scholar

    [4] Andrews J A, Schlesinger W H. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment[J]. Global Biogeochemical Cycles, 15(1): 149−162. doi: 10.1029/2000GB001278

    CrossRef Google Scholar

    [5] Archer D. 2011. The Global Carbon Cycle[M]. Princeton: Princeton University Press.

    Google Scholar

    [6] Ball B A, Virginia R A, Barrett J E, Parsons A N, Wall D H. 2009. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils[J]. Soil Biology and Biochemistry, 41(7): 1510−1517. doi: 10.1016/j.soilbio.2009.04.011

    CrossRef Google Scholar

    [7] Barker S L L, Cox S F. 2011. Oscillatory zoning and trace element incorporation in hydrothermal minerals: Insights from calcite growth experiments[J]. Geofluids, 11(1): 48−56. doi: 10.1111/j.1468-8123.2010.00305.x

    CrossRef Google Scholar

    [8] Batjes N H. 1996. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 47(2): 151−163. doi: 10.1111/j.1365-2389.1996.tb01386.x

    CrossRef Google Scholar

    [9] Bayat O, Karimi A, Amundson R. 2021. Stable isotope geochemistry of pedogenic carbonates in calcareous materials, Iran: A review and synthesis[J]. Geological Society Special Publication, 507(1): 255−272. doi: 10.1144/SP507-2019-236

    CrossRef Google Scholar

    [10] Berner R A. 1992. Weathering, plants, and the long−term carbon cycle[J]. Geochimica et Cosmochimica Acta, 56(8): 3225−3231. doi: 10.1016/0016-7037(92)90300-8

    CrossRef Google Scholar

    [11] Berner R A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2[M]. New York: Oxford University Press.

    Google Scholar

    [12] Berner R A, Lasaga A C, Garrels R M. 1983. Carbonate−silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 283(7): 641−683. doi: 10.2475/ajs.283.7.641

    CrossRef Google Scholar

    [13] Berner R A, Raiswell R. 1983. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory[J]. Geochimica et Cosmochimica Acta, 47(5): 855−862. doi: 10.1016/0016-7037(83)90151-5

    CrossRef Google Scholar

    [14] Berthelin J. 1988. Microbial weathering processes in natural environments[J]. Physical and Chemical Weathering in Geochemical Cycles, 251: 33−59.

    Google Scholar

    [15] Birkeland P W. 1999. Soils and geomorphology (Book review)[J]. The Geographical Bulletin, 41(2): 121.

    Google Scholar

    [16] Braissant O, Verrecchia E P, Aragno M. 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated?[J]. Naturwissenschaften, 89(8): 366−370. doi: 10.1007/s00114-002-0340-0

    CrossRef Google Scholar

    [17] Brock A L, Buck B J. 2005. A new formation process for calcic pendants from Pahranagat Valley, Nevada, USA, and implication for dating Quaternary landforms[J]. Quaternary Research, 63(3): 359−367. doi: 10.1016/j.yqres.2005.01.007

    CrossRef Google Scholar

    [18] Bruce J P. 1999. Carbon sequestration in soils[J]. Science, 54(1): 382−389.

    Google Scholar

    [19] Bughio M A, Wang P, Meng F, Qing C, Kuzyakov Y, Wang X, Junejo S A. 2016. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil[J]. Geoderma, 262: 12−19. doi: 10.1016/j.geoderma.2015.08.003

    CrossRef Google Scholar

    [20] Burgener L, Huntington K W, Hoke G D, Schauer A, Ringham M C, Latorre C, Díaz F P. 2016. Variations in soil carbonate formation and seasonal bias over > 4 km of relief in the western Andes (30 S) revealed by clumped isotope thermometry[J]. Earth and Planetary Science Letters, 441: 188−199. doi: 10.1016/j.jpgl.2016.02.033

    CrossRef Google Scholar

    [21] Capo R C, Chadwick O A. 1999. Sources of strontium and calcium in desert soil and calcrete[J]. Earth and Planetary Science Letters, 170(1/2): 61−72. doi: 10.1016/S0012-821X(99)00090-4

    CrossRef Google Scholar

    [22] Capo R C, Stewart B W, Chadwick O A. 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods[J]. Geoderma, 82(1/3): 197−225. doi: 10.1016/S0016-7061(97)00102-X

    CrossRef Google Scholar

    [23] Cerling T E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229−240. doi: 10.1016/0012-821X(84)90089-X

    CrossRef Google Scholar

    [24] Chadwick O A, Sowers J M, Amundson R G. 1989. Morphology of calcite crystals in clast coatings from four soils in the Mojave Desert region[J]. Soil Science Society of America Journal, 53(1): 211−219. doi: 10.2136/sssaj1989.03615995005300010038x

    CrossRef Google Scholar

    [25] Chiquet A, Michard A, Nahon D, Hamelin B. 1999. Atmospheric input vs in situ weathering in the genesis of calcretes: an Sr isotope study at Gálvez (Central Spain)[J]. Geochimica et Cosmochimica Acta, 63(3−4): 311−323. doi: 10.1016/S0016-7037(98)00271-3

    CrossRef Google Scholar

    [26] Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 10: 172−185. doi: 10.1007/s10021-006-9013-8

    CrossRef Google Scholar

    [27] Da J, Zhang Y G, Li G, Meng X, Ji J. 2019. Low CO2 levels of the entire Pleistocene epoch[J]. Nature Communications, 10(1): 4342. doi: 10.1038/s41467-019-12357-5

    CrossRef Google Scholar

    [28] Da J, Zhang Y G, Li G, Meng X, Ji J. 2020. Aridity−driven decoupling of δ13C between pedogenic carbonate and soil organic matter[J]. Geology, 48(10): 981−985. doi: 10.1130/G47241.1

    CrossRef Google Scholar

    [29] Da Jiawei. 2020. Quantitative Reconstruction of Paleoatmospheric CO2 Levels Using Pedogenic Carbonates from the Chinese Loess Plateau[D]. Nanjing: Nanjing University (in Chinese with English abstract).

    Google Scholar

    [30] Dart R C, Barovich K M, Chittleborough D J, Hill S M. 2007. Calcium in regolith carbonates of central and southern Australia: Its source and implications for the global carbon cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3/4): 322−334.

    Google Scholar

    [31] Demoling F, Figueroa D, Bååth E. 2007. Comparison of factors limiting bacterial growth in different soils[J]. Soil Biology and Biochemistry, 39(10): 2485−2495. doi: 10.1016/j.soilbio.2007.05.002

    CrossRef Google Scholar

    [32] Dı́az−Hernández J L, Fernández E B, González J L. 2003. Organic and inorganic carbon in soils of semiarid regions: A case study from the Guadix–Baza basin (Southeast Spain)[J]. Geoderma, 114(1/2): 65−80. doi: 10.1016/S0016-7061(02)00342-7

    CrossRef Google Scholar

    [33] Dietrich F, Diaz N, Deschamps P, Ngatcha B N, Sebag D, Verrecchia E P. 2017. Origin of calcium in pedogenic carbonate nodules from silicate watersheds in the Far North Region of Cameroon: Respective contribution of in situ weathering source and dust input[J]. Chemical Geology, 460: 54−69. doi: 10.1016/j.chemgeo.2017.04.015

    CrossRef Google Scholar

    [34] Du C, Gao Y. 2020. Opposite patterns of soil organic and inorganic carbon along a climate gradient in the alpine steppe of northern Tibetan Plateau[J]. Catena, 186: 104366. doi: 10.1016/j.catena.2019.104366

    CrossRef Google Scholar

    [35] Durand N, Ahmad S M, Hamelin B, Gunnell Y, Curmi P. 2006. Origin of Ca in South Indian calcretes developed on metamorphic rocks[J]. Journal of Geochemical Exploration, 88(1/3): 275−278. doi: 10.1016/j.gexplo.2005.08.055

    CrossRef Google Scholar

    [36] Eisenlohr L, Meteva K, Gabrovšek F, Dreybrodt W. 1999. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O−CO2 solutions[J]. Geochimica et Cosmochimica Acta, 63(7/8): 989−1001. doi: 10.1016/S0016-7037(98)00301-9

    CrossRef Google Scholar

    [37] Emmerich W E. 2003. Carbon dioxide fluxes in a semiarid environment with high carbonate soils[J]. Agricultural and Forest Meteorology, 116(1−2): 91−102. doi: 10.1016/S0168-1923(02)00231-9

    CrossRef Google Scholar

    [38] Entry J A, Sojka R E, Shewmaker G E. 2004. Irrigation increases inorganic carbon in agricultural soils[J]. Environmental Management, 33: S309−S317.

    Google Scholar

    [39] Eswaran H. 2000. Global carbon stock[J]. Global Climate Change and Pedogenic Carbonates, 15−25.

    Google Scholar

    [40] Fa K Y, Liu J B, Zhang Y Q, Wu B, Qin S G, Feng W, Lai Z R. 2015. CO2 absorption of sandy soil induced by rainfall pulses in a desert ecosystem[J]. Hydrological Processes, 29(8): 2043−2051. doi: 10.1002/hyp.10350

    CrossRef Google Scholar

    [41] Fa Keyu, Lei Guangchun, Zhang Yuqing, Liu Jiabin. 2018. Carbon exchange process between atmosphere and soil in desert soils[J]. Advances in Earth Science, 33(5): 464 (in Chinese with English abstract).

    Google Scholar

    [42] Fa K, Xie E, Zhao X, Wang C. 2021. Natural water input deposits little atmospheric carbon into groundwater in a desert[J]. Catena, 199: 105097. doi: 10.1016/j.catena.2020.105097

    CrossRef Google Scholar

    [43] Fang Jingyun, Guo Zhaodi. 2007. Looking for missing carbon sinks from terrestrial ecosystems[J]. Chinese Journal of Nature, 29(1): 1−6 (in Chinese with English abstract).

    Google Scholar

    [44] Ferdush J, Paul V. 2021. A review on the possible factors influencing soil inorganic carbon under elevated CO2[J]. Catena, 204: 105434. doi: 10.1016/j.catena.2021.105434

    CrossRef Google Scholar

    [45] Fernández−Ugalde O, Virto I, Barré P, Apesteguía M, Enrique A, Imaz M J, Bescansa P. 2014. Mechanisms of macroaggregate stabilisation by carbonates: implications for organic matter protection in semi−arid calcareous soils[J]. Soil Research, 52(2): 180−192. doi: 10.1071/SR13234

    CrossRef Google Scholar

    [46] Finneran D W, Morse J W. 2009. Calcite dissolution kinetics in saline waters[J]. Chemical Geology, 268(1/2): 137−146. doi: 10.1016/j.chemgeo.2009.08.006

    CrossRef Google Scholar

    [47] Gabitov R I, Gaetani G A, Watson E B, Cohen A L, Ehrlich H L. 2008. Experimental determination of growth rate effect on U6+ and Mg2+ partitioning between aragonite and fluid at elevated U6+ concentration[J]. Geochimica et Cosmochimica Acta, 72(16): 4058−4068. doi: 10.1016/j.gca.2008.05.047

    CrossRef Google Scholar

    [48] Gao Y, Zhang P, Liu J. 2020. One third of the abiotically−absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 374: 114448. doi: 10.1016/j.geoderma.2020.114448

    CrossRef Google Scholar

    [49] Gile L H, Peterson F F, Grossman R B. 1966. Morphological and genetic sequences of carbonate accumulation in desert soils[J]. Soil Science, 101(5): 347−360. doi: 10.1097/00010694-196605000-00001

    CrossRef Google Scholar

    [50] Gocke M, Pustovoytov K, Kuzyakov Y. 2011. Carbonate recrystallization in root−free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling[J]. Biogeochemistry, 103: 209−222. doi: 10.1007/s10533-010-9456-z

    CrossRef Google Scholar

    [51] Grossman R B, Ahrens R J, Gile L H, Montoya C E, Chadwick O A. 1995. Areal evaluation of organic and carbonate carbon in a desert area of southern New Mexico[C]//Lal R et al.(eds.). Soils and Global Change: Boca Raton. Florida: Lewis Publishers, 81−92.

    Google Scholar

    [52] Guo Y, Wang X, Li X, Wang J, Xu M, Li D. 2016. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China[J]. Scientific Reports, 6(1): 36105. doi: 10.1038/srep36105

    CrossRef Google Scholar

    [53] Hamada Y, Tanaka T. 2001. Dynamics of carbon dioxide in soil profiles based on long−term field observation[J]. Hydrological Processes, 15(10): 1829−1845. doi: 10.1002/hyp.242

    CrossRef Google Scholar

    [54] Hamerlynck E P, Scott R L, Sánchez−Cañete E P, Barron−Gafford G A. 2013. Nocturnal soil CO2 uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland[J]. Journal of Geophysical Research: Biogeosciences, 118(4): 1593−1603. doi: 10.1002/2013JG002495

    CrossRef Google Scholar

    [55] Hamidi E M, Colin F, Michard A, Boulangé B, Nahon D. 2001. Isotopic tracers of the origin of Ca in a carbonate crust from the Middle Atlas, Morocco[J]. Chemical Geology, 176(1−4): 93−104. doi: 10.1016/S0009-2541(00)00373-9

    CrossRef Google Scholar

    [56] Hamilton S K, Kurzman A L, Arango C, Jin L, Robertson G P. 2007. Evidence for carbon sequestration by agricultural liming[J]. Global Biogeochemical Cycles, 21(2).

    Google Scholar

    [57] Han Min, Xu Changchun, Long Yunxia, Liu Fang. 2022. Simulation and prediction of changes in carbon storage and carbon source/sink under different land use scenarios in arid region of Northwest China[J]. Bulletin of Soil and Water Conservation, 42(3): 335−344 (in Chinese with English abstract).

    Google Scholar

    [58] Hastings S J, Oechel W C, Muhlia−Melo A. 2005. Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico[J]. Global Change Biology, 11(6): 927−939. doi: 10.1111/j.1365-2486.2005.00951.x

    CrossRef Google Scholar

    [59] Hoefs J, Hoefs J. 1997. Stable Isotope Geochemistry[M]. Berlin: Springer.

    Google Scholar

    [60] Hoegberg P, Fan H, Quist M, Binkley D A N, Tamm C O. 2006. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest[J]. Global Change Biology, 12(3): 489−499. doi: 10.1111/j.1365-2486.2006.01102.x

    CrossRef Google Scholar

    [61] Huang B, Wang J. 2006. Effects of long−term application fertilizer on carbon storage in calcareous meadow soil[J]. Journal of Agro−Environment Science, 25(1).

    Google Scholar

    [62] Huang Qiaoyun, Lin Qimei, Xu Jianming. 2015. Soil Biochemistry[M]. Beijing: Higher Education Press (in Chinese).

    Google Scholar

    [63] Huerta P, Rodríguez−Berriguete Á, Martín−García R, Martín−Pérez A, Fernández Á L I, Alonso−Zarza A M. 2015. The role of climate and aeolian dust input in calcrete formation in volcanic islands (Lanzarote and Fuerteventura, Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 417: 66−79.

    Google Scholar

    [64] Jacobson A D, Blum J D, Chamberlain C P, Poage M A, Sloan V F. 2002. Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: carbonate versus silicate weathering rates as a function of landscape surface age[J]. Geochimica et Cosmochimica Acta, 66(1): 13−27. doi: 10.1016/S0016-7037(01)00755-4

    CrossRef Google Scholar

    [65] Jasoni R L, Smith S D, Arnone III J A. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2[J]. Global Change Biology, 11(5): 749−756.

    Google Scholar

    [66] Jia X, Zha T S, Wu B, Zhang Y Q, Gong J N, Qin S G, Chen G P, Qian D, Kellomäki S, Peltola H. 2014. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 1(17): 4679−4693.

    Google Scholar

    [67] Joos F. 1994. Imbalance in the budget[J]. Nature, 370(6486): 18l−182.

    Google Scholar

    [68] Khalidy R, Arnaud E, Santos R M. 2022. Natural and human−induced factors on the accumulation and migration of pedogenic carbonate in soil: A review[J]. Land, 11(9): 1448. doi: 10.3390/land11091448

    CrossRef Google Scholar

    [69] Kim J H, Jobbágy E G, Richter D D, Trumbore S E, Jackson R B. 2020. Agricultural acceleration of soil carbonate weathering[J]. Global Change Biology, 26(10): 5988−6002. doi: 10.1111/gcb.15207

    CrossRef Google Scholar

    [70] Kraimer R A, Monger H C. 2009. Carbon isotopic subsets of soil carbonate—A particle size comparison of limestone and igneous parent materials[J]. Geoderma, 150(1/2): 1−9. doi: 10.1016/j.geoderma.2008.11.042

    CrossRef Google Scholar

    [71] Kuzyakov Y, Domanski G. 2002. Model for rhizodeposition and CO2 efflux from planted soil and its validation by 14C pulse labelling of ryegrass[J]. Plant and Soil, 239: 87−102. doi: 10.1023/A:1014939120651

    CrossRef Google Scholar

    [72] Kuzyakov Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry, 38(3): 425−448. doi: 10.1016/j.soilbio.2005.08.020

    CrossRef Google Scholar

    [73] Lal R, Kimble J M, Stewart B A, Eswaran H. 1999. Global Climate Change and Pedogenic Carbonates[M]. United States: CRC Press.

    Google Scholar

    [74] Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623−1627. doi: 10.1126/science.1097396

    CrossRef Google Scholar

    [75] Lal R. 2008. Sequestration of atmospheric CO2 in global carbon pools[J]. Energy & Environmental Science, 1(1): 86−100.

    Google Scholar

    [76] Lal R. 2019. Carbon Cycling in Global Drylands[J]. Current Climate Change Reports, 5: 221−232. doi: 10.1007/s40641-019-00132-z

    CrossRef Google Scholar

    [77] Landi A, Mermut A R, Anderson D W. 2003. Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada[J]. Geoderma, 117(1/2): 143−156. doi: 10.1016/S0016-7061(03)00161-7

    CrossRef Google Scholar

    [78] Li Fushan, Han Guilin. 2012. Strontium isotopes in forest ecosystem study: A review[J]. Chinese Journal of Ecology, 31(11): 2935−2942(in Chinese with English abstract).

    Google Scholar

    [79] Li S, Li H, Yang C, Wang Y, Xue H, Niu Y. 2016. Rates of soil acidification in tea plantations and possible causes[J]. Agriculture, Ecosystems & Environment, 233: 60−66.

    Google Scholar

    [80] Li Y, Wang Y G, Houghton R A, Tang L S. 2015. Hidden carbon sink beneath desert[J]. Geophysical Research Letters, 42(14): 5880−5887. doi: 10.1002/2015GL064222

    CrossRef Google Scholar

    [81] Li Yan, Wang Yugang, Tang Lisong. 2016. The effort to re−activate the inorganic carbon in soil[J]. Acta Pedologica Sinica, 53(4): 845−849 (in Chinese with English abstract).

    Google Scholar

    [82] Li Yangmei, Gong Lu, An Shenqun, Sun Li, Chen Xin. 2018. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science, 39(8): 3867−3875 (in Chinese with English abstract).

    Google Scholar

    [83] Li Z P, Han F X, Su Y, Zhang T L, Sun B, Monts D L, Plodinec M J. 2007. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma, 138(1/2): 119−126. doi: 10.1016/j.geoderma.2006.11.007

    CrossRef Google Scholar

    [84] Lintern M J, Sheard M J, Chivas A R. 2006. The source of pedogenic carbonate associated with gold−calcrete anomalies in the western Gawler Craton, South Australia[J]. Chemical Geology, 235(3/4): 299−324. doi: 10.1016/j.chemgeo.2006.08.001

    CrossRef Google Scholar

    [85] Liu J, Fa K, Zhang Y, Wu B, Qin S, Jia X. 2015a. Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 42(14): 5779−5785. doi: 10.1002/2015GL064689

    CrossRef Google Scholar

    [86] Liu J, Feng W, Zhang Y, Jia X, Wu B, Qin S, Fa K, Lai Z. 2015b. Abiotic CO2 exchange between soil and atmosphere and its response to temperature[J]. Environmental Earth Sciences, 73: 2463−2471. doi: 10.1007/s12665-014-3595-9

    CrossRef Google Scholar

    [87] Liu Lian, Yin Qiuzhen, Wu Haibin, Guo Zhengtang. 2010. Carbon isotopic compositions of pore and matrix carbonates in carbonate nodules, and origin of carbonate formation[J]. Chinese Science Bulletin, 55(26): 2647−2650 (in Chinese).

    Google Scholar

    [88] Liu R, Li Y, Wang Q X. 2012. Variations in water and CO2 fluxes over a saline desert in western China[J]. Hydrological Processes, 26(4): 513−522.

    Google Scholar

    [89] Liu T, Wang L, Feng X, Zhang J, Ma T, Wang X, Liu Z. 2018. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands[J]. Biogeosciences, 15(5): 1627−1641. doi: 10.5194/bg-15-1627-2018

    CrossRef Google Scholar

    [90] Liu W, Wei J, Cheng J, Li W. 2014. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22−year scale in the Chinese Loess Plateau[J]. Catena, 121: 321−329. doi: 10.1016/j.catena.2014.05.019

    CrossRef Google Scholar

    [91] Liu Z, Dreybrodt W, Wang H. 2010. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth−Science Reviews, 99(3/4): 162−172. doi: 10.1016/j.earscirev.2010.03.001

    CrossRef Google Scholar

    [92] Liu Z H. 2011. Is pedogenic carbonate an important atmospheric CO2 sink?[J]. Chinese Science Bulletin, 56(35): 3794−3796. doi: 10.1007/s11434-010-4288-8

    CrossRef Google Scholar

    [93] López−Ballesteros A, Serrano−Ortiz P, Kowalski A S, Sánchez−Canete E P, Scott R L, Domingo F. 2017. Subterranean ventilation of allochthonous CO2 governs net CO2 exchange in a semiarid Mediterranean grassland[J]. Agricultural and Forest Meteorology, 234: 115−126.

    Google Scholar

    [94] Lu T, Wang X, Xu M, Yu Z, Luo Y, Smith P. 2020. Dynamics of pedogenic carbonate in the cropland of the North China Plain: Influences of intensive cropping and salinization[J]. Agriculture, Ecosystems & Environment, 292: 106820.

    Google Scholar

    [95] Lucas R W, Klaminder J, Futter M N, Bishop K H, Egnell G, Laudon H, Högberg P. 2011. A meta−analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams[J]. Forest Ecology and Management, 262(2): 95−104. doi: 10.1016/j.foreco.2011.03.018

    CrossRef Google Scholar

    [96] Ma J, Liu R, Tang L S, Lan Z D, Li Y. 2014. A downward CO2 flux seems to have nowhere to go[J]. Biogeosciences, 11(22): 6251−6262. doi: 10.5194/bg-11-6251-2014

    CrossRef Google Scholar

    [97] Ma J, Wang Z Y, Stevenson B A, Zheng X J, Li Y. 2013. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils[J]. Scientific Reports, 3(1): 2025. doi: 10.1038/srep02025

    CrossRef Google Scholar

    [98] Ma Y F, Gao Y H, Feng Q L. 2010. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls[J]. Journal of Crystal Growth, 312(21): 3165−3170. doi: 10.1016/j.jcrysgro.2010.07.053

    CrossRef Google Scholar

    [99] Magaritz M, Amiel A J. 1980. Calcium carbonate in a calcareous soil from the Jordan Valley, Israel: Its origin as revealed by the stable carbon isotope method[J]. Soil Science Society of America Journal, 44(5): 1059−1062. doi: 10.2136/sssaj1980.03615995004400050037x

    CrossRef Google Scholar

    [100] Marchant B P, Villanneau E J, Arrouays D, Saby N P A, Rawlins B G. 2015. Quantifying and mapping topsoil inorganic carbon concentrations and stocks: Approaches tested in France[J]. Soil Use and Management, 31(1): 29−38. doi: 10.1111/sum.12158

    CrossRef Google Scholar

    [101] Marion G M, Introne D S, Van Cleve K. 1991. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, USA: composition and mechanisms of formation[J]. Chemical Geology: Isotope Geoscience Section, 86(2): 97−110. doi: 10.1016/0168-9622(91)90056-3

    CrossRef Google Scholar

    [102] Markewitz D, Richter D D, Allen H L, Urrego J B. 1998. Three decades of observed soil acidification in the Calhoun Experimental Forest: Has acid rain made a difference?[J]. Soil Science Society of America Journal, 62(5): 1428−1439. doi: 10.2136/sssaj1998.03615995006200050040x

    CrossRef Google Scholar

    [103] Martin J B. 2017. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 449: 58−72. doi: 10.1016/j.chemgeo.2016.11.029

    CrossRef Google Scholar

    [104] Meng X, Liu L, Balsam W, Li S, He T, Chen J, Ji J. 2015. Dolomite abundance in Chinese loess deposits: A new proxy of monsoon precipitation intensity[J]. Geophysical Research Letters, 42(23): 10391−10398.

    Google Scholar

    [105] Meng X, Liu L, Wang X T, Balsam W, Chen J, Ji J. 2018. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 486: 61−69. doi: 10.1016/j.jpgl.2017.12.048

    CrossRef Google Scholar

    [106] Mi N A, Wang S, Liu J, Yu G, Zhang W, Jobbagy E. 2008. Soil inorganic carbon storage pattern in China[J]. Global Change Biology, 14(10): 2380−2387. doi: 10.1111/j.1365-2486.2008.01642.x

    CrossRef Google Scholar

    [107] Mikhailova E A, Post C J. 2006. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem[J]. Journal of Environmental Quality, 35(4): 1384−1388. doi: 10.2134/jeq2005.0151

    CrossRef Google Scholar

    [108] Monger H C, Daugherty L A, Lindemann W C, Liddell C M. 1991. Microbial precipitation of pedogenic calcite[J]. Geology, 19(10): 997−1000. doi: 10.1130/0091-7613(1991)019<0997:MPOPC>2.3.CO;2

    CrossRef Google Scholar

    [109] Monger H C, Gallegos R A. 2000. Biotic and abiotic processes and rates of pedogenic carbonate accumulation in the southwestern United States—relationship to atmospheric CO2 sequestration[C]// Lal R, Kimble J M, Eswaran H, Stewart B A (eds. ). Global Climate Change and Pedogenic Carbonates. Boca Raton: Lewis Publishers, 273–290.

    Google Scholar

    [110] Monger H C, Kraimer R A, Khresat S E, Cole D R, Wang X, Wang J. 2015. Sequestration of inorganic carbon in soil and groundwater[J]. Geology, 43(5): 375−378. doi: 10.1130/G36449.1

    CrossRef Google Scholar

    [111] Monger, H. C. 2014. Soils as generators and sinks of inorganic carbon in geologic time[J]. Soil Carbon, 27−36.

    Google Scholar

    [112] Morgun E G, Kovda I V, Ryskov Y G, Oleinik S A. 2008. Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies[J]. Eurasian Soil Science, 41(3): 265−275. doi: 10.1134/S1064229308030046

    CrossRef Google Scholar

    [113] Naiman Z, Quade J, Patchett P J. 2000. Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the southwest United States[J]. Geochimica et Cosmochimica Acta, 64(18): 3099−3109. doi: 10.1016/S0016-7037(00)00410-5

    CrossRef Google Scholar

    [114] Naorem A, Jayaraman S, Dalal R C, Patra A, Rao C S, Lal R. 2022. Soil inorganic carbon as a potential sink in carbon storage in dryland soils—A review[J]. Agriculture, 12(8): 1256. doi: 10.3390/agriculture12081256

    CrossRef Google Scholar

    [115] Neira J, Ortiz M, Morales L, Acevedo E. 2015. Oxygen diffusion in soils: understanding the factors and processes needed for modeling[J]. Chilean Journal of Agricultural Research, 75: 35−44.

    Google Scholar

    [116] Nordt L C, Hallmark C T, Wilding L P, Boutton T W. 1998. Quantifying pedogenic carbonate accumulations using stable carbon isotopes[J]. Geoderma, 82(1/3): 115−136. doi: 10.1016/S0016-7061(97)00099-2

    CrossRef Google Scholar

    [117] Nyachoti S, Jin L, Tweedie C E, Ma L. 2019. Insight into factors controlling formation rates of pedogenic carbonates: A combined geochemical and isotopic approach in dryland soils of the US Southwest[J]. Chemical Geology, 527: 118503. doi: 10.1016/j.chemgeo.2017.10.014

    CrossRef Google Scholar

    [118] Oh N H, Richter D D, Jr D D R. 2004. Soil acidification induced by elevated atmospheric CO2[J]. Global Change Biology, 10(11): 1936−1946. doi: 10.1111/j.1365-2486.2004.00864.x

    CrossRef Google Scholar

    [119] Ouyang X, Zhou G, Huang Z, Liu J, Zhang D, Jiong L. 2008. Effect of simulated acid rain on potential carbon and nitrogen mineralization in forest soils[J]. Pedosphere, 18(4): 503−514. doi: 10.1016/S1002-0160(08)60041-7

    CrossRef Google Scholar

    [120] Pan Genxing. 1999. Pedogenic carbonates in aridic soils of China and the significance in terrestrial carbon transfer[J]. Journal of Nanjing Agricultural University, 22(1): 51(in Chinese with English abstract).

    Google Scholar

    [121] Parsons A N, Barrett J E, Wall D H, Virginia R A. 2004. Soil carbon dioxide flux in Antarctic dry valley ecosystems[J]. Ecosystems, 7: 286−295.

    Google Scholar

    [122] Pustovoytov K. 2003. Growth rates of pedogenic carbonate coatings on coarse clasts[J]. Quaternary International, 106: 131−140.

    Google Scholar

    [123] Quade J, Cerling T E, Bowman J R. 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States[J]. Geological Society of America Bulletin, 101(4): 464−475. doi: 10.1130/0016-7606(1989)101<0464:SVITCA>2.3.CO;2

    CrossRef Google Scholar

    [124] Raheb A, Heidari A, Mahmoodi S. 2017. Organic and inorganic carbon storage in soils along an arid to dry sub−humid climosequence in northwest of Iran[J]. Catena, 153: 66−74. doi: 10.1016/j.catena.2017.01.035

    CrossRef Google Scholar

    [125] Raza S, Miao N, Wang P Z, Ju X T, Chen Z J, Zhou J B, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands[J].Global Change Biology, 26(6): 3738−3751.

    Google Scholar

    [126] Raza S, Zamanian K, Ullah S, Kuzyakov Y, Virto I, Zhou J. 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation[J]. Journal of Cleaner Production, 315: 128036. doi: 10.1016/j.jclepro.2021.128036

    CrossRef Google Scholar

    [127] Rech J A, Quade J, Hart W S. 2003. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile[J]. Geochimica et Cosmochimica Acta, 67(4): 575−586. doi: 10.1016/S0016-7037(02)01175-4

    CrossRef Google Scholar

    [128] Rengel Z. 2003. Handbook of Soil Acidity[M]. Panama: CRC Press.

    Google Scholar

    [129] Rousk J, Bååth E, Brookes P C, Lauber C L, Lozupone C, Caporaso J G, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 4(10): 1340−1351. doi: 10.1038/ismej.2010.58

    CrossRef Google Scholar

    [130] Rovira P, Vallejo V R. 2008. Changes in δ13C composition of soil carbonates driven by organic matter decomposition in a Mediterranean climate: A field incubation experiment[J]. Geoderma, 144(3/4): 517−534. doi: 10.1016/j.geoderma.2008.01.006

    CrossRef Google Scholar

    [131] Ryskov Y G, Demkin V A, Oleynik S A, Ryskova E A. 2008. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia[J]. Global and Planetary Change, 61(1/2): 63−69. doi: 10.1016/j.gloplacha.2007.08.006

    CrossRef Google Scholar

    [132] Salomons W, Goudie A, Mook W G. 1978. Isotopic composition of calcrete deposits from Europe, Africa and India[J]. Earth Surface Processes, 3(1): 43−57. doi: 10.1002/esp.3290030105

    CrossRef Google Scholar

    [133] Sanderman J. 2012. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia[J]. Agriculture, Ecosystems & Environment, 155: 70−77.

    Google Scholar

    [134] Scharpenseel H W, Mtimet A, Freytag J. 2000. Global Climate Change and Pedogenic Carbonates[M]. Boca Raton, Florida: CRC Press, 27–42.

    Google Scholar

    [135] Schindlbacher A, Beck K, Holzheu S, Borken W. 2019. Inorganic carbon leaching from a warmed and irrigated carbonate forest soil[J]. Frontiers in Forests and Global Change, 2: 40. doi: 10.3389/ffgc.2019.00040

    CrossRef Google Scholar

    [136] Schindler D W. 1999. Carbon cycling: The mysterious missing sink[J]. Nature, 398(6723): 105−106. doi: 10.1038/18111

    CrossRef Google Scholar

    [137] Schlesinger W H, Belnap J, Marion G. 2009. On carbon sequestration in desert ecosystems[J]. Global Change Biology, 15(6): 1488−1490. doi: 10.1111/j.1365-2486.2008.01763.x

    CrossRef Google Scholar

    [138] Schlesinger W H, Marion G M, Fonteyn P J. 1989. Stable isotope ratios and the dynamics of caliche in desert soils[C]//Stable Isotopes in Ecological Research. Springer New York, 309−317.

    Google Scholar

    [139] Schlesinger W H. 1982. Carbon storage in the caliche of arid soils: A case study from Arizona[J]. Soil Science, 133(4): 247−255. doi: 10.1097/00010694-198204000-00008

    CrossRef Google Scholar

    [140] Schlesinger W H. 1985. The formation of caliche in soils of the Mojave Desert, California[J]. Geochimica et Cosmochimica Acta, 49(1): 57−66. doi: 10.1016/0016-7037(85)90191-7

    CrossRef Google Scholar

    [141] Schlesinger W H. 1999. Carbon sequestration in soils[J]. Science, 284(5423): 2095−2095. doi: 10.1126/science.284.5423.2095

    CrossRef Google Scholar

    [142] Schlesinger W H. 2000. Carbon sequestration in soils: Some cautions amidst optimism[J]. Agriculture, Ecosystems & Environment, 82(1/3): 121−127.

    Google Scholar

    [143] Schlesinger W H. 2017. An evaluation of abiotic carbon sinks in deserts[J]. Global Change Biology, 23(1): 25−27. doi: 10.1111/gcb.13336

    CrossRef Google Scholar

    [144] Shanhun F L, Almond P C, Clough T J, Smith C M. 2012. Abiotic processes dominate CO2 fluxes in Antarctic soils[J]. Soil Biology and Biochemistry, 53: 99−111. doi: 10.1016/j.soilbio.2012.04.027

    CrossRef Google Scholar

    [145] Shi Y, Baumann F, Ma Y, Song C, Kühn P, Scholten T, He J S. 2012. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 9(6): 2287−2299. doi: 10.5194/bg-9-2287-2012

    CrossRef Google Scholar

    [146] Soltanian M R, Dai Z. 2017. Geologic CO2 sequestration: Progress and challenges[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 3: 221−223. doi: 10.1007/s40948-017-0066-2

    CrossRef Google Scholar

    [147] Sombroek W G, Nachtergaele F O, Hebel A. 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. AMBIO: A Journal of the Human Environment, 22(7): 417

    Google Scholar

    [148] Song X, Yang F, Wu H, Zhang J, Li D, Liu F, Zhao Y, Yang J, Ju B, Cai C, Huang B, Long H, Lu Y, Sui Y, Wang Q, Wu K, Zhang F, Zhang M, Shi Z, Ma W, Xin G, Qi Z, Chang Q, Ci E, Yuan D, Zhang Y, Bai J, Chen J, Chen J, Chen Y, Dong Y, Han C, Li L, Liu L, Pan J, Song F, Sun F, Wang D, Wang T, Wei X, Wu H, Zhao X, Zhou Q, Zhang G. 2022. Significant loss of soil inorganic carbon at the continental scale[J]. National Science Review, 9(2): nwab120. doi: 10.1093/nsr/nwab120

    CrossRef Google Scholar

    [149] Soper F M, McCalley C K, Sparks K, Sparks J P. 2017. Soil carbon dioxide emissions from the Mojave desert: Isotopic evidence for a carbonate source[J]. Geophysical Research Letters, 44(1): 245−251. doi: 10.1002/2016GL071198

    CrossRef Google Scholar

    [150] Stevenson B A, Kelly E F, McDonald E V, Busacca A J. 2005. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA[J]. Geoderma, 124(1/2): 37−47. doi: 10.1016/j.geoderma.2004.03.006

    CrossRef Google Scholar

    [151] Stone R. 2008. Have desert researchers discovered a hidden loop in the carbon cycle?[J]. Science, 320(5882): 1409−1410 doi: 10.1126/science.320.5882.1409

    CrossRef Google Scholar

    [152] Su Y, Wang X, Yang R, Lee J. 2010. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China[J]. Journal of Environmental Management, 91(11): 2109−2116. doi: 10.1016/j.jenvman.2009.12.014

    CrossRef Google Scholar

    [153] Takle E S, Massman W J, Brandle J R, Schmidt R A, Zhou X, Litvina I V, Garcia R, Doyle G, Rice C W. 2004. Influence of high−frequency ambient pressure pumping on carbon dioxide efflux from soil[J]. Agricultural and Forest Meteorology, 124(3/4): 193−206. doi: 10.1016/j.agrformet.2004.01.014

    CrossRef Google Scholar

    [154] Tamir G, Shenker M, Heller H, Bloom P R, Fine P, Bar−Tal A. 2012. Dissolution and re‐crystallization processes of active calcium carbonate in soil developed on tufa[J]. Soil Science Society of America Journal, 76(5): 1606−1613. doi: 10.2136/sssaj2012.0041

    CrossRef Google Scholar

    [155] Tan W F, Zhang R, Cao H, Huang C Q, Yang Q K, Wang M K, Koopal L K. 2014. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China[J]. Catena, 121: 22−30. doi: 10.1016/j.catena.2014.04.014

    CrossRef Google Scholar

    [156] Tong L S, Fang N F, Xiao H B, Shi Z H. 2020. Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau[J]. Agriculture, Ecosystems & Environment, 302: 107076.

    Google Scholar

    [157] Violette A, Riotte J, Braun J J, Oliva P, Marechal J C, Sekhar M, Jeandel C, Subramanian S, Prunier J, Barbiero L, Dupre B. 2010. Formation and preservation of pedogenic carbonates in South India, links with paleo−monsoon and pedological conditions: Clues from Sr isotopes, U–Th series and REEs[J]. Geochimica et Cosmochimica Acta, 74(24): 7059−7085. doi: 10.1016/j.gca.2010.09.006

    CrossRef Google Scholar

    [158] Wang C, Li W, Yang Z, Chen Y, Shao W, Ji J. 2015a. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability[J]. Scientific Reports, 5(1): 12735. doi: 10.1038/srep12735

    CrossRef Google Scholar

    [159] Wang J P, Wang X J, Zhang J, Zhao C Y. 2015b. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of northwestern China[J]. European Journal of Soil Science, 66(1): 95−103. doi: 10.1111/ejss.12188

    CrossRef Google Scholar

    [160] Wang J, Monger C, Wang X, Serena M, Leinauer B. 2016. Carbon sequestration in response to grassland–shrubland–turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA[J]. Soil Science Society of America Journal, 80(6): 1591−1603. doi: 10.2136/sssaj2016.03.0061

    CrossRef Google Scholar

    [161] Wang Jianxiu, Wu Yuanbin, Yu Haipeng. 2013. Review of the technology for sequestration of carbon dioxide[J]. Chinese Journal of Underground Space and Engineering, 9(1): 81−90 (in Chinese with English abstract).

    Google Scholar

    [162] Wang X, Wang J, Shi H, Guo Y. 2018. Carbon sequestration in arid lands: A mini review[J]. Carbon Cycle in the Changing Arid Land of China, 133−141.

    Google Scholar

    [163] Wang X, Wang J, Xu M, Zhang W, Fan T, Zhang J. 2015c. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon[J]. Scientific Reports, 5(1): 11439. doi: 10.1038/srep11439

    CrossRef Google Scholar

    [164] Wang X, Xu M, Wang J, Zhang W, Yang X, Huang S, Liu H. 2014. Fertilization enhancing carbon sequestration as carbonate in arid cropland: assessments of long−term experiments in northern China[J]. Plant and Soil, 380: 89−100. doi: 10.1007/s11104-014-2077-x

    CrossRef Google Scholar

    [165] Wang Y, Hsieh Y P. 2002. Uncertainties and novel prospects in the study of the soil carbon dynamics[J]. Chemosphere, 49(8): 791−804. doi: 10.1016/S0045-6535(02)00381-8

    CrossRef Google Scholar

    [166] Wang Y, Li Y, Ye X, Chu Y, Wang X. 2010. Profile storage of organic/inorganic carbon in soil: From forest to desert[J]. Science of the Total Environment, 408(8): 1925−1931. doi: 10.1016/j.scitotenv.2010.01.015

    CrossRef Google Scholar

    [167] Wang Y, Wang Z, Li Y. 2013a. Storage/turnover rate of inorganic carbon and its dissolvable part in the profile of saline/alkaline soils[J]. PloS Ones, 8(11): e82029. doi: 10.1371/journal.pone.0082029

    CrossRef Google Scholar

    [168] Wang Z P, Han X G, Chang S X, Wang B, Yu Q, Hou L Y, Li L H. 2013b. Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia[J]. Catena, 109: 110−117. doi: 10.1016/j.catena.2013.04.008

    CrossRef Google Scholar

    [169] Whipkey C E, Capo R C, Chadwick O A, Stewart B W. 2000. The importance of sea spray to the cation budget of a coastal Hawaiian soil: a strontium isotope approach[J]. Chemical Geology, 168(1−2): 37−48. doi: 10.1016/S0009-2541(00)00187-X

    CrossRef Google Scholar

    [170] Wofsy S C. 2001. Where has all the carbon gone?[J]. Science, 292(5525): 2261−2263. doi: 10.1126/science.1061077

    CrossRef Google Scholar

    [171] Wohlfahrt G, Fenstermaker L F, Arnone III J A. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 14(7): 1475−1487. doi: 10.1111/j.1365-2486.2008.01593.x

    CrossRef Google Scholar

    [172] Wu H, Guo Z, Gao Q, Peng C. 2009. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China[J]. Agriculture, Ecosystems & Environment, 129(4): 413−421.

    Google Scholar

    [173] Wu L, Wood Y, Jiang P, Li L, Pan G, Lu J, Chang A C, Enloe H A. 2008. Carbon sequestration and dynamics of two irrigated agricultural soils in California[J]. Soil Science Society of America Journal, 72(3): 808−814. doi: 10.2136/sssaj2007.0074

    CrossRef Google Scholar

    [174] Xia Xueqi, Yang Zhongfang, Yu Tao, Hou Qingye, Cheng Hangxin, Zhou Guohua. 2018. Series Parameters of Soil Carbon Density in China[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [175] Xie J, Li Y, Zhai C, Li C, Lan Z. 2009. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 56: 953−961. doi: 10.1007/s00254-008-1197-0

    CrossRef Google Scholar

    [176] Yang F, Huang L, Yang R, Yang F, Li D, Zhao Y, Yang J, Zhang, G. 2018. Vertical distribution and storage of soil organic and inorganic carbon in a typical inland river basin, Northwest China[J]. Journal of Arid Land, 10: 183−201. doi: 10.1007/s40333-018-0051-9

    CrossRef Google Scholar

    [177] Yang S, Ding Z, Gu Z. 2014. Acetic acid−leachable elements in pedogenic carbonate nodules and links to the East−Asian summer monsoon[J]. Catena, 117: 73−80. doi: 10.1016/j.catena.2013.06.030

    CrossRef Google Scholar

    [178] Yang Y, Fang J, Ji C, Ma W, Mohammat A, Wang S F, Wang S P, Datta A, Robinson D, Smith P. 2012. Widespread decreases in topsoil inorganic carbon stocks across C hina's grasslands during 1980s–2000s[J]. Global Change Biology, 18(12): 3672−3680. doi: 10.1111/gcb.12025

    CrossRef Google Scholar

    [179] Yang Y, Fang J, Ji C, Ma W, Su S, Tang Z. 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands[J]. Global Biogeochemical Cycles, 24(4).

    Google Scholar

    [180] Yates E L, Detweiler A M, Iraci L T, Bebout B M, McKay C P, Schiro K, Sheffner E, Kelley C, Tadić J, Loewenstein M. 2013. Assessing the role of alkaline soils on the carbon cycle at a playa site[J]. Environmental Earth Sciences, 70(3): 1047−1056. doi: 10.1007/s12665-012-2194-x

    CrossRef Google Scholar

    [181] Yi Chenggong. 2022. Temporal and spatial Variation of Soil Moisture and Its Influencing Factors in Arid And Semi-Arid Areas of China from 2000 to 2020[D]. Xinyang: Xinyang Normal University (in Chinese with English abstract).

    Google Scholar

    [182] Zamanian K, Kuzyakov Y. 2019. Contribution of soil inorganic carbon to atmospheric CO2: More important than previously thought[J]. Glob. Change Biol, 25: E1−E3. doi: 10.1111/gcb.14437

    CrossRef Google Scholar

    [183] Zamanian K, Pustovoytov K, Kuzyakov Y. 2016. Pedogenic carbonates: Forms and formation processes[J]. Earth−Science Reviews, 157: 1−17. doi: 10.1016/j.earscirev.2016.03.003

    CrossRef Google Scholar

    [184] Zamanian K, Zarebanadkouki M, Kuzyakov Y. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment[J]. Global Change Biology, 24(7): 2810−2817. doi: 10.1111/gcb.14148

    CrossRef Google Scholar

    [185] Zamanian K. 2005. Study of Fashand-Hashtgerd Soils and Investigation on the Mechanisms of Petrocalcic Horizon Formation in These Soils[D]. Iran: Tehran University.

    Google Scholar

    [186] Zamanian K, Zhou J, Kuzyakov Y. 2021. Soil carbonates: The unaccounted, irrecoverable carbon source[J]. Geoderma, 384: 114817. doi: 10.1016/j.geoderma.2020.114817

    CrossRef Google Scholar

    [187] Zhang F, Wang X, Guo T, Zhang P, Wang J. 2015. Soil organic and inorganic carbon in the loess profiles of Lanzhou area: Implications of deep soils[J]. Catena, 126: 68−74. doi: 10.1016/j.catena.2014.10.031

    CrossRef Google Scholar

    [188] Zhang Lin, Sun Xiangyang, Cao Jixin, Gao Chengda, Bao Yin. 2010. Transfer of organic carbon to inorganic carbonates in carbonate soil of desert grassland[J]. Arid Land Geography, 33(5): 732−739 (in Chinese).

    Google Scholar

    [189] Zhao W, Zhang R, Huang C, Wang B, Cao H, Koopal L K, Tan W. 2016. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau[J]. Catena, 139: 191−198. doi: 10.1016/j.catena.2016.01.003

    CrossRef Google Scholar

    [190] Zhao X, Zhao C, Stahr K, Kuzyakov Y, Wei X. 2020. The effect of microorganisms on soil carbonate recrystallization and abiotic CO2 uptake of soil[J]. Catena, 192: 104592. doi: 10.1016/j.catena.2020.104592

    CrossRef Google Scholar

    [191] Zheng Jufeng, Cheng Kun, Pan Genxing, Smith Pete, Li Lianqing, Zhang Xuhui, Zheng Jinwei, Han Xiaojun, Du Yanling. 2011. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China[J]. Chinese Science Bulletin, 56(26): 2162−2173 (in Chinese).

    Google Scholar

    [192] 达佳伟. 2020. 基于黄土高原成壤碳酸盐的古大气二氧化碳浓度定量重建研究[D]. 南京: 南京大学.

    Google Scholar

    [193] 法科宇, 雷光春, 张宇清, 刘加彬. 2018. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 33(5): 464−472.

    Google Scholar

    [194] 方精云, 郭兆迪. 2007. 寻找失去的陆地碳汇[J]. 自然杂志, 29(1): 1−6.

    Google Scholar

    [195] 韩敏, 徐长春, 隆云霞, 刘芳. 2022. 西北干旱区不同土地利用情景下的碳储量及碳源/汇变化模拟与预估[J]. 水土保持通报, 42(3): 335−344.

    Google Scholar

    [196] 黄巧云, 林启美, 徐建明. 2015. 土壤生物化学[M]. 北京: 高等教育出版社.

    Google Scholar

    [197] 李富山, 韩贵琳. 2012. 锶同位素在森林生态系统研究中的进展[J]. 生态学杂志, 31(11): 2935−2942.

    Google Scholar

    [198] 李彦, 王玉刚, 唐立松. 2016. 重新被 “激活” 的土壤无机碳研究[J]. 土壤学报, 53(4): 845−849.

    Google Scholar

    [199] 李杨梅, 贡璐, 安申群, 孙力, 陈新. 2018. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J]. 环境科学, 39(8): 3867−3875.

    Google Scholar

    [200] 刘恋, 尹秋珍, 吴海斌, 郭正堂. 2010. 成壤钙结核孔隙和基质碳酸盐碳同位素对比及其对碳酸盐成因的指示意义[J]. 科学通报, 55(26): 2647−2650.

    Google Scholar

    [201] 潘根兴. 1999. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移的意义[J]. 南京农业大学学报, 22(1): 54−60.

    Google Scholar

    [202] 王建秀, 吴远斌, 于海鹏. 2013. 二氧化碳封存技术研究进展[J]. 地下空间与工程学报, 9(1): 81−90.

    Google Scholar

    [203] 夏学齐, 杨忠芳, 余涛, 侯青叶, 成杭新, 周国华. 2018. 中国土壤碳密度系列参数[M]. 北京: 地质出版社.

    Google Scholar

    [204] 易成功. 2022. 2000−2020年中国干旱半干旱区土壤湿度时空变化及影响因素[D]. 信阳: 信阳师范学院.

    Google Scholar

    [205] 张林, 孙向阳, 曹吉鑫, 高程达, 宝音贺希格. 2010. 荒漠草原碳酸盐岩土壤有机碳向无机碳酸盐的转移[J]. 干旱区地理, 33(5): 732−739.

    Google Scholar

    [206] 郑聚锋, 程琨, 潘根兴, Smith Pete, 李恋卿, 张旭辉, 郑金伟, 韩晓君, 杜彦玲. 2011. 关于中国土壤碳库及固碳潜力研究的若干问题[J]. 科学通报, 56(26): 2162−2173.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(7)

Article Metrics

Article views(907) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint