2024 Vol. 51, No. 4
Article Contents

CHEN Cong, WU Taotao, REN Yunsheng, ZHAO Chunqiang, HAO Yujie, SHANG Qingqing. 2024. Property and source of the ore–forming fluids and genesis of the Sidaogou scheelite deposit in the eastern Yanbian area, Jilin Province[J]. Geology in China, 51(4): 1175-1190. doi: 10.12029/gc20210302002
Citation: CHEN Cong, WU Taotao, REN Yunsheng, ZHAO Chunqiang, HAO Yujie, SHANG Qingqing. 2024. Property and source of the ore–forming fluids and genesis of the Sidaogou scheelite deposit in the eastern Yanbian area, Jilin Province[J]. Geology in China, 51(4): 1175-1190. doi: 10.12029/gc20210302002

Property and source of the ore–forming fluids and genesis of the Sidaogou scheelite deposit in the eastern Yanbian area, Jilin Province

    Fund Project: Supported by the projects of “Geology of Mineral Resources in China” (No.DD20221695, No.DD20190379, No.DD20160346), China Geology Survey (No.DD20242070, No.DD20230763), and the National Natural Science Foundation of China (No.41272094).
More Information
  • Author Bio: CHEN Cong, female, born in 1988, senior engineer, mainly engaged in mineral deposit and metallogenic regularity; E-mail: 1010674241@qq.com
  • Corresponding author: WU Taotao, male, born in 1988, senior engineer, mainly engaged in igneous rocks and metallogenic mechanism of endogenetic metal deposits; E-mail: 553583730@qq.com
  • This paper is the result of mineral exploration engineering.

    Objective

    Sidaogou deposit is located in the Au–Cu–W ore concentrated area of the eastern Yanbian, and is a typical quartz vein type scheelite deposit. This paper studied the property and source of the ore–forming fluids and genesis of the deposit, to promote the understanding of the quartz vein type scheelite deposit in NE China and further prospecting.

    Methods

    This paper presents the petrographic observation, microtemperature measurement and Laser Roman spectral analysis of the fluid inclusion, C–H–O isotope analysis and rare earth element compositions for the Sidaogou scheelite–quartz veins.

    Results

    Petrographic observation indicates that the liquid–rich, daughter minerals–bearing, gas–rich, and CO2–bearing inclusions coexisted in the quartz, and all the types of fluid inclusions have similar homogenization temperatures, which indicate that they belong to boiling fluid inclusions. The lowest homogenization temperature of the gas–rich fluid inclusion (283℃) represents the ore−forming temperature. Laser Raman spectral analysis indicates that the gas phases in the fluid inclusions include H2O and CO2, as well as minor CH4 and N2. Scheelite grains yield “hump” type REE patterns with weak negative δEu anomalies.

    Conclusions

    The results indicate that the ore–forming fluids of the Sidaogou scheelite deposit are oxidizing NaCl–H2O–CO2±CH4±N2 fluids with high–medium temperature. C–H–O isotopic data indicate that the ore–forming fluids were mainly derived from magmatic water, mixed with a little bit of meteoric water, and the carbonaceous material resulted from oxidation of organic material in the sedimentary rocks from the Wudaogou Group. Therefore, Sidaogou scheelite deposit belongs to mesothermal vein type scheelite deposit, and the fluid boiling induced the precipitation of scheelite.

  • 加载中
  • [1] Cao Huahua. 2010. Chronology and Geochemistry of Late Hercynian Gabbro and Diorite in Hunchun Area[D]. Changchun: Jilin University, 1–44 (in Chinese with English abstract).

    Google Scholar

    [2] Chen C, Ren Y S, Zhao H L, Zou X T, Yang Q, Hu Z C. 2014. Permian age of the Wudaogou Group in eastern Yanbian: Detrital zircon U–Pb constraints on the closure of the Palaeo–Asian Ocean in Northeast China[J]. International Geology Review, 56(14): 1754−1768. doi: 10.1080/00206814.2014.956348

    CrossRef Google Scholar

    [3] Chen C, Ren Y S, Zhao H L, Yang Q, Zou X T. 2015. The whole–rock geochemical composition of the Wudaogou Group in Eastern Yanbian, NE China–New clues to its relationship with the gold and tungsten mineralization and the evolution of the Paleo–Asian Ocean[J]. Resource Geology, 65(3): 232−248. doi: 10.1111/rge.12068

    CrossRef Google Scholar

    [4] Chen C, Ren Y S, Zhao H L, Yang Q, Shang Q Q. 2017. Age, tectonic setting, and metallogenic implication of Phanerozoic granitic magmatism at the eastern margin of the Xing’an–Mongolian Orogenic Belt, NE China[J]. Journal of Asian Earth Sciences, 144: 368−383. doi: 10.1016/j.jseaes.2017.02.012

    CrossRef Google Scholar

    [5] Chen Cong. 2017. Late Paleozoic–Mesozoic Tectonic Evolution and Regional Metallogenic Regularity of the Eastern Yanbian Area, NE China[D]. Changchun: Jilin University, 1–202 (in Chinese with English abstract).

    Google Scholar

    [6] Chen Cong, Ren Yunsheng, Zhao Hualei, Yang Qun, Zou Xintong, Hou Kejun, Jiang Guohao. 2015. Geochronology, geochemistry and metallogenic significance of Wudaogou granodiorite intrusion in Eastern Yanbian, NE China[J]. Journal of Central South University (Science and Technology), 46(8): 2962−2973 (in Chinese with English abstract).

    Google Scholar

    [7] Fu Changliang. 2009. The Geochronology, Geochemistry and Petrogenesis of Granitoid from Xiaoxi'nancha in Hunchu Area, Jilin Province[D]. Changchun: Jilin University, 1–61 (in Chinese with English abstract).

    Google Scholar

    [8] Ghaderi M, Palin J M, Campbell I H, Sylvester P J. 1999. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie–Norseman region, western Australia[J]. Economic Geology, 94(3): 423−437. doi: 10.2113/gsecongeo.94.3.423

    CrossRef Google Scholar

    [9] Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl–KCl–H2O[J]. Economic Geology, 83(1): 197−202. doi: 10.2113/gsecongeo.83.1.197

    CrossRef Google Scholar

    [10] Hao Yujie, Ren Yunsheng, Zhao Hualei, Zou Xintong, Chen Cong, Hou Zhaoshuo, Qu Wenjun. 2013. Re–Os isotopic dating of the molybdenite from the Cuihongshan W–Mo polymetallic deposit in Heilongjiang Province and Its geological significance[J]. Journal of Jilin University (Earth Science Edition), 43(6): 1840−1851 (in Chinese with English abstract).

    Google Scholar

    [11] He Peng, Yan Guangsheng, Zhu Xinyou, Zhang Zhongyi, Wang Yanli, Cheng Xiyin, Li Yongsheng, Zhen Shimin, Du Zezhong, Jia Delong, Gong Xiaodong. 2013. Fluid inclusion study of the Saishitang Cu deposit in Qinghai[J]. China Geology, 40(2): 580−594 (in Chinese with English abstract).

    Google Scholar

    [12] Hoefs J. 2009. Stable Isotope Geochemistry, Sixth Ed. Springer–Verlag[M]. Berlin: Heidelberg, 130–135.

    Google Scholar

    [13] Li Dongjin. 1997. Lithostratigraphy of Jilin Province[M]. Wuhan: China University of Geosciences Press, 1–388 (in Chinese).

    Google Scholar

    [14] Li Kekun, Wang Chunlian, Chen Xinli, Wang Guixiang, Shang Pengqiang, Zhang Qingsong, Liu Zengzheng, Han Zhikun, Yan Xiaobo, Jiang Jiyong. 2023. Characteristics of trace and rare earth elements of fluorite ore in Shaowu area, Fujian Province and its indication to ore-forming materials[J]. Geology in China, 50(3): 806–817 (in Chinese with English abstract).

    Google Scholar

    [15] Liu Hanbin, Jin Guishan, Li Junjie, Han Juan, Zhang Jianfeng, Zhangjia, Zhong Fangwen, Guo Dongqiao. 2013. Determination of stable isotope composition in uranium geological samples[J]. World Nuclear Geoscience, 30(3): 174−180 (in Chinese with English abstract).

    Google Scholar

    [16] Lu Huanzhang, Fan Hongrui, Ni Pei. 2004. Fluid Inclusion[M]. Beijing: Science Press, 1–487(in Chinese).

    Google Scholar

    [17] Mao Yin. 2012. Study on Stable Isotope, Fluid Inclusions and Mineralization of Saishitang Cu–polymetallic Deposit, Qinghai Province[D]. Changsha: Central South University, 1–67 (in Chinese with English abstract).

    Google Scholar

    [18] Meng Qingli, Zhou Yongchang, Chai Sheli. 2001. The Porphyry and Hydrothermal Lode Gold and Copper Deposits in Eastern Yanbian Region of China[M]. Changchun: Jilin Science and Technology Press, 1–163 (in Chinese).

    Google Scholar

    [19] Qin Zhengwei, Fu Jianming, Xing Guangfu, Cheng Shunbo, Lu Youyue, Zhu Yingxue. 2022. The petrogenetic differences of the Middle–Late Jurassic W-, Sn-, Pb-Zn-Cu-bearing granites in the Nanling Range, South China[J]. Geology in China, 49(2): 518–539 (in Chinese with English abstract).

    Google Scholar

    [20] Ray J S, Ramesh R, Pande K. 1999. Carbon isotopes in Kerguelen plume derived carbonatites: Evidence for recycled inorganic carbon[J]. Earth and Planetary Science Letters, 170(3): 205−214. doi: 10.1016/S0012-821X(99)00112-0

    CrossRef Google Scholar

    [21] Ren Yunsheng, Junan, Zhao Hualei, Wang Hui, Lu Xiuquan, Wu Changzhi. 2011. Geological characteristics and fluid inclusions of Wudaogou lode scheelite deposit in Eastern Yanbian, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 6(41): 1763−1744 (in Chinese with English abstract).

    Google Scholar

    [22] Ren Yunsheng, Zhao Hualei, Lei En, Wang Hui, Ju Nan, Wu Changzhi. 2010. Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou large scheelite deposit in Yanbian area, northeastern China[J]. Acta Petrologica Sinica, 26(12): 3720−3726 (in Chinese with English abstract).

    Google Scholar

    [23] Roedder E. 1984. Fluid inclusions: Reviews in mineralogy[J]. Mineralogical Society of America, 12: 1−646.

    Google Scholar

    [24] Shao Jielian. 1990. Mineralogy of Gold Ore Exploration[M]. Wuhan: China University of Geosciences Press, 1–158 (in Chinese).

    Google Scholar

    [25] Sheng Jifu, Chen Zhenghui, Liu Lijun, Ying Rujuan, Huang Fan, Wang Denghong, Wang Jiahuan, Zeng Le. 2015. Outline of metallogeny of tungsten deposits in China[J]. Acta Geologica Sinica, 89(6): 1038−1050 (in Chinese with English abstract).

    Google Scholar

    [26] Sterner S, Michael H, Donald L, Bodnar R J. 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl–H2O under vapor–saturated conditions[J]. Geochimica et Cosmochimica Acta, 52(5): 989−1005. doi: 10.1016/0016-7037(88)90254-2

    CrossRef Google Scholar

    [27] Sun Fengyue, Wang Li, Huo Liang, Wang Keyong. 2008. Fluid inclusion study on Wulaga gold deposit in Heilongjiang Province and implications for ore genesis[J]. China Geology, 35(6): 1267−1273 (in Chinese with English abstract).

    Google Scholar

    [28] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar

    [29] Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit[J]. Economic Geology, 69(6): 843−883. doi: 10.2113/gsecongeo.69.6.843

    CrossRef Google Scholar

    [30] Touret J. 1977. The Significance of Fluid Inclusions in Metamorphic Rocks[M]. Springer Netherlands, 203–227.

    Google Scholar

    [31] Wang Mingyan, Jia Muxin, Xiao Yiwu, Sun Chuan Rao, Li Yanfeng, Jin Jianwen. 2014. Current status and sustainable development strategies of tungsten resources in China[J]. Nonferrous Metals Engineering, 4(2): 76−81 (in Chinese).

    Google Scholar

    [32] Wang Zhigang. 2012. Study on Metallogenesis of Mesozoic Endogenetic Metal Deposits in the Eastern Part of Jilin Province[D]. Changchun: Jilin University, 1–181 (in Chinese with English abstract).

    Google Scholar

    [33] Wu F Y, Jahn B M, Wilde S, Sun D Y. 2000. Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 328(1): 89−113.

    Google Scholar

    [34] Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [35] Xiong Dexin, Sun Xiaoming, Shi Guiyong, Wang Shengwei, Gao Jianfeng, Xue Ting. 2006. Trace elements, rare earth elements (REE) and Nd–Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan province, China[J]. Acta Petrologica Sinica, 22(3): 733−741 (in Chinese with English abstract).

    Google Scholar

    [36] Zhang Chao. 2014. The Mesozoic Tectonic Evolution of Yanbian Area in the Eastern Segment of Northern Margin of the North China Block[D]. Changchun: Jilin University, 1–137 (in Chinese with English abstract).

    Google Scholar

    [37] Zhang Dongliang, Peng Jiantang, Fu Yazhou, Peng Guangxiong. 2012. Rare–earth element geochemistry in Ca–bearing minerals from the Xianghuapu tungsten deposit, Hunan Province, China[J]. Acta Petrologica Sinica, 28(1): 65−74 (in Chinese with English abstract).

    Google Scholar

    [38] Zhang Wenhuai, Chen Ziying. 1993. Fluid Inclusion Geology[M]. Wuhan: China University of Geosciences Press, 1–255 (in Chinese).

    Google Scholar

    [39] Zhao Hualei. 2014. Ore Genesis and Geodynamic Settings of Tungsten Deposits in Eastern Jilin and Heilongjiang Provinces[D]. Changchun: Jilin University, 1–139 (in Chinese with English abstract).

    Google Scholar

    [40] Zhao Hualei, Ren Yunsheng, Junan, Wang Hui, Hou Kejun. 2011. Geochronology and geochemistry of metallogenic intrusion in Baishilazi tungsten deposit of Eastern Yanbian Area, Northeast China[J]. Journal of Jilin University (Earth Science Edition), 41(60): 1726−1736 (in Chinese with English abstract).

    Google Scholar

    [41] 曹花花. 2010. 珲春地区晚海西期辉长岩–闪长岩的形成时代和地球化学[D]. 长春: 吉林大学, 1–44.

    Google Scholar

    [42] 陈聪. 2017. 延边东部晚古生代—中生代构造演化与区域成矿规律[D]. 长春: 吉林大学, 1–202.

    Google Scholar

    [43] 陈聪, 任云生, 赵华雷, 杨群, 邹欣桐, 侯可军, 蒋国豪. 2015. 延边东部五道沟花岗闪长岩体的年代学与地球化学特征及其成矿意义[J]. 中南大学学报(自然科学版), 46(8): 2962−2973.

    Google Scholar

    [44] 付长亮. 2009. 珲春小西南岔地区花岗岩类的时代、地球化学特征与成因[D]. 长春: 吉林大学, 1–61.

    Google Scholar

    [45] 郝宇杰, 任云生, 赵华雷, 邹欣桐, 陈聪, 侯召硕, 屈文俊. 2013. 黑龙江省翠宏山钨钼多金属矿床辉钼矿Re–Os同位素定年及其地质意义[J]. 吉林大学学报(自然科学版), 43(6): 1840−1851.

    Google Scholar

    [46] 何鹏, 严光生, 祝新友, 张忠义, 王艳丽, 程细音, 李永胜, 甄世民, 杜泽忠, 贾德龙, 巩小栋. 2013. 青海赛什塘铜矿床流体包裹体研究[J]. 中国地质, 40(2): 580−594. doi: 10.3969/j.issn.1000-3657.2013.02.021

    CrossRef Google Scholar

    [47] 李东津. 1997. 吉林省岩石地层[M]. 北京: 中国地质大学出版社, 1–388.

    Google Scholar

    [48] 栗克坤, 王春连, 陈新立, 王桂香, 商朋强, 张青松, 刘增政, 韩志坤, 闫晓博, 蒋济勇. 2023. 福建邵武地区萤石矿微量、稀土元素特征及对成矿物质指示[J]. 中国地质, 50(3): 806–817.

    Google Scholar

    [49] 刘汉彬, 金贵善, 李军杰, 韩娟, 张建锋, 张佳, 钟芳文, 郭东侨. 2013. 铀矿地质样品的稳定同位素组成测试方法[J]. 世界核地质科学, 30(3): 174−180. doi: 10.3969/j.issn.1672-0636.2013.03.009

    CrossRef Google Scholar

    [50] 卢焕章, 范宏瑞, 倪培. 2004. 流体包裹体[M]. 北京: 科学出版社, 1–487.

    Google Scholar

    [51] 毛寅. 2012. 青海省赛什塘铜多金属矿床稳定同位素、流体包裹体及成矿作用研究[D]. 长沙: 中南大学, 1–67.

    Google Scholar

    [52] 孟庆丽, 周永昶, 柴社立. 2001. 中国延边东部斑岩–热液脉型铜金矿床[M]. 长春: 吉林科学技术出版社, 1–163.

    Google Scholar

    [53] 秦拯纬, 付建明, 邢光福, 程顺波, 卢友月, 祝颖雪. 2022. 南岭成矿带中—晚侏罗世成钨、成锡、成铅锌(铜)花岗岩的差异性研究[J]. 中国地质, 49(2): 518–539.

    Google Scholar

    [54] 任云生, 鞠楠, 赵华雷, 王辉, 卢秀全, 吴昌志. 2011. 延边东部五道沟脉型白钨矿矿床地质特征及流体包裹体[J]. 吉林大学学报(地球科学版), 41(6): 1736−1744.

    Google Scholar

    [55] 任云生, 赵华雷, 雷恩, 王辉, 鞠楠, 吴昌志. 2010. 延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征及矿床成因[J]. 岩石学报, 26(12): 3720−3726.

    Google Scholar

    [56] 邵洁涟. 1990. 金矿找矿矿物学[M]. 北京: 中国地质大学出版社, 1–158.

    Google Scholar

    [57] 盛继福, 陈郑辉, 刘丽君, 应立娟, 黄凡, 王登红, 王家欢, 曾乐. 2015. 中国钨矿成矿规律概要[J]. 地质学报, 89(6): 1038−1050. doi: 10.3969/j.issn.0001-5717.2015.06.004

    CrossRef Google Scholar

    [58] 孙丰月, 王力, 霍亮, 王可勇. 2008. 黑龙江乌拉嘎大型金矿床流体包裹体特征及矿床成因研究[J]. 中国地质, 35(6): 1267−1273. doi: 10.3969/j.issn.1000-3657.2008.06.022

    CrossRef Google Scholar

    [59] 王明燕, 贾木欣, 肖仪武, 孙传尧, 李艳峰, 金建文. 2014. 中国钨矿资源现状及可持续发展对策[J]. 有色金属工程, 4(2): 76−81. doi: 10.3969/j.issn.2095-1744.2014.02.018

    CrossRef Google Scholar

    [60] 汪志刚. 2012. 吉林东部中生代内生金属矿床成矿作用研究[D]. 长春: 吉林大学, 1–181.

    Google Scholar

    [61] 熊德信, 孙晓明, 石贵勇, 王生伟, 高建峰, 薛婷. 2006. 云南大坪金矿白钨矿微量元素、稀土元素和Sr–Nd同位素组成特征及其意义[J]. 岩石学报, 22(3): 733−741. doi: 10.3321/j.issn:1000-0569.2006.03.023

    CrossRef Google Scholar

    [62] 张超. 2014. 华北板块北缘东段延边地区中生代构造演化[D]. 长春: 吉林大学, 1–137.

    Google Scholar

    [63] 张东亮, 彭建堂, 符亚洲, 彭光雄. 2012. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学[J]. 岩石学报, 28(1): 65−74.

    Google Scholar

    [64] 张文淮, 陈紫英. 1993. 流体包裹体地质学[M]. 武汉: 中国地质大学出版社, 1–255.

    Google Scholar

    [65] 赵华雷. 2014. 吉黑东部钨矿成因及成矿地球动力学背景[D]. 长春: 吉林大学, 1–139.

    Google Scholar

    [66] 赵华雷, 任云生, 鞠楠, 王辉, 侯可军. 2011. 延边白石砬子钨矿床成矿岩体的年代学与地球化学特征[J]. 吉林大学学报(自然科学版), 41(6): 1726−1736.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(5)

Article Metrics

Article views(509) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint