2024 Vol. 51, No. 4
Article Contents

GUO Xiaodong, LIU Qiang, ZHANG Huirong, SHI Xufei, QIN Chuanyu, ZHANG Zhiqiang. 2024. Evaluation method of soil heavy metal harm to groundwater: Taking Huichun basin,Jilin Province as an example[J]. Geology in China, 51(4): 1243-1251. doi: 10.12029/gc20220212002
Citation: GUO Xiaodong, LIU Qiang, ZHANG Huirong, SHI Xufei, QIN Chuanyu, ZHANG Zhiqiang. 2024. Evaluation method of soil heavy metal harm to groundwater: Taking Huichun basin,Jilin Province as an example[J]. Geology in China, 51(4): 1243-1251. doi: 10.12029/gc20220212002

Evaluation method of soil heavy metal harm to groundwater: Taking Huichun basin,Jilin Province as an example

    Fund Project: Supported by the projects of China Geological Survey (No.DD20221753, No.12120115032801).
More Information
  • Author Bio: GUO Xiaodong, male, born in 1981, professor level senior engineer, engaged in the research on investigation and evaluation of water and soil environment; E-mail: 287684839@qq.com
  • This paper is the result of environmental geological survey engineering.

    Objective

    The continuous accumulation of heavy metals in soil has potential harm to groundwater, but there is no quantitative method to evaluate the harm of heavy metals in soil to groundwater in previous studies.

    Methods

    Based on the theory of groundwater circulation and solid−liquid equilibrium, a simple and easy−to−−use flux model of soil heavy metals into groundwater is constructed in this paper. On the basis of evaluating groundwater environmental capacity, an innovative method for evaluating the harm of soil heavy metals to groundwater is proposed.

    Results

    The application was carried out in Hunchun Basin as an example, and the results showed that the fluxes of soil heavy metals into groundwater in the study area were Zn, Cu, As, Pb, Cd, Ni, and Hg in descending order, and that the heavy metals of the groundwater in most of the areas could not reach the limit of the environmental capacity within 10 years, and the damage level in most towns and villages to groundwater was moderate or below.

    Conclusions

    Through this evaluation method, the flux of heavy metals in soil into groundwater can be calculated simply and quickly, the residual capacity of heavy metals in groundwater can be determined, and the harm of heavy metals in soil to groundwater can be evaluated, which provides support for relevant departments to carry out environmental protection of soil and groundwater, and provides reference for relevant scholars to carry out similar research.

  • 加载中
  • [1] Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625−1636 (in Chinese with English abstract).

    Google Scholar

    [2] Chen G Q, Zeng G M, Du C Y, Huang D L, Tang L, Wang L, Shen G L. 2010. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions[J]. Journal of Hazardous Materials, 181(1): 211−216.

    Google Scholar

    [3] Chen Zifang, Zhao Yongsheng, Sun Gujiang, Bai Jing, Liu Lu, Zhou Rui. 2014. Study on the migration and release of lead and chromium and in the vadose zone[J]. China Environmental Science, 34(9): 2211−2216 (in Chinese with English abstract).

    Google Scholar

    [4] Cong Xin, Lei Xutao, Fu Ling, Shang Saiyao, Ding Jing, Bi Ran. 2017. Pollution characteristics and ecological risk assessment of heavy metals in soils around the gangue heap of Haizhou coal mine, China[J]. Earth and Environment, 45(3): 329−335 (in Chinese with English abstract

    Google Scholar

    [5] Feng Zhen. 2020. Application of Hydrus–1D in environmental impact assessment of dump in metal mines[J]. World Nonferrous Metals, (13): 161−162 (in Chinese with English abstract

    Google Scholar

    [6] Gao Jianweng, Gong Jingjing, Yang Jianzhou, Tang Shixin, Ma Shengming. 2021. Spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain–Wanling Town, Qiongzhong, Hainan Province[J]. Geologcal Bulletin of China, 40(5): 807−816 (in Chinese with English abstract

    Google Scholar

    [7] Groenenberg J E, Dijkstra J J, Bonten L T C, Vries W D, Comans R N J. 2012. Evaluation of the performance and limitations of empirical partition–relations and process based multisurface models to predict trace element solubility in soils[J]. Environmental Pollution, 166: 98−107. doi: 10.1016/j.envpol.2012.03.011

    CrossRef Google Scholar

    [8] Guo Xiaodong, Sun Qifa, Zhao Yongsheng, Cai He. 2018. Distribution and sources of heavy metals in the farmland soil of the Hunchun basin of Jilin Province, China[J]. Journal of Agro–environment Science, 37(9): 1875−1883 (in Chinese with English abstract

    Google Scholar

    [9] Hu Yishui, Qi Shi, Li Yutong, Zhou Jinxing, Wu Bingchen. 2020. Effects of sludge composting products on soil and groundwater[J]. China Environmental Science, 40(5): 2157−2166 (in Chinese with English abstract

    Google Scholar

    [10] Jiang Shijie, Zhai Yuanzheng, Wang Jinsheng, Leng Suya, Teng Yanguo. 2016. Derivation of soil environmental criteria for groundwater protection: A comparative study between countries[J]. Hydrogeology and Engineering Geology, 43(4): 52−59 (in Chinese with English abstract

    Google Scholar

    [11] Li Qiuyan, Wei Minghui, Dai Huimin, He Pengfei, Liu Kai. 2021. Characteristics of soil heavy metal pollution and ecological risk assessment of Jinzhou city[J]. Geology and Resources, 30(4): 465−472 (in Chinese with English abstract).

    Google Scholar

    [12] Liao J B, Ru X, Xie B B, Zhang W H, Wu H Z, Wu C F, Wei C H. 2017. Multi–phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage[J]. Ecotoxicol Environ Safety, 141: 75−84. doi: 10.1016/j.ecoenv.2017.03.009

    CrossRef Google Scholar

    [13] Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749−763 (in Chinese with English abstract).

    Google Scholar

    [14] Lin Ting, Luo Fei, Zhu Yan, Yang Kun, Xi Xiuping. 2019. Calculation of the soil risk control value through a hydrus–1D model for groundwater protection[J]. Chinese Journal of Environmental Science, 40(12): 5640−5648 (in Chinese with English abstract).

    Google Scholar

    [15] Lü Da, Wei Yong, Liu Guijian. 2019. Migration Characteristics of heavy metals in interaction system of soil–groundwater[J]. Journal of Jilin University (Science Edition), 57(6): 1544−1548 (in Chinese with English abstract).

    Google Scholar

    [16] Moon J W, Moon H S, Woo N C, Hahn J S, Won J S, Song Y, Lin X, Zhao Y. 2000. Evaluation of heavy metal contamination and implication of multiple sources from Hunchun basin, northeastern China[J]. Environmental Geology, 39(9): 1039−1052. doi: 10.1007/s002540000112

    CrossRef Google Scholar

    [17] Sauve S, Hendershot W, Allen H E. 2000. Solid–solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter[J]. Environmental Science & Technology, 34(7): 1125−1125.

    Google Scholar

    [18] Shi Xufei, Zhao Haiqing. 2017. The age and water cycle of shallow the age and water cycle of shallow groundwater in Hunchun basin[J]. Advances in Geosciences, 7(1): 50−57 (in Chinese with English abstract). doi: 10.12677/AG.2017.71006

    CrossRef Google Scholar

    [19] Vink J P M, Van Zomeren A, Dijkstra J J, Comans R N J. 2017. When soils become sediments: Large–scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater[J]. Environmental Pollution, 227: 146−156. doi: 10.1016/j.envpol.2017.04.016

    CrossRef Google Scholar

    [20] Wan Shuoyang, Wu Yong, Tang Xuefang, Deng Dongping, Lan Zhen, Han Libi. 2020. Simulation and spatial analysis of heavy metal migration in Xiba Town soil based on Hydrus–1 D[J]. Science Technology and Engineering, 20(2): 854−859 (in Chinese with English abstract).

    Google Scholar

    [21] Wang Xiaochen, Dai Yunan, Qiao Xianliang, Zhang Aijing, Yu Hui, Bai Lou. 2018. Study on adsorption and partitioning behaviors of mercury in agricultural soils[J]. Asian Journal of Ecotoxicology, 13(6): 115−123 (in Chinese with English abstract).

    Google Scholar

    [22] Wu Guanghai, Wang Chensheng, Chen Honghan. 2020. Eco–environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten–molybdenum mine area in Inner Mongolia[J]. Geology in China, 47(6): 1838−1852. (in Chinese with English abstract

    Google Scholar

    [23] Xiao H, Shahab A, Xi B D, Chang Q X, You S H, Li J Y, Sun X J, Huang H W, Li X K. 2021. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China[J]. Environmental Pollution, 269: 116189. doi: 10.1016/j.envpol.2020.116189

    CrossRef Google Scholar

    [24] Xie Fei, Wu Junfeng, Ren Xiaoming. 2016. Sources and ecological risks of heavy metals in the soils of the typical industry–based development zones in Jiangsu[J]. Journal of Safety and Environment, 16(2): 387−391 (in Chinese with English abstract).

    Google Scholar

    [25] Xu Zengguang. 2012. Numerical Simulation Study on Migration and Remediation of Organic Matter and Heavy Metals in Groundwater [D]. Shanghai: Shanghai Jiaotong University, 1−156 (in Chinese with English abstract).

    Google Scholar

    [26] Yin Dechao, Qi Xiaofan, Wang Yushan, Xu Rongzhen, An Yonghui, Wang Xuqing, Geng Hongjie. 2022. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong'an New Area[J]. Geology in China, 49(3): 979−992 (in Chinese with English abstract).

    Google Scholar

    [27] Zhang M, Chen G, Luo Z T, Sun X, Xu J L. 2020. Spatial distribution, source identification, and risk assessment of heavy metals in seawater and sediments from Meishan Bay, Zhejiang coast, China[J]. Marine Pollution Bulletin, 156: 111217. doi: 10.1016/j.marpolbul.2020.111217

    CrossRef Google Scholar

    [28] Zhao K L. Zhang L Y, Dong J Q, Wu J S, Ye Z Q, Zhao W M, Ding L Z, Fu W J. 2020. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China[J]. Geoderma, 360: 114011. doi: 10.1016/j.geoderma.2019.114011

    CrossRef Google Scholar

    [29] 鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625−1636. doi: 10.12029/gc20200602

    CrossRef Google Scholar

    [30] 陈子方, 赵勇胜, 孙家强, 白静, 刘璐, 周睿. 2014. 铅和铬污染包气带及再释放规律的实验研究[J]. 中国环境科学, 34(9): 2211−2216.

    Google Scholar

    [31] 丛鑫, 雷旭涛, 付玲, 商思瑶, 丁静, 毕然. 2017. 海州煤矿矸石山周边土壤重金属污染特征及生态风险评价[J]. 地球与环境, 45(3): 329−335.

    Google Scholar

    [32] 冯祯. 2020. Hydrus–1D在金属矿山排土场环境影响评价中的应用研究[J]. 世界有色金属, (13): 161−162. doi: 10.3969/j.issn.1002-5065.2020.13.077

    CrossRef Google Scholar

    [33] 高健翁, 龚晶晶, 杨剑洲, 唐世新, 马生明. 2021. 海南岛琼中黎母山—湾岭地区土壤重金属元素分布特征及生态风险评价[J]. 地质通报, 40(5): 807−816.

    Google Scholar

    [34] 郭晓东, 孙岐发, 赵勇胜, 蔡贺. 2018. 珲春盆地农田重金属分布特征及源解析[J]. 农业环境科学学报, 37(9): 1875−1883. doi: 10.11654/jaes.2017-1718

    CrossRef Google Scholar

    [35] 胡译水, 齐实, 李昱彤, 周金星, 伍冰晨. 2020. 污泥堆肥施用对土壤及地下水影响研究[J]. 中国环境科学, 40(5): 2157−2166. doi: 10.3969/j.issn.1000-6923.2020.05.036

    CrossRef Google Scholar

    [36] 蒋世杰, 翟远征, 王金生, 冷苏娅, 滕彦国. 2016. 国内外基于保护地下水的土壤环境基准的推导与比较[J]. 水文地质工程地质, 43(4): 52−59.

    Google Scholar

    [37] 李秋燕, 魏明辉, 戴慧敏, 贺鹏飞, 刘凯. 2021. 锦州市土壤重金属污染特征及生态风险评价[J]. 地质与资源, 30(4): 465−472.

    Google Scholar

    [38] 林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749−763. doi: 10.12029/gc20210306

    CrossRef Google Scholar

    [39] 林挺, 罗飞, 朱艳, 杨坤, 郗秀平. 2019. Hydrus–1D模型在推导基于保护地下水的土壤风险控制值中的应用[J]. 环境科学, 40(12): 5640−5648.

    Google Scholar

    [40] 吕达, 魏勇, 刘桂建. 2019. 重金属在土壤–地下水交互系统中的迁移特征[J]. 吉林大学学报(理学版), 57(6): 1544−1548.

    Google Scholar

    [41] 石旭飞, 赵海清. 2017. 珲春盆地浅层地下水年龄及其水循环特征[J]. 地球科学前沿, 7(1): 50−57.

    Google Scholar

    [42] 万朔阳, 吴勇, 唐学芳, 邓东平, 兰真, 韩莉璧. 2020. 基于Hydrus–1D对西坝镇农田土壤重金属迁移模拟及空间解析[J]. 科学技术与工程, 20(2): 854−859. doi: 10.3969/j.issn.1671-1815.2020.02.063

    CrossRef Google Scholar

    [43] 王晓晨, 代宇楠, 乔显亮, 张艾婧, 余慧, 白露. 2018. 农田土壤中汞的吸附分配行为研究[J]. 生态毒理学报, 13(6): 115−123.

    Google Scholar

    [44] 邬光海, 王晨昇, 陈鸿汉. 2020. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 47(6): 1838−1852. doi: 10.12029/gc20200619

    CrossRef Google Scholar

    [45] 谢飞, 吴俊锋, 任晓鸣. 2016. 江苏省典型工业开发区土壤重金属污染及其潜在生态风险评价[J]. 安全与环境学报, 16(2): 387−391.

    Google Scholar

    [46] 许增光. 2012. 地下水有机物和重金属迁移与污染修复的数值模拟研究[D]. 上海: 上海交通大学, 1−156.

    Google Scholar

    [47] 尹德超, 祁晓凡, 王雨山, 徐蓉桢, 安永会, 王旭清, 耿红杰. 2022. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价[J]. 中国地质, 49(3): 979−992.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(6)

Article Metrics

Article views(373) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint