2024 Vol. 51, No. 3
Article Contents

CAO Ruiqin, YANG Zhongfang, YU Tao. 2024. Research progress of stable isotopic geochemistry of cadmium and zinc and its harm and control in soil and other geological bodies[J]. Geology in China, 51(3): 833-864. doi: 10.12029/gc20230522001
Citation: CAO Ruiqin, YANG Zhongfang, YU Tao. 2024. Research progress of stable isotopic geochemistry of cadmium and zinc and its harm and control in soil and other geological bodies[J]. Geology in China, 51(3): 833-864. doi: 10.12029/gc20230522001

Research progress of stable isotopic geochemistry of cadmium and zinc and its harm and control in soil and other geological bodies

    Fund Project: Supported by the projects of Guangdong Geological Exploration and Urban Geology (No.2023–25), China Geological Survey (No.DD20211414) and Shaanxi Public Welfare Geological Survey (No.202201).
More Information
  • Author Bio: CAO Ruiqin, female, born in 2002, undergraduate, engaged in environmental geochemistry research; E–mail: 1001200601@cugb.edu.cn
  • Corresponding author: YANG Zhongfang, female, born in 1961, professor, doctoral supervisor, engaged in environmental geochemistry and ecogeochemistry related teaching and research; E–mail: yangzf@cugb.edu.cn
  • This paper is the result of environmental geological survey engineering.

    Objective

    Cadmium(Cd) and zinc(Zn) are both important mineral resources and harmful heavy metal elements. The recent development of multi–collector inductively coupled plasma mass spectrometry (MC–ICP–MS) has improved the precision of Zn isotope composition analysis in different environments. The establishment and application of non–traditional stable isotope systems such as cadmium and zinc have raised the geochemical research of cadmium and zinc to a new level, which also have become hot topics in isotope geochemistry.

    Methods

    This paper reviews recent research progress on the analytical methods, fractionation mechanisms, isotopic compositions in different reservoirs, and application fields of Zn and Cd isotopes investigated in many studies.

    Results

    (1) The improvement of Zn and Cd isotope analysis technology has promoted the establishment of their isotope systems. (2) The compositions of Zn isotopes in various reservoirs have been basically identified. The data for Cd isotope compositions in reservoirs and anthropogenic sources is in the period of accumulation. (3) The isotopic fractionation mechanisms of Cd and Zn mainly include mineral adsorption, biological processes, and chemical reactions, which have been applied in the indication of planetary evolution, the exploration of metallogenic mechanisms, paleoenvironmental reconstruction, and pollution source tracer. (4) The combination of multiple isotopes helps to reduce uncertainty in the analysis of heavy metal pollution sources.

    Conclusions

    The development of new isotope analysis instruments and technologies has made the research of Zn and Cd isotopes more promising. It is expected that more work should be carried out in the near future to improve the fractionation mechanisms, compositions in partial reservoirs, and application fields.

  • 加载中
  • [1] Abouchami W, Galer S J G, de Baar H J W, Alderkamp A C, Middag R, Laan P, Feldmann H, Andreae M O. 2011. Modulation of the Southern Ocean Cd isotope signature by ocean circulation and primary productivity[J]. Earth and Planetary Science Letters, 305(1/2): 83−91. doi: 10.1016/j.jpgl.2011.02.044

    CrossRef Google Scholar

    [2] Abouchami W, Galer S J G, Horner T J, Rehkamper M, Wombacher F, Xue Z, Lambelet M, Gault–Ringold M, Stirling C H, Schonbachler M. 2013. A common reference material for cadmium isotope studies–NIST SRM 3108[J]. Geostandards and Geoanalytical Research, 37(1): 5−17. doi: 10.1111/j.1751-908X.2012.00175.x

    CrossRef Google Scholar

    [3] Acar Y B, Gale R J, Alshawabkeh A N, Marks R E, Puppala S, Bricka M, Parker R. 1995. Electrokinetic remediation: Basics and technology status[J]. Journal of Hazardous Materials, 40(2): 117−137. doi: 10.1016/0304-3894(94)00066-P

    CrossRef Google Scholar

    [4] Aoshima K. 2016. Itai–itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium–historical review and perspectives[J]. Soil Science & Plant Nutrition, 62(4): 1−8.

    Google Scholar

    [5] Archer C, Andersen M B, Cloquet C, Conway T M, Dong S F, Ellwood M, Moore R, Nelson J, Rehkämper M, Rouxel O, Samanta M, Shin K–C, Sohrin Y, Takano S, Wasylenki L. 2017. Inter–calibration of a proposed new primary reference standard AA–ETH Zn for zinc isotopic analysis[J]. Journal of Analytical Atomic Spectrometry, 32(2): 415−419. doi: 10.1039/C6JA00282J

    CrossRef Google Scholar

    [6] Archer C, Vance D. 2004. Mass discrimination correction in multiple–collector plasma source mass spectrometry: An example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 19(5): 656−665. doi: 10.1039/b315853e

    CrossRef Google Scholar

    [7] Arnold T, Markovic T, Kirk G, Schonbachler M, Rehkamper M, Zhao F J, Weiss D J. 2015. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus Geoscience, 347(7/8): 397−404. doi: 10.1016/j.crte.2015.05.005

    CrossRef Google Scholar

    [8] Balter V, Zazzo A, Moloney A P, Moynier F, Schmidt O, Monahan F J, Albarède F. 2010. Bodily variability of zinc natural isotope abundances in sheep[J]. Rapid Communications in Mass Spectrometry, 24(5): 605−612. doi: 10.1002/rcm.4425

    CrossRef Google Scholar

    [9] Barrat J A, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes[J]. Geochimica et Cosmochimica Acta, 83(1): 79−92.

    Google Scholar

    [10] Bermin J, Vance D, Archer C, Statham P J. 2006. The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology, 226(3): 280−297.

    Google Scholar

    [11] Bewers J M, Yeats P A. 1977. Oceanic residence times of trace metals[J]. Nature, 268(5621): 595−598. doi: 10.1038/268595a0

    CrossRef Google Scholar

    [12] Blix R, Ubisch H V, Wickman F E. 1957. A search for variations in the relative abundance of the zinc isotopes in nature[J]. Geochimica et Cosmochimica Acta, 11(3): 162−164. doi: 10.1016/0016-7037(57)90078-9

    CrossRef Google Scholar

    [13] Borrok D M, Wanty R, Ridley W I, Wolf R E, Lamothe P J, Adams M. 2007. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology, 242(3): 400−414.

    Google Scholar

    [14] Brugier Y A, Barrat J A, Gueguen B, Agranier A, Yamaguchi A, Bischoff A. 2019. Zinc isotopic variations in ureilites[J]. Geochimica et Cosmochimica Acta, 246: 450−460. doi: 10.1016/j.gca.2018.12.009

    CrossRef Google Scholar

    [15] Callagon E, Lee S S, Eng P J, Laanait N, Sturchio N C, Nagy K L, Fenter P. 2016. Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates[J]. Geochimica et Cosmochimica Acta, 205(1): 360−380.

    Google Scholar

    [16] Chang Haiwei, Liu Daihuan, He Qianfeng. 2018. Advances in microbial redemption mechanism of heavy metal polluted farmland[J]. Journal of Microbiology, 38(2): 114−121 (in Chinese with English abstract).

    Google Scholar

    [17] Chen H, Savage P S, Teng F Z, Helz R T, Moynier F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth[J]. Earth and Planetary Science Letters, 369–370(1): 34–42.

    Google Scholar

    [18] Chen J B, Gaillardet J, Louvat P, Huon S. 2009a. Zn isotopes in the suspended load of the Seine River, France: Isotopic variations and source determination[J]. Geochimica et Cosmochimica Acta, 73(14): 4060−4076. doi: 10.1016/j.gca.2009.04.017

    CrossRef Google Scholar

    [19] Chen J B, Gaillardet J, Louvat P. 2008. Zinc isotopes in the Seine River Waters, France: A probe of anthropogenic contamination[J]. Environmental Science & Technology, 47(12): 6494−6501.

    Google Scholar

    [20] Chen J B, Louvat P, Gaillardet J, Birck J L. 2009b. Direct separation of Zn from dilute aqueous solutions for isotope composition determination using multi–collector ICP–MS[J]. Chemical Geology, 259(3/4): 120−130. doi: 10.1016/j.chemgeo.2008.10.040

    CrossRef Google Scholar

    [21] Cheng Y L, Wang K Q, Tu B Y, Xia Y, Zhang J Q, Xue S, Tao H S. 2019. High–temperature reduction of calcium alginate to carbon sphere for efficient removal of bivalent cadmium[J]. Chemistry Select, 4(31): 9058−9064. doi: 10.1002/slct.201902329

    CrossRef Google Scholar

    [22] Cloquet C, Carignan J, Lehmann M F, Vanhaecke F. 2008. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: A review[J]. Analytical and Bioanalytical Chemistry, 390(2): 451−463. doi: 10.1007/s00216-007-1635-y

    CrossRef Google Scholar

    [23] Cloquet C, Rouxel O, Carignan J, Libourel G. 2005. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS–1, GXR–1, GXR–2, GSD–12, Nod–P–1, Nod–A–1) and anthropogenic samples, measured by MC–ICP–MS[J]. Geostandards and Geoanalytical Research, 29(1): 95−106. doi: 10.1111/j.1751-908X.2005.tb00658.x

    CrossRef Google Scholar

    [24] Conway T M, John S G. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean–Insights from stable isotopes[J]. Geochimica et Cosmochimica Acta, 164: 262−283. doi: 10.1016/j.gca.2015.05.023

    CrossRef Google Scholar

    [25] Costas–Rodriguez M, VanHeghe L, Vanbaecke F. 2013. Evidence for a possible dietary effect on the isotopic composition of Zn in blood via isotopic analysis of food products by multi–collector ICP–mass spectrometry[J]. Metallomics, 6(1): 139−146.

    Google Scholar

    [26] Dhaliwal J K, Day J M D, Moynier F. 2018. Volatile element loss during planetary magma ocean phases[J]. Icarus, 300: 249−260. doi: 10.1016/j.icarus.2017.09.002

    CrossRef Google Scholar

    [27] Fedyunina N N, Seregina I F, Bolshov M A, Okina O I, Lyapunov S M. 2012. Investigation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique[J]. Analytica Chimica Acta, 713(3): 97−102.

    Google Scholar

    [28] Fekiacova Z, Cornu S, Pichat S. 2015. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of the Total Environment, 517: 96−105. doi: 10.1016/j.scitotenv.2015.02.046

    CrossRef Google Scholar

    [29] Fu Zhiyou, Feng Chenglian, Zhao Xiaoli, Guo Wenjing, Sun Siyang, Liu Xinmei, Wang Yu, Li Xiaofeng, Wu Fengchang. 2019. Ecological risks and management countermeasures of copper and zinc in water environment of China[J]. Environmental Engineering, 37(11): 70−74 (in Chinese with English abstract).

    Google Scholar

    [30] Gao B, Liu Y, Sun K, Liang X R, Peng P A, Sheng G Y, Fu J M. 2008. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 612(1): 114−120. doi: 10.1016/j.aca.2008.02.020

    CrossRef Google Scholar

    [31] Gao B, Zhou H D, Liang X, Liang X R, Tu X L. 2013. Cd isotopes as a potential source tracer of metal pollution in river sediments[J]. Environmental Pollution, 181(13): 340−343.

    Google Scholar

    [32] Gao Z F, Zhu X K, Sun J, Luo ZH, Bao C, Tang C, Ma J K. 2018. Spatial evolution of Zn–Fe–Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China[J]. Mineralium Deposita, 53(1): 55−65. doi: 10.1007/s00126-017-0724-x

    CrossRef Google Scholar

    [33] Gault–Ringold M, Adu T, Stirling C H, Frew R D, Hunter K A. 2012. Anomalous biogeochemical behavior of cadmium in subantarctic surface waters: Mechanistic constraints from cadmium isotopes[J]. Earth and Planetary Science Letters, 341–344(1): 94–103.

    Google Scholar

    [34] Georgiev S V, Horner T J, Stein H J, Hannah J L, Bingen B, Rehkämper M. 2015. Cadmium–isotopic evidence for increasing primary productivity during the Late Permian anoxic event[J]. Earth and Planetary Science Letters, 410(1): 84−96.

    Google Scholar

    [35] Ghidan O Y, Loss R D. 2012. Zinc isotope fractionation analyses by thermal ionization mass spectrometry and a double spiking technique[J]. International Journal of Mass Spectrometry, 309: 79−87. doi: 10.1016/j.ijms.2011.09.001

    CrossRef Google Scholar

    [36] Godt J, Scheidig F, Grosse–Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg D A. 2006. The toxicity of cadmium and resulting hazards for human health[J]. Journal of Occupational Medicine and Toxicology, 1(1): 22. doi: 10.1186/1745-6673-1-22

    CrossRef Google Scholar

    [37] Gou W X, Li W, Ji J F, Li W Q. 2018. Zinc isotope fractionation during sorption onto Al oxide: Atomic level understanding from EXAFS[J]. Environmental Science & Technology, 52(16): 9087−9096.

    Google Scholar

    [38] He Tianrong. 1995. Harm and prevention of zinc oxide smelting by local method in rural enterprises on human health[J]. Safety & Health at Work, 3: 30 (in Chinese).

    Google Scholar

    [39] Horner T J, Rickaby R, Henderson G M. 2011. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 312(1): 243−253.

    Google Scholar

    [40] Hou Liyun, Zeng Xibai, Zhang Yangzhu. 2015. Application and outlook of alien earth soil–improving technology in arsenic contaminated soil remediation[J]. Chinese Journal of EcoAgriculture, 23(1): 20−26 (in Chinese with English abstract).

    Google Scholar

    [41] Hu Hongtao, Cheng Jinping. 2009. Experimental study on electrokinetic remediation of zinc contaminated soils[J]. Environmental Science & Technology, 32(10): 53−56,102 (in Chinese with English abstract).

    Google Scholar

    [42] Huang Shiqi, Gong Yingli, Tian Shihong, Liang Zhengwei, Zhu Chunhui. 2023. Recent advances on zinc isotopes in Earth science[J]. Acta Geologica Sinica, 97(4): 1002−1029 (in Chinese with English abstract).

    Google Scholar

    [43] Huang Yizong, Hao Xiaowei, Lei Ming, Tie Baiqing. 2013. The remediation technology and remediation practice of heavy metals–contaminated soil[J]. Journal of Agro–Environment Science, 32(3): 409−417 (in Chinese with English abstract).

    Google Scholar

    [44] Juillot F, Maréchal C, Morin G, Jouvin D, Cacaly S, Telouk P, Benedetti M F, Ildefonse P, Sutton S, Guyot F, Brown G E. 2012. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post–depositional fractionation processes in smelter–impacted soils from Northern France[J]. Geochimica et Cosmochimica Acta, 75(9): 2295−2308.

    Google Scholar

    [45] Kavner A, John S G, Sass S, Boyle E A. 2008. Redox–driven stable isotope fractionation in transition metals: Application to Zn electroplating[J]. Geochimica et Cosmochimica Acta, 72(7): 1731−1741. doi: 10.1016/j.gca.2008.01.023

    CrossRef Google Scholar

    [46] Kingston H M, Barnes I L, Brady T J, Rains T C, Champ M A. 1978. Separation of eight transition elements from alkali and alkaline earth elements in estuarine and seawater with chelating resin and their determination by graphite furnace atomic absorption spectrometry[J]. Analytical Chemistry, 50(14): 21−27.

    Google Scholar

    [47] Kong Jing, Guo Qingjun, Wei Rongfei, Zhu Guangxu, Hu Jian. 2017. Measurement and application of zinc stable isotope in environmental science[J]. Chinese Journal of Ecology, 36(6): 1718−1726 (in Chinese with English abstract).

    Google Scholar

    [48] Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth[J]. Geology, 41(1): 27−30. doi: 10.1130/G33422.1

    CrossRef Google Scholar

    [49] Lacan F, Francois R, Ji Y, Sherrell R M. 2006. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 70(20): 5104−5118. doi: 10.1016/j.gca.2006.07.036

    CrossRef Google Scholar

    [50] Li Fuyan, Zhang Liming, Li Xuming, Guo Bin, Chen Liuyan, Qi Zhiping. 2006. Research advances on zincum pollution and remediation of soil–plant system[J]. Journal of Anhui Agricultural Sciences, 22: 5920−5921, 5979 (in Chinese with English abstract).

    Google Scholar

    [51] Li Haitao, Yang Xin, Lei Huaji, Yang Yan, Jin Lanlan, Hu Shenghong. 2021. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 40(1): 1−15 (in Chinese).

    Google Scholar

    [52] Li Jin, Zhu Xiangkun, Tang Suohan. 2008. Some important processes of Zn isotope fractionation in low temperature environments[J]. Acta Petrologica et Mineralogica, 27(5): 465−471 (in Chinese with English abstract).

    Google Scholar

    [53] Li M L, Liu S A, Xue C J, Li D D. 2019. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 265: 1−18. doi: 10.1016/j.gca.2019.08.018

    CrossRef Google Scholar

    [54] Li X F, Wang Y X, M. Crabbe M J C, Wang L, Ma W L, Ren Z M. 2022. Genetically modified metallothionein/cellulose composite material as an efficient and environmentally friendly biosorbent for Cd2+ removal[J]. International Journal of Biological Macromolecules, 218: 543−555. doi: 10.1016/j.ijbiomac.2022.07.144

    CrossRef Google Scholar

    [55] Li Yi, Chen Xi, Xiao Pixian, Ma Qiong, Wu Guo. 2020. Study on the species composition, geographical distribution and flora characteristics of Cd hyperaccumulators in China[J]. Chinese Wild Plant Resources, 39(6): 11−16 (in Chinese with English abstract).

    Google Scholar

    [56] Li Zhengxian, Li Wei, Lei Jiajun, Li Qianyu, Liu Lintao, Zhou Lian. 2020. Effect and hazard of common metal elements on human body[J]. Materials China, 39(12): 934−944 (in Chinese with English abstract).

    Google Scholar

    [57] Li Zhi, Xu Yingkui, Zhu Dan, Li Shijie, Li Xiongyao, Liu Jianzhong. 2023. Advances in zinc isotope in planetary science[J]. Acta Mineralogica Sinica, 43(3): 273−283 (in Chinese with English abstract).

    Google Scholar

    [58] Liang B, Han G L, Zhao Y. 2022. Zinc isotopic signature in tropical soils: A review[J]. Science of The Total Environment, 820: 153303. doi: 10.1016/j.scitotenv.2022.153303

    CrossRef Google Scholar

    [59] Liang Lili, Liu Congqiang, Wang Zhongliang, Zhu Xiangkun, Song Liuting, Li Jin. 2008. Zinc isotope characteristics in the biogeochemical process of karst plateau lakes[J]. Acta Petrologica et Mineralogica, 7(4): 326−334 (in Chinese with English abstract).

    Google Scholar

    [60] Little S H, Vance D, Walker–Brown C, Landing W M. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta, 125(1): 673−693.

    Google Scholar

    [61] Liu M S, Zhang Q, Zhang Y N, Zhang Z F, Huang F, Yu H M. 2020. High–precision Cd isotope measurements of soil and rock reference materials by MC–ICP–MS with double spike correction[J]. Geostandards and Geoanalytical Research, 44(1): 169−182. doi: 10.1111/ggr.12291

    CrossRef Google Scholar

    [62] Liu Mengshu, Zhang Qun, Zhang Yingnan, Zhang Zhaofeng, Huang Fang, Yu Huimin. 2019. Cadmium isotope analysis method and cadmium isotope composition of international standard sample[C]//Proceedings of the 17th Annual Academic Conference of the Chinese Society of Mineral and Petrology Geochemistry, 989 (in Chinese).

    Google Scholar

    [63] Liu S A, Wu H C, Shen S Z, Jiang G Q, Zhang S H, Lü Y W, Zhang H, Li S G. 2017. Zinc isotope evidence for intensive magmatism immediately before the end–Permian mass extinction[J]. Geology, 45(4): 343−346. doi: 10.1130/G38644.1

    CrossRef Google Scholar

    [64] Liu Yizhang, Xiao Tangfu, Zhu Jianming. 2015. Cadmium isotopes and environmental tracing[J]. Earth and Environment, 43(6): 687−696 (in Chinese with English abstract).

    Google Scholar

    [65] Luck J M, Othman D B, Albarède F. 2006. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent–body processes[J]. Geochimica et Cosmochimica Acta, 69(22): 5351−5363.

    Google Scholar

    [66] Ma Guiyun, Zhang Zhenhua, Yan Shaohua, Tang Wanying. 2003. Study progress of fish pollution by heavy metals[J]. Jiangsu Environmental Science and Technology, 16(2): 38−40 (in Chinese with English abstract).

    Google Scholar

    [67] Ma Lei, Li Dandan, Lü Yiwen, Wang Xun, Wang Zezhou, Li Menglun, Yang Chun, Qu Yuanru, Shu Zitan, Liu Sheng’ao. 2022. Zinc isotope geochemistry and its applications: A critical review[J]. Geochimica, 51(2): 161−175 (in Chinese with English abstract).

    Google Scholar

    [68] Maréchal C N, Albaréde F. 2002. Ion–exchange fractionation of copper and zinc isotopes[J]. Geochimica et Cosmochimica Acta, 66(9): 1499−1509. doi: 10.1016/S0016-7037(01)00815-8

    CrossRef Google Scholar

    [69] Maréchal C N, Douchet C, Nicolas E, Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemica tracer[J]. Geochemistry Geophysics Geosystems, 1(5): 1015.

    Google Scholar

    [70] Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma–source mass spectrometry[J]. Chemical Geology, 156(1/4): 251−273. doi: 10.1016/S0009-2541(98)00191-0

    CrossRef Google Scholar

    [71] Marques A, Oliveira R, Samardjieva K, Pissarra J, Rangel A, Castro P. 2008. EDDS and EDTA– enhanced zinc accumulation by solanum nigrum inoculated with arbuscular mycorrhizal fungi grown in contaminated soil[J]. Chemosphere, 70(6): 1002−1014. doi: 10.1016/j.chemosphere.2007.08.045

    CrossRef Google Scholar

    [72] Martinková E, Chrastný E, Francová M, Šípková A, Čuřík Jan, Myška O, Mižič L. 2016. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 302: 114−119. doi: 10.1016/j.jhazmat.2015.09.039

    CrossRef Google Scholar

    [73] Mason T, Weiss D J, Chapman J B, Wilkinson J, Tessalina S G, Baruch S, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic–hosted massive sulphide (VHMS) ore deposit, Urals, Russia[J]. Chemical Geology, 221(3): 170−187.

    Google Scholar

    [74] Matthies R, Sinclair S A, Blowes D W. 2014. The zinc stable isotope signature of waste rock drainage in the Canadian permafrost region[J]. Applied Geochemistry, 48(1): 53−57.

    Google Scholar

    [75] Mccoy–West A J, Godfrey F J, Marie–Laure P, Inglis E C, Williams H M. 2018. The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites[J]. Geochimica et Cosmochimica Acta, 238: 542−562. doi: 10.1016/j.gca.2018.07.021

    CrossRef Google Scholar

    [76] Miao Xin, Chen Linjie, Zhou Feiyang, Liu Xing, He Dong, Zheng Hongtao, Zhu Zhenli. 2021. Comparison of sample digestion methods for high precision cadmium isotope analysis[J]. Journal of Instrumental Analysis, 40(6): 947−953 (in Chinese with English abstract).

    Google Scholar

    [77] Moynier F, Albarède F, Herzog G. 2006. Isotopic composition of zinc, copper, and iron in lunar samples[J]. Geochimica et Cosmochimica Acta, 70(24): 6103−6117. doi: 10.1016/j.gca.2006.02.030

    CrossRef Google Scholar

    [78] Moynier F, Beck P, Yin Q Z, Ferroir T, Barrat J A, Paniello R, Telouk P, Gillet P. 2010. Volatilization induced by impacts recorded in Zn isotope composition of ureilites[J]. Chemical Geology, 276(3−4): 374−379. doi: 10.1016/j.chemgeo.2010.07.005

    CrossRef Google Scholar

    [79] Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of Zinc and Copper[J]. Reviews in Mineralogy and Geochemistry, 82(1): 543−600. doi: 10.2138/rmg.2017.82.13

    CrossRef Google Scholar

    [80] Nordberg G F. 2009. Historical perspectives on cadmium toxicology[J]. Toxicology & Applied Pharmacology, 238(3): 192−200.

    Google Scholar

    [81] Pallavicini N, Engstroem E, Baxter D C, Öhlander B, Ingria J, Rodushkin I. 2014. Cadmium isotope ratio measurements in environmental matrices by MC–ICP–MS[J]. Journal of Analytical Atomic Spectrometry, 29(9): 1570−1584. doi: 10.1039/C4JA00125G

    CrossRef Google Scholar

    [82] Paniello R C, Day J M, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon[J]. Nature, 490(7420): 376−379. doi: 10.1038/nature11507

    CrossRef Google Scholar

    [83] Park J, Kim J Y, Lee K, Kim M S, Kim M J, Choi J W. 2019. Comparison of acid extraction and total digestion methods for measuring Cd isotope ratios of environmental samples[J]. Environmental Monitoring and Assessment, 192(1): 1−10.

    Google Scholar

    [84] Pašava J, Tornos F, Chrastny V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate–hosted zinc deposits, Cantabria, Spain[J]. Mineralium Deposita, 49(7): 797−807. doi: 10.1007/s00126-014-0535-2

    CrossRef Google Scholar

    [85] Peng Mao, Liu Bo, Xing Xiaomiao, Zhou Yefeng, Wang Zhuoran, Li Cheng, Wei Jianlin. 2022. Investigation on the treatment effect of heavy metal cadmium (Cd) pollution in paddy fields[J]. Food Science and Technology And Economy, 47(5): 4 (in Chinese with English abstract).

    Google Scholar

    [86] Pichat S, Douchet C, AlbarèdeF. 2003. Zinc isotope variations in deep–sea carbonates from the eastern equatorial Pacific over the last 175 ka[J]. Earth and Planetary Science Letters, 210(1/2): 167−178.

    Google Scholar

    [87] Poclecha M, Lestan D. 2010. Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil[J]. Journal of Hazardous Materials, 174(1/3): 670−678.

    Google Scholar

    [88] Pokrovsky O S, Viers J, Freydier R. 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides[J]. Journal of Colloid and Interface Science, 291(1): 192−200. doi: 10.1016/j.jcis.2005.04.079

    CrossRef Google Scholar

    [89] Poynton H C, Varshavsky J R, Chang B, Cavigiolio G, Chan S, Holman P S, Loguinov A V, Bauer D J, Komachi K, Theil E C, Perkins E J, Hughes O, Vulpe C D. 2007. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity[J]. Environmental Science & Technology, 41(3): 1044−1050.

    Google Scholar

    [90] Rahmi, Lelifajri, Julinawati, Shabrina. 2017. Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions[J]. Carbohydrate Polymers, 170: 226−233. doi: 10.1016/j.carbpol.2017.04.084

    CrossRef Google Scholar

    [91] Ren Bangfang, Ling Wenli, Zhang Junbo, Zhang Yongqing, Duan Ruichun. 2007. Analysis methods of zinc isotope and their applications in geology[J]. Geological Science and Techology Information, 26(6): 30−35 (in Chinese with English abstract).

    Google Scholar

    [92] Ripperger S, RehkäMper M. 2007. Precise determination of cadmium isotope fractionation in seawater by double spike MC–ICPMS[J]. Geochimica et Cosmochimica Acta, 71(3): 631−642. doi: 10.1016/j.gca.2006.10.005

    CrossRef Google Scholar

    [93] Rosman K J R, De Laeter J R. 1975. The isotopic composition of cadmium in terrestrial minerals[J]. International Journal of Mass Spectrometry and Ion Physics, 16(4): 385−394. doi: 10.1016/0020-7381(75)85027-3

    CrossRef Google Scholar

    [94] Rosman K, De Laeter J. 1988. Cadmium mass fractionation in unequilibrated ordinary chondrites[J]. Earth and Planetary Science Letters, 89(2): 163−169.

    Google Scholar

    [95] Rubin E, Ramaswami A. 1998. The potential for phytoremediation of MTBE[J]. Water Research, 35(5): 1348−1353.

    Google Scholar

    [96] Rudnick R, Gao S. 2014. Composition of the continental crust[J]. Treatise on Geochemistry, 4: 1–51.

    Google Scholar

    [97] Sands D G, Rosman K, De Laeter J. 2001. A preliminary study of cadmium mass fractionation in lunar soils[J]. Earth and Planetary Science Letters, 186(1): 103−111.

    Google Scholar

    [98] Schmitt A D, Galer S, Abouchami W. 2009. Mass–dependent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 277(1/2): 262−272.

    Google Scholar

    [99] Shao Minghao, Zuo Shengpeng, Hong Wenxiu. 2020. Environmental monitoring and ecological restoration effects on limnodrilus hoffmeisteri[J]. Environmental Science Survey, 39(2): 1−9 (in Chinese with English abstract).

    Google Scholar

    [100] Shen X, Dai M, Yang J W, Sun L, Tan X, Peng C S, Ali I, Naz I. 2021. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges[J]. Chemosphere, 291(3): 132979.

    Google Scholar

    [101] Shiel A E, Weis D, Cossa D, Orians K. 2013. Determining provenance of marine metal pollution in French bivalves using Cd, Zn and Pb isotopes[J]. Geochimica et Cosmochimica Acta, 121(1): 155−167.

    Google Scholar

    [102] Shiel A E, Weis D, Orians K J. 2010. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 408(11): 2357−2368. doi: 10.1016/j.scitotenv.2010.02.016

    CrossRef Google Scholar

    [103] Singh N, Megharaj M, Kookana R S, Naidu R, Sethunathan N. 2004. Atrazine and simazine degradation in Pennisetum rhizosphere[J]. Chemosphere, 56(3): 257−263. doi: 10.1016/j.chemosphere.2004.03.010

    CrossRef Google Scholar

    [104] Song Wenrui, Zhu Chuanwei, Yang Zhen, Wu Yunzhu, Li Qiankun, Gao Lisheng, Zhang Jiawei, Zhang Yuxu, Fan Haifeng, Wen Hanjie. 2023. Genesis of the Nayongzhi lead–zinc deposit in Guizhou Province: Constraints from Cd isotopes and trace elements[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42(1): 206–214 (in Chinese with English abstract).

    Google Scholar

    [105] Sonke J E, Sivry Y, Viers J, Freydier R, Dejonghe L, André L, Aggarwal J K, Fontan F, Dupré B. 2008. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter[J]. Chemical Geology, 252(3/4): 145−157. doi: 10.1016/j.chemgeo.2008.02.006

    CrossRef Google Scholar

    [106] Sossi P A, Nebel O, O’Neill H S C, Moynier F. 2017. Zinc isotope composition of the Earth and its behaviour during planetary accretion[J]. Chemical Geology, 477: 73−84.

    Google Scholar

    [107] Sun Y C, Chi P H, Shiue M Y. 2001. Comparison of different digestion methods for total decomposition of siliceous and organic environmental samples[J]. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 17(12): 1395. doi: 10.2116/analsci.17.1395

    CrossRef Google Scholar

    [108] Tan Decan, Zhu Jianming, Li Shehong, Ren Kun, Zhao Bo, Wang Jing, Zeng Li. 2017. The principle and application of isotopic double spike technique: The application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(6): 948–954 (in Chinese with English abstract).

    Google Scholar

    [109] Tan Decan, Zhu Jianming, Wang Jing, Tao Faxiang, Zeng Li. 2016. The principle and application of isotopic double spike technique Ⅰ: Principle[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 138–145 (in Chinese with English abstract).

    Google Scholar

    [110] Tian Weili, Liu Dan, Wu Jiasen, Wang Lijiang, Chen Kunbai. 2013. Application of animal and plant combination remediation technology in complex heavy metalscontaminated soil[J]. Journal of Soil and Water Conservation, 27(5): 188−192.

    Google Scholar

    [111] Tu Guangchi, Gao Zhenmin, Hu Ruizhong, Zhang Qian, Li Chaoyang, Zhao Zhenhua, Zhang Bao. 2004. Dispersed Element Geochemistry and Metallogenic Mechanism[M]. Beijing: Geological Publishing House, 1–400 (in Chinese).

    Google Scholar

    [112] Viehmann S, Hohl S V, Kraemer D, Bau M, Walde D H G, Galer S J G, Jiang S Y, Meister P. 2018. Metal cycling in Mesoproterozoic microbial habitats: Insights from trace elements and stable Cd isotopes in stromatolites[J]. Gondwana Research, 67(1): 101−114.

    Google Scholar

    [113] Viers J, Oliva P, Nonell A, Gélabert A, Sonke J E, Freydier R, Gainville R, Dupré B. 2007. Evidence of Zn isotopic fractionation in a soil–plant system of a pristine tropical watershed (Nsimi, Cameroon)[J]. Chemical Geology, 239(1/2): 124−137. doi: 10.1016/j.chemgeo.2007.01.005

    CrossRef Google Scholar

    [114] Vogelmeier C, König G, Bencze K, Fruhmann G. 1987. Pulmonary involvement in zinc fume fever[J]. Chest, 92(5): 946–948.

    Google Scholar

    [115] Voldrichova P, Chrastny V, Sipkova A, Farkas J, Novak M, Stepanova M, Krachler M, Veselovsky F, Blaha V, Prechova E, Komarek A, Bohdalkova L, Curik J, Mikova J, Erbanova L, Pacherova P. 2014. Zinc isotope systematics in snow and ice accretions in Central European mountains[J]. Chemical Geology, 388(1): 130−141.

    Google Scholar

    [116] Wan Dan, Chen Jiubin, Zhang Ting, An Yuchen, Shuai Wangcai. 2022. Cadmium isotope fractionation and its applications in tracing the source and fate of cadmium in the soil: A review[J]. Rock and Mineral Analysis, 41(3): 341−352 (in Chinese with English abstract).

    Google Scholar

    [117] Wang Jing, Wei Heng, Pan Bo. 2023. Accumulation characteristics and probabilistic risk assessment of Cd in agricultural soils across China[J]. Environmental Science, 44(7): 4006−4016 (in Chinese with English abstract).

    Google Scholar

    [118] Wang Shuguang, Liu Shetang, Namkha Norbu, Xu Yan. 2016. Application of zinc isotopic tracing technology in soil pollution traceability[J]. Western Development (Land Development and Engineering Research), (2): 61−65 (in Chinese with English abstract).

    Google Scholar

    [119] Wang Weizhong, Zhang Zhaohui, Wen Hanjie, Zhu Chuanwei, Zhang Yuxu. 2020. The application of Cd isotopes in the paleo–environment reconstruction: A case study of the Frasnian–Famennian mass extinction event in the Late Devonian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(1): 80–88 (in Chinese with English abstract).

    Google Scholar

    [120] Wang Yinquan, Zhou Taofa, Li Xiangling. 2013. Progress in the application of cadmium isotope tracing technology in the source analysis of cadmium pollution in soil and sediments[J]. Acta Mineralogica Sinica, 33(2): 713−714 (in Chinese).

    Google Scholar

    [121] Wang Z Z, Liu S A, Liu J G, Huang J, Xiao Y, Chu Z Y, Zhao X M, Tang L M. 2016. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle[J]. Geochimica et Cosmochimica Acta, 198(1): 151−167.

    Google Scholar

    [122] Wang Zhongwei, Yuan Wei, Chen Jiubin. 2015. Zn stable isotope geochemistry: A review[J]. Earth Science Frontiers, 22(5): 84−93 (in Chinese with English abstract).

    Google Scholar

    [123] Weber T, John S, Tagliabue A, DeVries T. 2018. Biological uptake and reversible scavenging of zinc in the global ocean[J]. Science, 361(6397): 72−76. doi: 10.1126/science.aap8532

    CrossRef Google Scholar

    [124] Wei R F, Guo Q J, Wen H J, Yang J X, Peters M, Zhu C W, Ma J, Zhu G X, Zhang H Z, Tian L Y. 2015. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 7(6): 264−272.

    Google Scholar

    [125] Wei Rongfei, Guo Qingjun, Yang Junxing, Zhu Guangxu, Zhang Hanzhi, Marc Peters, Wang Chunyu, Wan Yingxin. 2021. Application and progress of Cd isotope technology in environmental science[J]. Chinese Journal of Ecology, 33(2): 525−536 (in Chinese with English abstract).

    Google Scholar

    [126] Wei Shuhe, Xu Lei, Han Ran, Dou Xuekai, Yang Wei. 2019. Review on combined electrokinetic and phytoremediation technology for soil contaminated byheavy metal[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 43(1): 154−160 (in Chinese with English abstract).

    Google Scholar

    [127] Wei Shuhe, Zhou Qixing, Wang Xin, Zhang Kaisong, Guo Guanlin. 2004. A newly discovered cadmium hyperaccumulating plant (Solanum nigrum L)[J]. Chinese Science Bulletin, 24: 2568−2573 (in Chinese).

    Google Scholar

    [128] Weiss D J, Mason T F D, Zhao F J, Kirk G J, Coles B J, Horstwood M S. 2005. Isotopic discrimination of zinc in higher plants[J]. New Phytologist, 165(3): 703−710. doi: 10.1111/j.1469-8137.2004.01307.x

    CrossRef Google Scholar

    [129] Weiss D J, Rausch N, Mason T, Coles B J, Wilkinson J J, Ukonmaanaho L, Arnold T, Nieminen T M. 2007. Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat[J]. Geochimica et Cosmochimica Acta, 71(14): 3498−3517. doi: 10.1016/j.gca.2007.04.026

    CrossRef Google Scholar

    [130] Wen H J, Zhu C W, Zhang Y X, Cloquet C, Fu S H. 2016. Zn/Cd ratios and cadmium isotope evidence for the classification of lead–zinc deposits[J]. Scientific Reports, 6: 25273. doi: 10.1038/srep25273

    CrossRef Google Scholar

    [131] Wiggenhauser M, Bigalke M, Imseng M, Keller A, Rehkämper M, Wilcke W, Frossard E. 2018. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil–fertilizer–plant systems[J]. Science of the Total Environment, 648(1): 779−786.

    Google Scholar

    [132] Wiggenhauser M, Bigalke M, Imseng M, Müller M, Keller A, Murphy K, Kreissig K, Rehkämper M, Wilcke W, Frossard E. 2016. Cadmium isotope fractionation in soil–wheat systems[J]. Environmental Science & Technology, 50(17): 9223−9231.

    Google Scholar

    [133] Wolf R E, Todd A S, Brinkman S, Lamothe P J, Smith K S, Ranville J F. 2009. Measurement of total Zn and Zn isotope ratios by quadrupole ICP–MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss)[J]. Talanta, 80(2): 676−684. doi: 10.1016/j.talanta.2009.07.048

    CrossRef Google Scholar

    [134] Wombacher F, RehkäMper M, Mezger K, Bischoff A, Münker C. 2008. Cadmium stable isotope cosmochemistry[J]. Geochimica et Cosmochimica Acta, 72(2): 646−667. doi: 10.1016/j.gca.2007.10.024

    CrossRef Google Scholar

    [135] Wombacher F, RehkäMper M, Mezger K. 2004. Determination of the mass–dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 68(10): 2349−2357. doi: 10.1016/j.gca.2003.12.013

    CrossRef Google Scholar

    [136] Wombacher F, Rehkmper M, Mezger K, Belshaw N, Gall L, Halliday A N. 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple−collector ICPMS[J]. Geochimica et Cosmochimica Acta, 67(23): 4639−4654. doi: 10.1016/S0016-7037(03)00389-2

    CrossRef Google Scholar

    [137] Wu J F, Boyle E A. 1997. Low blank preconcentration technique for the determination of lead, copper, and cadmium in small–volume seawater samples by isotope dilution ICPMS[J]. Analytical Chemistry, 69(13): 2464−2470. doi: 10.1021/ac961204u

    CrossRef Google Scholar

    [138] Wu Wei, Zhang Zhixin, Niu Honghong, Wang Weiwei, Cai Yuhong. 2014. Analysis of soil heavy metal pollution and remediation measures[J]. Agriculture and Technology, 8: 249−251 (in Chinese).

    Google Scholar

    [139] Wu Xiaomei, Ye Meifeng, Wu Feilong, Lin Daiyan. 2018. Cu and Zn accumulations in myriophyllum spicatum for purification of pig farm biogas slurry[J]. Fujian Journal of Agricultural Sciences, 33(11): 1195−1200 (in Chinese with English abstract).

    Google Scholar

    [140] Xiang Zhonglan. 2001. The harm of excessive zinc supplementation to the human body[J]. Modern Medicine Health, 9: 727 (in Chinese).

    Google Scholar

    [141] Xiang Zuopeng, Li Bo, Wang Xinfu, Tang Guo. 2020. Characteristics of Zn isotopic composition of sphalerite in different lead–zinc deposits[J]. Journal of Kunming University of Science and Technology (Natural Science), 45(1): 32–41 (in Chinese with English abstract).

    Google Scholar

    [142] Xie R C, Galer S J G, Abouchami W, Rijkenberg M J A, de Baar H J W, De Jong, J, Andreae M O. 2017. Non–Rayleigh control of upper–ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters 471: 94–103.

    Google Scholar

    [143] Xiong Jieqian, Gong Xiaofeng, Jiang Liang, Li Haoling, Yuan Shaofen, Lin Yuan, Wu Li. 2021. Toxic effects of zinc and cadium on the benthic organisms in sediments of Lake Poyang and verification of quality guideline[J]. Journal of Lake Sciences, 33(6): 1687−1700 (in Chinese with English abstract). doi: 10.18307/2021.0607

    CrossRef Google Scholar

    [144] Xu Huiting, Zhang Weiwen, Shen Xuyang, Fu Juyang, Chen Feifei, Wang Yan, Yang Meng, Zhao Tonghe, Zhu Weiqin. 2019. Advances in remediation of heavy metal contaminated soils by in situ chemical fixation[J]. Hubei Agricultural Sciences, 58(1): 10−14 (in Chinese with English abstract).

    Google Scholar

    [145] Xue Z C, M Rehkämper M, Schönbächler M, Statham P J, Coles B J. 2012. A new methodology for precise cadmium isotope analyses of seawater[J]. Analytical and Bioanalytical Chemistry, 402(2): 883−893. doi: 10.1007/s00216-011-5487-0

    CrossRef Google Scholar

    [146] Xue Z, Rehkämper M, Horner T J, Abouchami W, Middag R, van de Flierd T, de Baar H J W. 2013. Cadmium isotope variations in the Southern Ocean[J]. Earth and Planetary Science Letters, 382: 161−172. doi: 10.1016/j.jpgl.2013.09.014

    CrossRef Google Scholar

    [147] Yan B, Zhu X K, He X X, Tang S H. 2019. Zn isotopic evolution in early Ediacaran ocean: A global signature[J]. Precambrian Research, 320: 472−483. doi: 10.1016/j.precamres.2018.11.021

    CrossRef Google Scholar

    [148] Yan Jialei, Li Yanbin. 2023. Research progress on the biogeochemical cycling of cadmium in the ocean[J]. Environmental Chemistry, 42(3): 720−732 (in Chinese with English abstract).

    Google Scholar

    [149] Yan X R, Zhu M Q, Li W, Peacock C L, Ma J Y, Wen H J, Liu F, Zhou Z B, Zhu C W, Yin H. 2021. Cadmium isotope fractionation during adsorption and substitution with iron (Oxyhydr) oxides[J]. Environmental Science & Technology, 55(17): 11601−11611.

    Google Scholar

    [150] Yang Hongfei, Yan Mi, Yao Jing, Wang Youbao, Liu Dengyi. 2007. Impact of Cu and Zn pollution on rape growth and soil enzyme activity[J]. Chinese Journal of Applied Ecology, 7: 1484−1490 (in Chinese with English abstract).

    Google Scholar

    [151] Yang J L, Li Y B, Liu S Q, Tian H Q, Chen C Y, Liu J M, Shi Y L. 2015. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 391: 74−82. doi: 10.1016/j.chemgeo.2014.10.029

    CrossRef Google Scholar

    [152] Yang S C, Lee D C, Ho T Y. 2012. The isotopic composition of Cadmium in the water column of the South China Sea[J]. Geochimica et Cosmochimica Acta, 98(1): 66−77.

    Google Scholar

    [153] Yang W J, Ding K B, Zhang P, Qiu H, Cloquet C, Wen H J, Morel J L, Qiu R L, Tang Y T. 2019. Cadmium stable isotope variation in a mountain area impacted by acid mine drainage[J]. Science of the Total Environment, 646: 696−703. doi: 10.1016/j.scitotenv.2018.07.210

    CrossRef Google Scholar

    [154] Yang Yong, He Yanming, Luan Jingli, Liu Jingyang, Guo Yuwen. 2012. Comprehensive analysis on soil remediation technologies of international contaminated sites[J]. Environmental Science & Technology, 35(10): 92−98 (in Chinese with English abstract).

    Google Scholar

    [155] Yao Zhennan, Niu Kaizhi, Li Ming, Xu Ziqian. 2021. Engineering investigation of chemical washing removing Cd, Pb and As in soil[J]. Guangdong Chemical Industry, 48(12): 154−156 (in Chinese with English abstract).

    Google Scholar

    [156] Yin X Z, Wei R F, Chen H D, Zhu C W, Liu Y Z, Wen H J, Guo Q J, Ma J. 2021. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities[J]. Science of the Total Environment, 750: 141233. doi: 10.1016/j.scitotenv.2020.141233

    CrossRef Google Scholar

    [157] Yu Wenyu, Hao Tongfeng, Nanhai Lin, Zhang Shulin, Zhang Qingjing. 2023. Research progress of Aquatic plant in the treatment of heavy metal pollution in water[J]. Modern Agricultural Science and Technology, 841(11): 156−158, 164 (in Chinese).

    Google Scholar

    [158] Zhang G L, Liu Y S, Moynier F, Zhu Y T, Wang Z C, Hu Z C, Zhang L, Li M, Chen H H. 2020. Zinc isotopic composition of the lower continental crust estimated from lower crustal xenoliths and granulite terrains[J]. Geochimica et Cosmochimica Acta, 276: 92−108. doi: 10.1016/j.gca.2020.02.030

    CrossRef Google Scholar

    [159] Zhang J P, Zhuang Z X, Chen C X, Huang H B, Qi S L, Wang X R. 2008. Study on the distributions of lead and cadmium in rats by ICP–MS with stable isotope tracer[J]. Journal of Instrumental Analysis, 27(8): 835−838 (in Chinese with English abstract).

    Google Scholar

    [160] Zhang Lihao, Bai Jiaojie, Tian Ruiyun, Wang Guochang, You Laiyong, Liang Jiani, Ci Kaidong, Liu Mengli, Kou Leyong, Zhou Lingli, Zhou Jun, Wu Dafu, Sun Bin, Zhou Jing. 2023. Cadmium remediation strategies in alkaline arable soils in Northern China: Current status and challenges[J/OL]. Acta Pedologica Sinica: 1–13. http://kns.cnki.net/kcms/detail/32.1119.P.20230612.1349.002.html (in Chinese with English abstract).

    Google Scholar

    [161] Zhang X C, Huang J, Gong Y Z, Zhang L L, Huang F. 2022a. Climate influence on zinc isotope variations in a loess–paleosol sequence of the Chinese Loess Plateau[J]. Geochimica et Cosmochimica Acta, 321: 115−132. doi: 10.1016/j.gca.2022.01.023

    CrossRef Google Scholar

    [162] Zhang X Y, Chen L H, Wang X J, Hanyu T, Hofmann A W, Komiya T, Nakamura K, Kato Y, Zeng G, Gou W X, Li W Q. 2022b. Zinc isotopic evidence for recycled carbonate in the deep mantle[J]. Nature Communications, 13(1): 6085. doi: 10.1038/s41467-022-33789-6

    CrossRef Google Scholar

    [163] Zhang Y X, Wen H J, Zhu C W, Fan H F, Luo C G, Liu J, Cloquet C. 2016. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 216(16): 9−17.

    Google Scholar

    [164] Zhang Ying. 2018. The impact of zinc pollution on soil and plants[J]. Vacation Tour, 8: 86−87 (in Chinese).

    Google Scholar

    [165] Zhang Yuxu, Wen Hanjie, Fan Haifeng, Wang Jiasheng, Zhang Jinrang. 2010. Chemical pretreatment methods for measurement of Cd isotopic ratio on geological samples[J]. Journal of Instrumental Analysis, 29(6): 633−637 (in Chinese with English abstract).

    Google Scholar

    [166] Zhao Yu. 2020. Characteristics and risk assessment of heavy meatal Cd pollution of shallow groundwater and surface water in main stream of Weihe River, China[J]. Journal of Earth Sciences and Environment, 42(2): 267−277 (in Chinese with English abstract).

    Google Scholar

    [167] Zheng Guihong, Tang Lingling, Sun Jianmei, Liu Zhanmin, Cheng Chao, Feng Zhaojun. 2014. The effect of zinc on oxidative damage of koi tissues[J]. Jiangsu Agricultural Sciences, 42(3): 187−189 (in Chinese).

    Google Scholar

    [168] Zhong Q H, Zhou Y C, Tsang D C W, Liu J, Yang X, Yin M L, Wu S J, Wang J, Xiao T F, Zhang Z F. 2020. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 736: 139585. doi: 10.1016/j.scitotenv.2020.139585

    CrossRef Google Scholar

    [169] Zhong Songxiong, Li Xiaomin, Li Fangbai. 2021. Cadmium isotopes fractionation in soil–plant systems: A review[J]. Acta Pedologica Sinica, 58(4): 825−836 (in Chinese with English abstract).

    Google Scholar

    [170] Zhou Jiadong, Ma Dandan, Liu Min, Hong Xiaohui, Fu Jiahui, Jiang Luman, Lü Dandan, Fang Jiaqi, Cao Yong, Li Weidong. 2020. On the accumulation and purification of three kinds of aquatic plants to heavy metals[J]. Journal of Hangzhou Normal University (Natural Science Edition), 19(1): 57−63 (in Chinese with English abstract).

    Google Scholar

    [171] Zhou Zhen, Huang Li, Huang Guodi, Ma Customs, Peng Gang. 2023. Passivation and remediation of cadmium and zinc contaminated soil by biochar and sepiolite[J]. Journal of Huazhong Agricultural University, 42(2): 158−166 (in Chinese).

    Google Scholar

    [172] Zhu C W, Liao S L, Wang W, Zhang Y X, Yang T, Fan H F, Wen H J. 2018. Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn–Pb deposit, Sichuan Province, China[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 95: 639−648.

    Google Scholar

    [173] Zhu C W, Wen H J, Zhang Y X, Fan H F, Fu S H, Xu J, Qin T R. 2013. Characteristics of Cd isotopic compositions and their genetic significance in the lead–zinc deposits of SW China[J]. Science China Earth Sciences, 56(12): 2056−2065. doi: 10.1007/s11430-013-4668-4

    CrossRef Google Scholar

    [174] Zhu C W, Wen H J, Zhang Y X, Fu S H, Fan H F, Cloquet C. 2017. Cadmium isotope fractionation in the Fule Mississippi Valley–type deposit, Southwest China[J]. Mineralium Deposita, 52(5): 675−686. doi: 10.1007/s00126-016-0691-7

    CrossRef Google Scholar

    [175] Zhu Chuanwei, Wen Hanjie, Zhang Yuxu, Fan Haifeng, Liu Jie, Zhou Zhengbing. 2015. Analytical technique for cadmium stable isotopes and its applications[J]. Earth Science Frontiers, 22(5): 115−123 (in Chinese with English abstract).

    Google Scholar

    [176] Zhu Chuanwei, Wen Hanjie, ZhangYuxu, Fan Haifeng, Fu Shaohong, Xu Juan, Qin Tingrong. 2013. Characteristics of Cd isotopic compositions and their genetic significance in the lead–zinc deposits of SW China[J]. Scientia Sinica (Terrae), 43(11): 1847−1856 (in Chinese). doi: 10.1360/zd-2013-43-11-1847

    CrossRef Google Scholar

    [177] Zhu Minge, Wang Shuzhi, Zhang Cheng’e. 1990. The effect of zinc on soil bioactivity[J]. Journal of Agro–environmental Science, 2: 6–9, 13–48 (in Chinese).

    Google Scholar

    [178] Zhu X K, O’Nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu–isotope variation by plasma–source mass spectrometry: Implications for use as geochemical tracers[J]. Chemical Geology, 163(1): 139−149.

    Google Scholar

    [179] Zhu Z Y, Jiang S Y, Yang T, Wei, H Z. 2015. Improvements in Cu–Zn isotope analysis with MC–ICP–MS: A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect[J]. International Journal of Mass Spectrometry, 393: 34−40. doi: 10.1016/j.ijms.2015.10.009

    CrossRef Google Scholar

    [180] Zhu Zhiyong, Zhu Xiangkun, Yanh Tao. 2020. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 39(3): 384−390 (in Chinese with English abstract).

    Google Scholar

    [181] 常海伟, 刘代欢, 贺前锋. 2018. 重金属污染农田微生物修复机理研究进展[J]. 微生物学杂志, 38(2): 114−121. doi: 10.3969/j.issn.1005-7021.2018.02.017

    CrossRef Google Scholar

    [182] 符志友, 冯承莲, 赵晓丽, 郭文景, 孙思杨, 刘新妹, 王宇, 李晓峰, 吴丰昌. 2019. 我国流域水环境中铜、锌的生态风险及管理对策[J]. 环境工程, 37(11): 70−74.

    Google Scholar

    [183] 何天荣. 1995. 乡村企业土法冶炼氧化锌对人体的危害与预防[J]. 劳动安全与健康, 3: 30.

    Google Scholar

    [184] 侯李云, 曾希柏, 张杨珠. 2015. 客土改良技术及其在砷污染土壤修复中的应用展望[J]. 中国生态农业学报, 23(1): 20−26.

    Google Scholar

    [185] 胡宏韬, 程金平. 2009. 土壤锌污染修复实验研究[J]. 环境科学与技术, 32(10): 53−56,102. doi: 10.3969/j.issn.1003-6504.2009.10.013

    CrossRef Google Scholar

    [186] 黄施棋, 龚迎莉, 田世洪, 梁正伟, 朱春会. 2023. 锌同位素在地球科学研究中的新进展[J]. 地质学报, 97(4): 1002−1029. doi: 10.3969/j.issn.0001-5717.2023.04.003

    CrossRef Google Scholar

    [187] 黄益宗, 郝晓伟, 雷鸣, 铁柏清. 2013. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 32(3): 409−417.

    Google Scholar

    [188] 孔静, 郭庆军, 魏荣菲, 朱光旭, 胡健. 2017. 锌稳定同位素分析方法及其在环境科学研究中的应用[J]. 生态学杂志, 36(6): 1718−1726.

    Google Scholar

    [189] 李福燕, 张黎明, 李许明, 郭彬, 陈柳燕, 漆智平. 2006. 土壤–植物系统锌污染与修复技术研究进展[J]. 安徽农业科学, 22: 5920−5921, 5979. doi: 10.3969/j.issn.0517-6611.2006.22.079

    CrossRef Google Scholar

    [190] 李海涛, 杨鑫, 雷华基, 杨艳, 靳兰兰, 胡圣虹. 2021. 镉稳定同位素研究进展[J]. 岩矿测试, 40(1): 1−15.

    Google Scholar

    [191] 李津, 朱祥坤, 唐索寒. 2008. 低温环境下Zn同位素分馏的若干重要过程[J]. 岩石矿物学杂志, 27(5): 465−471. doi: 10.3969/j.issn.1000-6524.2008.05.012

    CrossRef Google Scholar

    [192] 李熠, 陈熹, 肖丕显, 马琼, 吴国. 2020. 中国镉超富集植物种类组成及分布特征研究[J]. 中国野生植物资源, 39(6): 11−16.

    Google Scholar

    [193] 李争显, 李伟, Lei Jiajun, Li Qianyu, 刘林涛, 周廉. 2020. 常见金属元素对人体的作用及危害[J]. 中国材料进展, 39(12): 934−944. doi: 10.7502/j.issn.1674-3962.202003018

    CrossRef Google Scholar

    [194] 李智, 许英奎, 朱丹, 李世杰, 李雄耀, 刘建忠. 2023. 锌同位素在行星科学中的研究进展[J]. 矿物学报, 43(3): 273−283.

    Google Scholar

    [195] 梁莉莉, 刘丛强, 王中良, 朱祥坤, 宋柳霆, 李津. 2008. 喀斯特高原湖泊生物地球化学过程中的锌同位素特征[J]. 岩石矿物学杂志, 27(4): 326−334. doi: 10.3969/j.issn.1000-6524.2008.04.009

    CrossRef Google Scholar

    [196] 刘梦蜀, 张群, 张英男, 张兆峰, 黄方, 于慧敏. 2019. 镉同位素分析方法及国际标样的镉同位素组成[C] //中国矿物岩石地球化学学会第17届学术年会论文集, 989.

    Google Scholar

    [197] 刘意章, 肖唐付, 朱建明. 2015. 镉同位素及其环境示踪[J]. 地球与环境, 43(6): 687−696.

    Google Scholar

    [198] 马桂云, 张振华, 严少华, 唐婉莹. 2003. 重金属对鱼类污染的研究进展[J]. 江苏环境科技, 16(2): 38−40.

    Google Scholar

    [199] 马蕾, 李丹丹, 吕逸文, 王勋, 王泽洲, 李孟伦, 杨春, 瞿瑗汝, 舒梓坦, 刘盛遨. 2022. 锌同位素地球化学及应用研究进展[J]. 地球化学, 51(2): 161−175.

    Google Scholar

    [200] 苗鑫, 陈林捷, 周飞杨, 刘星, 何栋, 郑洪涛, 朱振利. 2021. 高精度镉同位素分析样品消解方法对比研究[J]. 分析测试学报, 40(6): 947−953. doi: 10.3969/j.issn.1004-4957.2021.06.022

    CrossRef Google Scholar

    [201] 彭毛, 刘波, 邢小苗, 周业丰, 王卓然, 李成, 魏建林. 2022. 稻田重金属镉污染治理效果研究[J]. 粮食科技与经济, 47(5): 4.

    Google Scholar

    [202] 任邦方, 凌文黎, 张军波, 张永清, 段瑞春. 2007. Zn同位素分析方法及其地质应用[J]. 地质科技情报, 26(6): 30−35.

    Google Scholar

    [203] 邵明昊, 左胜鹏, 洪文秀. 2020. 霍甫水丝蚓(Limnodrilus hoffmeisteri)环境监测与生态修复效应研究进展[J]. 环境科学导刊, 39(2): 1−9.

    Google Scholar

    [204] 宋文睿, 朱传威, 杨振, 吴云柱, 李乾坤, 高立生, 张嘉玮, 张羽旭, 樊海峰, 温汉捷. 2023. 贵州纳雍枝铅锌矿床成因研究: 来自镉同位素和微量元素的约束[J]. 矿物岩石地球化学通报, 42(1): 206−214.

    Google Scholar

    [205] 谭德灿, 朱建明, 李社红, 任堃, 赵博, 王静, 曾理. 2017. 同位素双稀释剂法的原理与应用Ⅱ: 应用部分[J]. 矿物岩石地球化学通报, 36(6): 948−954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    CrossRef Google Scholar

    [206] 谭德灿, 朱建明, 王静, 陶发祥, 曾理. 2016. 同位素双稀释剂法的原理与应用Ⅰ: 原理部分[J]. 矿物岩石地球化学通报, 35(1): 138−145. doi: 10.3969/j.issn.1007-2802.2016.01.016

    CrossRef Google Scholar

    [207] 田伟莉, 柳丹, 吴家森, 王立江, 陈昆柏. 2013. 动植物联合修复技术在重金属复合污染土壤修复中的应用[J]. 水土保持学报, 27(5): 188−192. doi: 10.3969/j.issn.1009-2242.2013.05.037

    CrossRef Google Scholar

    [208] 涂光炽, 高振敏, 胡瑞忠, 张乾, 李朝阳, 赵振华, 张宝. 2004. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社, 1–400.

    Google Scholar

    [209] 万丹, 陈玖斌, 张婷, 安宇宸, 帅旺财. 2022. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 41(3): 341−352. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203001

    CrossRef Google Scholar

    [210] 王静, 魏恒, 潘波. 2023. 中国农田土壤Cd累积分布特征及概率风险评价[J]. 环境科学, 44(7): 4406−4416.

    Google Scholar

    [211] 王曙光, 刘社堂, 南卡俄吾, 徐艳. 2016. 锌同位素示踪技术在土壤污染溯源中的应用[J]. 西部大开发(土地开发工程研究), (2): 61−65.

    Google Scholar

    [212] 王伟中, 张朝晖, 温汉捷, 朱传威, 张羽旭. 2020. 镉同位素在古环境重建中的应用: 以晚泥盆世弗拉期—法门期生物灭绝事件为例[J]. 矿物岩石地球化学通报, 39(1): 80−88.

    Google Scholar

    [213] 王银泉, 周涛发, 李湘凌. 2013. 镉同位素示踪技术在土壤和沉积物镉污染来源解析中的应用进展[J]. 矿物学报, 33(2): 713−714.

    Google Scholar

    [214] 王中伟, 袁玮, 陈玖斌. 2015. 锌稳定同位素地球化学综述[J]. 地学前缘, 22(5): 84−93.

    Google Scholar

    [215] 魏荣菲, 郭庆军, 杨俊兴, 朱光旭, 张晗芝, Marc Peters, 王春雨, 万鹰昕. 2014. 镉同位素技术在环境科学研究中的应用进展[J]. 生态学杂志, 33(2): 525−536.

    Google Scholar

    [216] 魏树和, 徐雷, 韩冉, 窦薛楷, 杨微. 2019. 重金属污染土壤的电动–植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 43(1): 154−160.

    Google Scholar

    [217] 魏树和, 周启星, 王新, 张凯松, 郭观林. 2004. 一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报, 24: 2568−2573. doi: 10.3321/j.issn:0023-074X.2004.24.013

    CrossRef Google Scholar

    [218] 吴晓梅, 叶美锋, 吴飞龙, 林代炎. 2018. 狐尾藻对生猪养殖场沼Cu、Zn的富集与净化效果[J]. 福建农业学报, 33(11): 1195−1200.

    Google Scholar

    [219] 武巍, 张之鑫, 牛红红, 王巍巍, 蔡玉红. 2014. 浅析土壤重金属污染及修复措施[J]. 农业与技术, 8: 249−251. doi: 10.3969/j.issn.1671-962X.2014.01.193

    CrossRef Google Scholar

    [220] 向中兰. 2001. 补锌过量对人体的危害[J]. 现代医药卫生, 9: 727. doi: 10.3969/j.issn.1009-5519.2001.09.050

    CrossRef Google Scholar

    [221] 向佐朋, 李波, 王新富, 唐果. 2020. 不同类型铅锌矿床中闪锌矿的Zn同位素组成特征[J]. 昆明理工大学学报: 自然科学版, 45(1): 32−41.

    Google Scholar

    [222] 熊捷迁, 弓晓峰, 江良, 李昊霖, 袁少芬, 林媛, 吴莉. 2021. 鄱阳湖水体沉积物中Zn、Cd对底栖生物的毒性效应及基准验证[J]. 湖泊科学, 33(6): 1687−1700. doi: 10.18307/2021.0607

    CrossRef Google Scholar

    [223] 徐慧婷, 张炜文, 沈旭阳, 傅巨阳, 陈菲菲, 王艳, 杨梦, 赵桐鹤, 朱维琴. 2019. 重金属污染土壤原位化学固定修复研究进展[J]. 湖北农业科学, 58(1): 10−14.

    Google Scholar

    [224] 闫家蕾, 李雁宾. 2023. 海洋镉生物地球化学循环研究进展[J]. 环境化学, 42(3): 720−732. doi: 10.7524/j.issn.0254-6108.2022041906

    CrossRef Google Scholar

    [225] 杨红飞, 严密, 姚婧, 王友保, 刘登义. 2007. 铜、锌污染对油菜生长和土壤酶活性的影响[J]. 应用生态学报, 7: 1484−1490. doi: 10.3321/j.issn:1001-9332.2007.07.013

    CrossRef Google Scholar

    [226] 杨勇, 何艳明, 栾景丽, 刘景洋, 郭玉文. 2012. 国际污染场地土壤修复技术综合分析[J]. 环境科学与技术, 35(10): 92−98. doi: 10.3969/j.issn.1003-6504.2012.10.020

    CrossRef Google Scholar

    [227] 姚振楠, 钮恺之, 李明, 徐子茜. 2021. 化学淋洗法修复土壤中Cd、Pb、As的工程研究[J]. 广东化工, 48(12): 154−156. doi: 10.3969/j.issn.1007-1865.2021.12.063

    CrossRef Google Scholar

    [228] 俞文钰, 郝桐锋, 南海林, 张树林, 张清靖. 2023. 水生植物治理水体重金属污染的研究进展[J]. 现代农业科技, 841(11): 156−158,164. doi: 10.3969/j.issn.1007-5739.2023.11.040

    CrossRef Google Scholar

    [229] 张建平, 庄峙厦, 陈成祥, 黄华斌, 齐士林, 王小如. 2008. 大鼠体内铅镉分布的稳定同位素示踪ICP–MS研究[J]. 分析测试学报, 27(8): 835−838. doi: 10.3969/j.issn.1004-4957.2008.08.010

    CrossRef Google Scholar

    [230] 张力浩, 白姣杰, 田瑞云, 王国昌, 游来勇, 梁家妮, 慈凯东, 刘梦丽, 寇乐勇, 周伶俐, 周俊, 吴大付, 孙斌, 周静. 2023. 中国北方碱性农田土壤镉污染修复: 现状与挑战[J/OL]. 土壤学报: 1–13. http://kns.cnki.net/kcms/detail/32.1119.P.20230612.1349.002.html.

    Google Scholar

    [231] 张莹. 2018. 锌污染对土壤和植物的影响[J]. 度假旅游, 8: 86−87.

    Google Scholar

    [232] 张羽旭, 温汉捷, 樊海峰, 王加昇, 张锦让. 2010. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 29(6): 633−637.

    Google Scholar

    [233] 赵玉. 2020. 渭河干流浅层地下水与地表水中重金属Cd污染特征及风险评价[J]. 地球科学与环境学报, 42(2): 267−277.

    Google Scholar

    [234] 郑桂红, 唐玲玲, 孙建梅, 刘缠民, 程超, 冯照军. 2014. 重金属锌对锦鲤组织氧化损伤的作用[J]. 江苏农业科学, 42(3): 187−189.

    Google Scholar

    [235] 钟松雄, 李晓敏, 李芳柏. 2021. 镉同位素分馏在土壤–植物体系中的研究进展[J]. 土壤学报, 58(4): 825−836.

    Google Scholar

    [236] 周佳栋, 马丹丹, 刘敏, 洪小慧, 傅嘉辉, 蒋璐蔓, 吕丹丹, 方佳琪, 曹勇, 李伟东. 2020. 三种水生植物对重金属的富集及净化能力研究[J]. 杭州师范大学学报(自然科学版), 19(1): 57−63.

    Google Scholar

    [237] 周振, 黄丽, 黄国棣, 马海关, 彭岗. 2023. 生物炭和海泡石复配对镉和锌复合污染土壤的钝化修复[J]. 华中农业大学学报, 42(2): 158−166.

    Google Scholar

    [238] 朱传威, 温汉捷, 张羽旭, 樊海峰, 付绍洪, 徐娟, 覃廷荣. 2013. 铅锌矿床中的Cd同位素组成特征及其成因意义[J]. 中国科学: 地球科学, 43(11): 1847−1856.

    Google Scholar

    [239] 朱传威, 温汉捷, 张羽旭, 樊海峰, 刘洁, 周正兵. 2015. Cd稳定同位素测试技术进展及其应用[J]. 地学前缘, 22(5): 115−123.

    Google Scholar

    [240] 朱铭莪, 王淑芝, 张成娥. 1990. 锌对土壤生物活性的影响[J]. 农业环境科学学报, 2: 6–9, 13–48.

    Google Scholar

    [241] 朱志勇, 朱祥坤, 杨涛. 2020. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 39(3): 384−390.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(26)

Tables(12)

Article Metrics

Article views(683) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint