2024 Vol. 51, No. 2
Article Contents

HU Wangshui, LI Xiyuan, TANG Yong, LI Tao, LEI Zhongying. 2024. Mantle convection inversion: Perspective and hypothesis of global inversion tectonics[J]. Geology in China, 51(2): 483-498. doi: 10.12029/gc20200605004
Citation: HU Wangshui, LI Xiyuan, TANG Yong, LI Tao, LEI Zhongying. 2024. Mantle convection inversion: Perspective and hypothesis of global inversion tectonics[J]. Geology in China, 51(2): 483-498. doi: 10.12029/gc20200605004

Mantle convection inversion: Perspective and hypothesis of global inversion tectonics

    Fund Project: Supported by National Major Science and Technology Special Project (No.2008ZX05030, No.2011ZX05030, No.2017ZX05032).
More Information
  • Author Bio: HU Wangshui, male, born in 1963, professor, engaged in the teaching and research of tectonic geology, basin structure, oil and gas; E-mail: huwangshui@126.com
  • Corresponding author: LI Xiyuan, male, born in 1993, doctoral candidate, majors in structural geology, basin structure, unconventional oil and gas; E-mail: 839076848@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    Inversion tectonics occurred at a specific period in the evolution of worldwide hydrocarbon basins throughout the Mesozoic and Cenozoic eras. It involved the modification and superimposition of early rift basins to induce inversion. With a focus on regional or localized mantle convection inversion, this study attempts to explain the factors that contribute to inversion tectonics in the Earth's crust.

    Methods

    Based on geophysical data, with the help of tectonic geology and geophysical research methods, summarize and compare the tectonic inversion events and characteristics of the Mesozoic and Cenozoic basins in the late Cretaceous and Paleogene periods worldwide, study the positive tectonic inversion time of oceanic and continental intraplate rift basins, and establish a mantle convection inversion model for the development of inversion structures. The time of negative tectonic inversion events in adjacent continental plate orogenic belts is synchronous, Study the correlation between basin mountain coupling and local mantle convection units and their variations.

    Results

    A large amount of evidence indicates that the time of positive tectonic inversion in continental rift basins is synchronous with the time of negative tectonic inversion events in the adjacent continental plate orogenic belts. For example, the compression and extensional collapse of the Dabie orogenic belt are correspondingly correlated with the extensional rift and contraction inversion of the South Huabei Basin and Hefei Basin, respectively. Although the current evidence may not be exhaustive, the positive and negative inversion tectonics in the rift valleys (mid−ocean ridges) of oceanic plates and the negative inversion tectonics within subduction zones demonstrate a contemporaneous relationship. Irrespective of their origin in rift basins or interplate active zones, inversion tectonics constitute a developmental and evolutionary transition of the tectonic units they represent. Although there is some acceptance regarding the development of these inversion tectonics, the underlying mechanisms that cause their formation in various tectonic units continue to be unclear. Whether it is the reverse structures generated by the reverse tectonic events in the inter plate active zone or the reverse structures generated by the reverse tectonic actions in the intra plate rift basin, all indicate that the tectonic evolution of these structural units has entered a new stage of development and evolution.

    Conclusions

    By capitalizing on the correlation between extensively dispersed inversion tectonics across the exterior of the Earth and preceding tectonic features, we propose that inverse flow in mantle convection underlies the dynamic mechanism that triggers the formation of inversion tectonics. In this study, we lay out a model that explains the inverse contraction movements in the lithosphere or crust that occur as a result of mantle convection inversion and the mechanisms that initiate these movements in inversion tectonics. The theory in consideration holds immense importance due to its capability to greatly influence the comprehension and investigation of mantle convection states, dynamics, and their variations. Consequently, this could have a profound effect on the pursuit of mechanisms that cause inverse plate movements.

  • 加载中
  • [1] Abbasi S A, Asim S, Solangi S H, Khan F. 2016. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan[J]. Geodesy and Geodynamics, 7: 132−142. doi: 10.1016/j.geog.2016.04.002

    CrossRef Google Scholar

    [2] Allegre C J, Courtillot V, Tapponnier P. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [3] Allen M B, Macdonald D I M, Zhao X, Vincent S J, Brouet–Menzies C. 1997. Early Cenozoic two–phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine & Petroleum Geology, 14: 951−972.

    Google Scholar

    [4] Bachman S B, Lewis S D, Schweller W J. 1983. Evolution of a forearc basin, Luzon Central Valley, Philippines[J]. Geology, Environmental Science, 67: 1143–1162.

    Google Scholar

    [5] Bercovici D, Ricard Y, Richards M. 2013. The relation between mantle dynamics and plate tectonics: A primer[J]. Geophysical Monograph, 5: 46.

    Google Scholar

    [6] Bercovici D, Ricard Y. 2014. Plate tectonics, damage and inheritance[J]. Nature, 508: 513−516. doi: 10.1038/nature13072

    CrossRef Google Scholar

    [7] Bibee L D, George G S J, Richard S L. 1980. Inter−arc spreading in the Mariana Trough[J]. Marine Geology, 35: 183−197. doi: 10.1016/0025-3227(80)90030-4

    CrossRef Google Scholar

    [8] Bird P. 1979. Continental delamination and the Colorado Plateau[J]. Journal of Geophysical Research: Solid Earth, 84: 7561−7571. doi: 10.1029/JB084iB13p07561

    CrossRef Google Scholar

    [9] Bonnardot M A, Regnier M, Christova C, Ruellan E, Tric E. 2009. Seismological evidence for a slab detachment in the Tonga subduetion zone[J]. Tectonophysics, 464: 84−99. doi: 10.1016/j.tecto.2008.10.011

    CrossRef Google Scholar

    [10] Bourgois J, Lagabrielle Y, Calmus T, Boulegue J, Daux V, Guivel C. 2000. Glacial–interglacial trench supply variation, spreading–ridge subduction and feedback controls on the Andean margin development at the Chile triple junction area (45–48°S)[J]. Journal of Geophysical Research, 105: 8355−8386. doi: 10.1029/1999JB900400

    CrossRef Google Scholar

    [11] Broucke O, Temple F, Rouby D, Robin C, Guillocheau F. 2004. The role of deformation processes on the geometry of mud–dominated turbiditic systems, Oligocene and Lower–Middle Miocene of the Lower Congo basin (West African Margin)[J]. Marine and Petroleum Geology, 21: 327−348. doi: 10.1016/j.marpetgeo.2003.11.013

    CrossRef Google Scholar

    [12] Buchanan J G, Ruchanan P G. 1995. Basin inversion[J]. Geological Society of London Special Publication, 513: 85.

    Google Scholar

    [13] Burov E, Gerya T. 2014. Asymmetric three–dimensional topography over mantle plumes[J]. Nature, 513: 85−89. doi: 10.1038/nature13703

    CrossRef Google Scholar

    [14] Cooper M A, Williams G D. 1989. Inversion Tectonics[M]. London: Geological Society.

    Google Scholar

    [15] Corti G. 2009. Continental rift evolution: From rift initiation to incipient break–up in the Main Ethiopian Rift[J]. Earth−Science Reviews, 96: 1−53. doi: 10.1016/j.earscirev.2009.06.005

    CrossRef Google Scholar

    [16] Dewey J F. 1988. Extensional collapose of orogens[J]. Tectonics, 7: 1123−1139. doi: 10.1029/TC007i006p01123

    CrossRef Google Scholar

    [17] Dickson W R, Snyder W S. 1979. Geometry of subducted slabs related to San Andrews transform[J]. Geology, 87: 609−627.

    Google Scholar

    [18] Dietz R S. 1963. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 190: 854−857.

    Google Scholar

    [19] Dilek Y, Fumes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. The Geological Society of America Bulletin, 123: 387−411. doi: 10.1130/B30446.1

    CrossRef Google Scholar

    [20] Ding Weiwei, Yang Shufeng, Chen Hanlin, Cheng Xiaogan, Wu Nengyou. 2006. Arc−continent collision orogeny in offshore Taiwan during Neogene[J]. Chinese Journal of Geology, 41(2): 195−201 (in Chinese with English abstract).

    Google Scholar

    [21] Dobretsov N L, Buslov M M, Yu U. 2004. Fragments of oceanic islands in accretion–collision areas of Gorny Altai and Salair Southern Siberia Russia: Early stages of continental crustal growth of the Siberian continent in Vendian–Early Cambrian time[J]. Journal of Asian Earth Sciences, 23: 673−690. doi: 10.1016/S1367-9120(03)00132-9

    CrossRef Google Scholar

    [22] Fabbri O, Charvet J, Fournier M. 1996. Alternate senses of displacement along the Tsushima fault system during the Neogene based on fracture analyses near the western margin of the Japan Sea[J]. Tectonophysics, 257: 275−295. doi: 10.1016/0040-1951(95)00151-4

    CrossRef Google Scholar

    [23] Fan J J, Cai L, Liu M Y, Xu J X. 2015. Age and nature of the late Early Cretaceous Zhaga Formation northern Tibet: Constraints on when the Bangong–Nujiang Neo–Tethys Ocean closed[J]. International Geology Review, 57: 342−353. doi: 10.1080/00206814.2015.1006695

    CrossRef Google Scholar

    [24] Faure M, Lin W, Shu L, Sun Y, Schärer U. 2010. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high–pressure rocks[J]. Terra Nova, 11(6): 251−258.

    Google Scholar

    [25] French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots[J]. Nature, 525: 95−99. doi: 10.1038/nature14876

    CrossRef Google Scholar

    [26] Gao Changlin, Ye Deliao, Zhang Yuzhen, Liu Guangxiang. 2003. Extension and subduction of the Meso−Cenozoic Tarim basin and their relationship with mantle plume[J]. Petroleum Geology and Experiment, 25(6): 661−669,678 (in Chinese with English abstract).

    Google Scholar

    [27] Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, Wu Hao, Li Wen. 2016. Relationship between the Tianshan Mountains uplift and depositional environment evolution of the basins in Mesozoic−Cenozoic[J]. Acta Sedimentologica Sinica, 34(3): 415−435 (in Chinese with English abstract).

    Google Scholar

    [28] Genik G J. 1993. Petroleum geology of Cretaceous–Tertiary rift basins in Niger, Chad, and Central African Republic[J]. AAPG Bulletin, 77: 1405−1434.

    Google Scholar

    [29] Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plum induced subduction initiation[J]. Nature, 527: 221−225. doi: 10.1038/nature15752

    CrossRef Google Scholar

    [30] Groome W G, Thorkelson D J. 1951. The three–dimensional thermo–mechanical signature of ridge subduction and slab window migration[J]. Tectonophysics, 464: 70−83.

    Google Scholar

    [31] Guiraud R, William B. 1997. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate–scale tectonics[J]. Tectonophysics, 282: 39−82. doi: 10.1016/S0040-1951(97)00212-6

    CrossRef Google Scholar

    [32] Guo Z X, Shi Y P, Yang Y T, Jiang S Q, Lin B, Zhao Z G. 2018. Inversion of the Erlian Basin (NE China) in the Early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia[J]. Journal of Asian Earth Science, 154: 49−66. doi: 10.1016/j.jseaes.2017.12.007

    CrossRef Google Scholar

    [33] Gurnis M. 1988. Large–scale mantle convection and the aggregation and dispersal of supercontinents[J]. Nature, 332: 695−699. doi: 10.1038/332695a0

    CrossRef Google Scholar

    [34] Harker B R, Ratschbaer L, Webb L, Mcwilliams M O. 2000. Exhumation of ultra–high–pressure continental crust in east Central China: Late Triassic –Early lurrassic tectonic unrooting[J]. Journal of Geophysical Research: Solid Earth, 105: 13303−13338. doi: 10.1029/2000JB900040

    CrossRef Google Scholar

    [35] Harrison L N, Weis D, Garcia M O. 2017. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics[J]. Earth and Planetary Science Letters, 463: 298−309. doi: 10.1016/j.jpgl.2017.01.027

    CrossRef Google Scholar

    [36] Hess S L, Hall F. 1960. Introduction to theoretical meterology[J]. Physics Today, 131: 1604−1605.

    Google Scholar

    [37] Hickey−Vargas R. 1991. Isotope characteristics of submarine lavas from the Philippine Sea: Implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 107: 290−304. doi: 10.1016/0012-821X(91)90077-U

    CrossRef Google Scholar

    [38] Hilde T W C, Lee C S. 1984. Origin and evolution of the West Philippine basin: A new interpretation[J]. Tectonophysics, 102: 85−104. doi: 10.1016/0040-1951(84)90009-X

    CrossRef Google Scholar

    [39] Homes A. 1931. Radioactivity and earth movements[J]. Nature, 128: 419.

    Google Scholar

    [40] Honza E. 1995. Spreading mode of backarc basins in the western Pacific[J]. Tectonophysics, 251: 139−152. doi: 10.1016/0040-1951(95)00054-2

    CrossRef Google Scholar

    [41] Horne A V, Sato H, Ishiyama T. 2017. Evolution of the Sea of Japan back–arc and some unsolved issues[J]. Tectonophysics, 710: 6−20.

    Google Scholar

    [42] Hu W S, Cai C F, Wu Z Y, Li J M. 1998. Structural style and its relation to hydrocarbon exploration in the Songliao basin, northeast China[J]. Marine and Petroleum Geology, 15(1): 41−55. doi: 10.1016/S0264-8172(97)00054-8

    CrossRef Google Scholar

    [43] Hu Wangshui, Lü Bingquan, Mao Zhiguo, Guan Dayong. 2004. Inversion structure characteristic of petroleum basin in Mesozoic and Cenozoic in Middle and East China[J]. Journal of Tongji University, 32(2): 182−186 (in Chinese with English abstract).

    Google Scholar

    [44] Huang C Y, Wu W Y, Chang C, Tsao S, Peter B Y, Lin C, Yuan X K. 1997. Tectonic evolution of accretionary prism in the arc–continent collision terrane of Taiwan[J]. Tectonophysics, 281: 31−51. doi: 10.1016/S0040-1951(97)00157-1

    CrossRef Google Scholar

    [45] Huang S Q, Dong S W, Zhang Y Q, Zhang F Q, Huang D Z, Wei S, Li Z H, Miao L C, Zhu M S. 2015. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous–Early Cenozoic[J]. Journal of Asian Earth Sciences, 114: 717−731. doi: 10.1016/j.jseaes.2015.05.013

    CrossRef Google Scholar

    [46] Ishizuka O, Yuasa M, Taylor R N, Sakamoto I. 2009. Two contrasting magmatic types coexist after the cessation of back–arc spreading[J]. Chemical Geology, 266: 274−296. doi: 10.1016/j.chemgeo.2009.06.014

    CrossRef Google Scholar

    [47] Ishizuka O, Taylor R N, Yuasa M, Sakamoto I. 2011. Making and breaking an island arc: A new perspective from the Oligocene Kyushu–Palau arc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 12: 1–40.

    Google Scholar

    [48] Itoh Y, Nagasaki Y. 1996. Crustal shortening of southwest Japan in the late Miocene[J]. Island Arc, 5: 337−353. doi: 10.1111/j.1440-1738.1996.tb00035.x

    CrossRef Google Scholar

    [49] Jellinek A M, Michael M. 2002. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes[J]. Nature, 418: 760−763. doi: 10.1038/nature00979

    CrossRef Google Scholar

    [50] Jiang L L, Wu W P, Chu D R, Liu Y C, Zhang Y. 2003. An extended–thrust nappe structure after the collision in the north of Dabie mountain[J]. Chinese Science Bulletin, 48: 1557−1653. doi: 10.1360/csb2003-48-14-1557

    CrossRef Google Scholar

    [51] Karig D E. 1971. Origin and development of marginal basins in the Western Pacific[J]. Journal of Geophysical Research, 76: 2542−2561. doi: 10.1029/JB076i011p02542

    CrossRef Google Scholar

    [52] Keenan T E, Encamacion J, Buchwaldt R, Fernandez D, Mattinson J, Rasozanamparany C, Luetkemeyer P B. 2016. Rapid conversion of an oceanic spreading center to a spreading to a subduction zone inferred from high–preision geochronology[J]. The Proceedings of the National Academy of Sciences, 113: 7359−7366.

    Google Scholar

    [53] Klimke J, Franke D, Gaedicke C, Schreckenberger B, Schnabel M, Stollhofen H, Rose J, Chaheire M. 2016. How to identify oceanic crust—Evidence for a complex break–up in the Mozambique Channel, off East Africa[J]. Tectonophysics, 693: 36−452.

    Google Scholar

    [54] Koglin D E, Ghias S R, King S D, Jarvis G T, Lowman J P. 2005. Mantle convection with reversing mobile plates: A benchmark study[J]. Geochemistry, Geophysics, Geosystems, 6: 8990–9003.

    Google Scholar

    [55] Lee G H, Yoon Y, Nam B H, Lim H, Kim Y S, Kim H J, Lee K. 2011. Structural evolution of the southwestern margin of the Uellung Basin, East Sea (Japan Sea) and tectonic implications[J]. Tectonophysics, 502: 293−307. doi: 10.1016/j.tecto.2011.01.015

    CrossRef Google Scholar

    [56] Li Z, Li R. Sun S, Wang Q. 2010. Jurassic depositional records and sandstone provenances in Hefei Basin, central China: Implication for Dabie orogenesis[J]. Island Arc, 13: 346−358.

    Google Scholar

    [57] Liu Guosheng, Zhu Guang, Niu Manlan, Song Chuanzhong, Wang Daoxuan. 2006. Meso−Cenozoic evolution of the Hefei Basin (eastern part) and its response to activites of the Tan−lu fault zone[J]. Chinese Journal of Geology, 41(2): 256−269 (in Chinese with English abstract).

    Google Scholar

    [58] Liu S F, Heller P L, Zhang G W. 2003. Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China[J]. Tectonics, 22: 1038−1058.

    Google Scholar

    [59] Lowman J P, Jarvis G T. 2013. Mantle convection flow reversals due to continental collisions[J]. Geophysical Research Letters, 20: 2087−2090.

    Google Scholar

    [60] Lutz R, Franke D, Berglar K, Heyde I, Schreckenberger B, Klitzke P, Geissler W H. 2018. Evidence for mantle exhumation since the early evolution of the slow–spreading Gakkel Ridge, Arctic Ocean[J]. Journal of Geodynamics, 118: 154−156. doi: 10.1016/j.jog.2018.01.014

    CrossRef Google Scholar

    [61] Marotta A M, Fernandez M, Sabadini R. 1998. Mantle unrooting in collisional settings[J]. Tectonophysics, 296: 31−46. doi: 10.1016/S0040-1951(98)00134-6

    CrossRef Google Scholar

    [62] Maruyama S, Santosh M, Zhao D. 2007. Superplume, supercontinent and post–perovskite: Mantle dynamics and anti–plate tectonics on the core–mantle boundary[J]. Gondwana Research, 11: 7−37. doi: 10.1016/j.gr.2006.06.003

    CrossRef Google Scholar

    [63] McKenzie D. 1978. Active tectonics of the Alpine–Himalayan belt: The Aegean Sea and surrounding regions[J]. Geophysical Journal of the Royal Astronomical, 55: 217−254. doi: 10.1111/j.1365-246X.1978.tb04759.x

    CrossRef Google Scholar

    [64] McKenzie D. 2010. The influence of dynamically supported topography on estimates of Te[J]. Earth and Planetary Science Letters, 295: 127−138. doi: 10.1016/j.jpgl.2010.03.033

    CrossRef Google Scholar

    [65] Miyashiro A. 1986. Hot regions and the origin of marginal basins in the western Pacific[J]. Tectonophysics, 122: 195−216. doi: 10.1016/0040-1951(86)90145-9

    CrossRef Google Scholar

    [66] Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 230: 42−43. doi: 10.1038/230042a0

    CrossRef Google Scholar

    [67] Müller R D, Flament N, Matthews K J, Williams S E, Gurnis M. 2016. Formation of Australian continental margin highlands driven by plate–mantle interaction[J]. Earth and Planetary Science Letters, 441: 60−70. doi: 10.1016/j.jpgl.2016.02.025

    CrossRef Google Scholar

    [68] Nicolas C, Mélanie G, Martina U. 2017. A mantle convection perspective on global tectonics[J]. Earth–Science Reviews, 65: 120−150.

    Google Scholar

    [69] Okino K, Kasuga S, Ohara Y. 1998. A new scenario of the Parrece Vela basin genesis[J]. Marine Geophysical Research, 20: 21−40. doi: 10.1023/A:1004377422118

    CrossRef Google Scholar

    [70] Osmundsen P T, Andersen T B. 1994. Caledonian compressional and late–orogenic extensional deformation in the Staveneast area, SunnFord, Western Norway[J]. Journal of Structural Geology, 16: 1385−1401. doi: 10.1016/0191-8141(94)90004-3

    CrossRef Google Scholar

    [71] Rodriguez M, Bourget J, Chamot–Rooke N, Huchon P, Fournier M, Delescluse M, Zaragosi S. 2016. The Sawqirah contourite drift system in the Arabian Sea (NW Indian Ocean): A case study of interactions between margin reactivation and contouritic processes[J]. Marine Geology, 381: 1−16. doi: 10.1016/j.margeo.2016.08.004

    CrossRef Google Scholar

    [72] Royden L H. 1993. The tectonic expression slab pull at continent convergent boundaries[J]. Tectonics, 12: 303−325. doi: 10.1029/92TC02248

    CrossRef Google Scholar

    [73] Santosh M, Maruyama S, Yamamoto S. 2009. The making and breaking of supers ontinents: Some speculations based on superplumes, superdownwelling and the role of tectosphere[J]. Gondwana Research, 13: 324−341.

    Google Scholar

    [74] Santosh M. 2010. A synopsis of recent conceptual models on supers–continent tectonics in relation to mantle dynamics life evolution and surface environment[J]. Journal of Geodynamics, 50: 116−133. doi: 10.1016/j.jog.2010.04.002

    CrossRef Google Scholar

    [75] Sato H. 1994. The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan[J]. Journal of Geophysical Research: Solid Earth, 99: 261−274.

    Google Scholar

    [76] Seyfert C K, Sirkin L A. 1979. Earth History and Plate Tectonics: An Introduction to Historical Geology, Harper and Row[M]. Physics of the Earth & Planetary Interiors Press.

    Google Scholar

    [77] Shang Jihong, Li Jiabiao. 2009. Inversion structure features and their dynamic significances in Early Neogene strata at continental margin of the northeast South China[J]. Acta Oceanologica Sinica, 31(3): 73−83 (in Chinese with English abstract).

    Google Scholar

    [78] Sibuet J C, Hsu S K. 1997. Geodynamics of the Taiwan arc–arc collision[J]. Tectonophysics, 274: 221−251. doi: 10.1016/S0040-1951(96)00305-8

    CrossRef Google Scholar

    [79] Sibuet J C, Hsu S K, Pichon X L, Formal J P L, Reed D, Greg M, Liu C S. 2002. East Asia plate tectonics since 15 Ma: Constraints from the Taiwan region[J]. Tectonophysics, 344: 103−134. doi: 10.1016/S0040-1951(01)00202-5

    CrossRef Google Scholar

    [80] Song Shuguang, Wang Mengyu, Wang Chao, Niu Yaoling. 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective[J]. Science China: Earth Sciences, 45(7): 916−940 (in Chinese with English abstract).

    Google Scholar

    [81] Suo Yanhui, Li Sanzhong, Cao Xianzhi, Li Xiyao, Liu Xin, Cao Huahua. 2017. Mesozoic−Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249−267 (in Chinese with English abstract).

    Google Scholar

    [82] Suo S T, Zhong Z Q, You Z D. 2000. The extended deformation and exhumation of ultrahigh pressure metamorphic rocks after the ultrahigh pressure metamorphic stage of the Dabie block[J]. Science in China, 30: 9−17.

    Google Scholar

    [83] Tackley P J. 1998. Self–consistent generation of tectonics plates in three–dimensional mantle convection[J]. Earth and Planetary Science Letters, 157: 9−22. doi: 10.1016/S0012-821X(98)00029-6

    CrossRef Google Scholar

    [84] Taylor B, Kamer D. 1983. On the evolution of marginal basins[J]. Reviews of Geophysics, 21: 1727−1741. doi: 10.1029/RG021i008p01727

    CrossRef Google Scholar

    [85] Thorkelson D J. 1996. Subduction of diverging plates and the principle of slab window formation[J]. Tectonophysics, 255: 47−63. doi: 10.1016/0040-1951(95)00106-9

    CrossRef Google Scholar

    [86] Tosi N, Yuen D A, De Koker N, Wentzcovitch R M. 2013. Mantle dynamics with pressure− and temperature−dependent thermal expansivity and conductivity[J]. Physics of the Earth and Planetary Interiors, 217: 48−58. doi: 10.1016/j.pepi.2013.02.004

    CrossRef Google Scholar

    [87] Uenzelmann N G, Watkeys M K, Kretzinger W, Frank M, Heuer. 2011. Palaeoceanographic Interpretation of a seismic profile from the southern Mozam–biqger ridge, southwestern Indian Ocean[J]. South African Journal of Geology, 114: 449−458. doi: 10.2113/gssajg.114.3-4.449

    CrossRef Google Scholar

    [88] Wang Erqi, Wang Gang, Fan Chun, Shi Xuhua. 2006. Orogeny and gravitational collapse along the convergent plate boundary and their mechanical origin: A case study on the Yarlung Tsangpo−Himalaya belt[J]. Earth Science Frontiers, (4): 18−26 (in Chinese with English abstract).

    Google Scholar

    [89] Wang Song. 2014. Late Paleozoic to Cenozoic Sedimentary Record of the South Tianshan and Its Implications for Tectonic Evolution[D]. Hefei: Hefei University of Technology, 1–147 (in Chinese with English abstract).

    Google Scholar

    [90] Wilson J T. 1963. A possible origin of the Hawaiian islands[J]. Canadian Journal of Earth Sciences, 4: 863−870.

    Google Scholar

    [91] Wilson M, Guiraud R. 1992. Magmatism and rifting in western and central Africa, from late Jurassic to recent times[J]. Tectonophysics, 213: 203−225. doi: 10.1016/0040-1951(92)90259-9

    CrossRef Google Scholar

    [92] Wortel M J, Sparkman M. 2000. Subduction and slab detachment in the Mediterranean–Carpathian Region[J]. Science, 290: 1910−1917. doi: 10.1126/science.290.5498.1910

    CrossRef Google Scholar

    [93] Xu Hong, Zhao Jinhai, Cai Qianzhong, Zheng Jianping, Sun Heqing, Cao Fei. 2010. Isotopic evidences for geodynamic environment and process of the East China Sea and its basin dynamic model[J]. Earth Science Frontiers, 17(1): 229−237 (in Chinese with English abstract).

    Google Scholar

    [94] Yan Q, Shi X, Wang K, Bu W. 2008. Major element, trace element, Sr–Nd–Pb isotopic studies of Cenozoic alkali basalts from the South China Sea[J]. Sciences, 51: 550−566.

    Google Scholar

    [95] Yoon S H, Sohn Y K, Chough S K. 2014. Tectonic, sedimentary, and volcanic evolution of a back–arc basin in the East Sea (Sea of Japan)[J]. Marine Geology, 352: 70−88. doi: 10.1016/j.margeo.2014.03.004

    CrossRef Google Scholar

    [96] Yoshida M, Santosh M. 2014. Mantle convection modeling of the super–continent cycle: Introversion, extroversion or combination?[J]. Geoscience Frontier, 5: 77−81. doi: 10.1016/j.gsf.2013.06.002

    CrossRef Google Scholar

    [97] Young J S. 2015. Geological structures and controls on half–graben inversion in the western Gunsan Basin, Yellow Sea[J]. Marine and Petroleum Geology, 68: 480−491. doi: 10.1016/j.marpetgeo.2015.09.013

    CrossRef Google Scholar

    [98] Zang Shaoxian, Ning Jieyuan. 2002. Interaction between Philippine Sea Plate (PH) and Eurasia(EU) Plate and its influence on the movement eastern Asia[J]. Chinese Journal of Geophysics, 45(2): 188−197 (in Chinese with English abstract).

    Google Scholar

    [99] Zhang Bin, Chen Wen, Sun Jingbo, Yu Shun, Yin Jiyuan, Li Jie, Zhang Yan, Liu Xinyu, Yang Li, Yuan Xia. 2016. The thermal history and uplift process of the Ouxidaban pluton in the South Tianshan orogen: Evidence from Ar−Ar and (U−Th)/He[J]. Science China: Earth Sciences, 46(3): 392−405 (in Chinese with English abstract).

    Google Scholar

    [100] Zhang Guohua, Zhang Jianpei. 2015. A discussion on the tectonic inversion and its genetic mechanism in the East China Sea Shelf Basin[J]. Earth Science Frontiers, 22(1): 260−270 (in Chinese with English abstract).

    Google Scholar

    [101] Zhang Yueqiao, Zhao Yue, Dong Shuwen, Yang Nong. 2004. Tectonic evolution stages of the Early Cretaceous rift basins in Eastern China and adjacent areas and their geodynamic background[J]. Earth Science Frontiers, 11(3): 123−133 (in Chinese with English abstract).

    Google Scholar

    [102] Zhao Yan, Li Yuejun, Sun Long De, Zheng Duoming, Liu Yalei, Wang Daoxuan, Wei Hongxing, Guan Wensheng. 2012. Mesozoic−Cenozoic extensional structure in north uplift of Tarim basin and its genetic discussion[J]. Acta Petrologica Sinica, 28(8): 2557−2568 (in Chinese with English abstract).

    Google Scholar

    [103] Zhong S J, Zhang N, Li Z X, Roberts J H. 2007. Supercontinent cycles, true polar wander, and very long–wavelength mantle convection[J]. Earth and Planetary Science Letters, 261: 551−564. doi: 10.1016/j.jpgl.2007.07.049

    CrossRef Google Scholar

    [104] Zhu G, Liu G S, Niu M L, Xie C L, Wang Y S, Xiang B W. 2009. Syn–collisional transform faulting of the Tan–Lu fault zone, East China[J]. International Journal of Earth Sciences, 98: 135−155. doi: 10.1007/s00531-007-0225-8

    CrossRef Google Scholar

    [105] Zhu G, Niu M L, Xie C L, Wang Y S. 2010. Sinistral to normal faulting along the Tan–Lu fault zone evidence for geodynamic switching of the East China continental margin[J]. Journal of Geology, 118: 277−293. doi: 10.1086/651540

    CrossRef Google Scholar

    [106] 丁巍伟, 杨树锋, 陈汉林, 程晓敢, 吴能友. 2006. 台湾岛以南海域新近纪的弧–陆碰撞造山作用[J]. 地质科学, (2): 195−201. doi: 10.3321/j.issn:0563-5020.2006.02.002

    CrossRef Google Scholar

    [107] 高长林, 叶德燎, 张玉箴, 刘光祥. 2003. 塔里木中新生代盆地扩张和盆地俯冲与地幔柱[J]. 石油实验地质, (6): 661−669,678. doi: 10.3969/j.issn.1001-6112.2003.06.007

    CrossRef Google Scholar

    [108] 高志勇, 周川闽, 冯佳睿, 吴昊, 李雯. 2016. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报, 34(3): 415−435.

    Google Scholar

    [109] 胡望水, 吕炳全, 毛治国, 官大勇. 2004. 中国东部中新生代含油气盆地的反转构造[J]. 同济大学学报(自然科学版), (2): 182−186. doi: 10.3321/j.issn:0253-374X.2004.02.009

    CrossRef Google Scholar

    [110] 刘国生, 朱光, 牛漫兰, 宋传中, 王道轩. 2006. 合肥盆地东部中—新生代的演化及其对郯庐断裂带活动的响应[J]. 地质科学, (2): 256−269. doi: 10.3321/j.issn:0563-5020.2006.02.008

    CrossRef Google Scholar

    [111] 尚继宏, 李家彪. 2009. 南海东北部陆缘区新近纪早期反转构造特征及其动力学意义[J]. 海洋学报(中文版), 31(3): 73−83.

    Google Scholar

    [112] 宋述光, 王梦珏, 王潮, 牛耀龄. 2015. 大陆造山带碰撞–俯冲–折返–垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学:地球科学, 45(7): 916−940.

    Google Scholar

    [113] 索艳慧, 李三忠, 曹现志, 李玺瑶, 刘鑫, 曹花花. 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249−267.

    Google Scholar

    [114] 王二七, 王刚, 樊春, 石许华. 2006. 板块汇聚带的造山和重力垮塌作用及其力学成因: 以雅鲁藏布江—喜马拉雅山汇聚带为例[J]. 地学前缘, (4): 18−26. doi: 10.3321/j.issn:1005-2321.2006.04.003

    CrossRef Google Scholar

    [115] 王松. 2014. 南天山晚古生代—新生代沉积记录及其对构造演化的制约[D]. 合肥: 合肥工业大学, 1–147.

    Google Scholar

    [116] 许红, 赵金海, 蔡乾忠, 郑建平, 孙和清, 曹飞. 2010. 东海地球动力学环境与过程的同位素证据及盆地动力学模式[J]. 地学前缘, 17(1): 229−237.

    Google Scholar

    [117] 臧绍先, 宁杰远. 2002. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J]. 地球物理学报, (2): 188−197. doi: 10.3321/j.issn:0001-5733.2002.02.005

    CrossRef Google Scholar

    [118] 张斌, 陈文, 孙敬博, 喻顺, 尹继元, 李洁, 张彦, 刘新宇, 杨莉, 袁霞. 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析——来自Ar–Ar和(U–Th)/He热年代学的证据[J]. 中国科学:地球科学, 46(3): 392−405.

    Google Scholar

    [119] 张国华, 张建培. 2015. 东海陆架盆地构造反转特征及成因机制探讨[J]. 地学前缘, 22(1): 260−270.

    Google Scholar

    [120] 张岳桥, 赵越, 董树文, 杨农. 2004. 中国东部及邻区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 11(3): 123−133. doi: 10.3321/j.issn:1005-2321.2004.03.014

    CrossRef Google Scholar

    [121] 赵岩, 李曰俊, 孙龙德, 郑多明, 刘亚雷, 王道轩, 魏红兴, 管文胜. 2012. 塔里木盆地塔北隆起中—新生界伸展构造及其成因探讨[J]. 岩石学报, 28(8): 2557−2568.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(1332) PDF downloads(32) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint