Citation: | HU Wangshui, LI Xiyuan, TANG Yong, LI Tao, LEI Zhongying. 2024. Mantle convection inversion: Perspective and hypothesis of global inversion tectonics[J]. Geology in China, 51(2): 483-498. doi: 10.12029/gc20200605004 |
This paper is the result of geological survey engineering.
Inversion tectonics occurred at a specific period in the evolution of worldwide hydrocarbon basins throughout the Mesozoic and Cenozoic eras. It involved the modification and superimposition of early rift basins to induce inversion. With a focus on regional or localized mantle convection inversion, this study attempts to explain the factors that contribute to inversion tectonics in the Earth's crust.
Based on geophysical data, with the help of tectonic geology and geophysical research methods, summarize and compare the tectonic inversion events and characteristics of the Mesozoic and Cenozoic basins in the late Cretaceous and Paleogene periods worldwide, study the positive tectonic inversion time of oceanic and continental intraplate rift basins, and establish a mantle convection inversion model for the development of inversion structures. The time of negative tectonic inversion events in adjacent continental plate orogenic belts is synchronous, Study the correlation between basin mountain coupling and local mantle convection units and their variations.
A large amount of evidence indicates that the time of positive tectonic inversion in continental rift basins is synchronous with the time of negative tectonic inversion events in the adjacent continental plate orogenic belts. For example, the compression and extensional collapse of the Dabie orogenic belt are correspondingly correlated with the extensional rift and contraction inversion of the South Huabei Basin and Hefei Basin, respectively. Although the current evidence may not be exhaustive, the positive and negative inversion tectonics in the rift valleys (mid−ocean ridges) of oceanic plates and the negative inversion tectonics within subduction zones demonstrate a contemporaneous relationship. Irrespective of their origin in rift basins or interplate active zones, inversion tectonics constitute a developmental and evolutionary transition of the tectonic units they represent. Although there is some acceptance regarding the development of these inversion tectonics, the underlying mechanisms that cause their formation in various tectonic units continue to be unclear. Whether it is the reverse structures generated by the reverse tectonic events in the inter plate active zone or the reverse structures generated by the reverse tectonic actions in the intra plate rift basin, all indicate that the tectonic evolution of these structural units has entered a new stage of development and evolution.
By capitalizing on the correlation between extensively dispersed inversion tectonics across the exterior of the Earth and preceding tectonic features, we propose that inverse flow in mantle convection underlies the dynamic mechanism that triggers the formation of inversion tectonics. In this study, we lay out a model that explains the inverse contraction movements in the lithosphere or crust that occur as a result of mantle convection inversion and the mechanisms that initiate these movements in inversion tectonics. The theory in consideration holds immense importance due to its capability to greatly influence the comprehension and investigation of mantle convection states, dynamics, and their variations. Consequently, this could have a profound effect on the pursuit of mechanisms that cause inverse plate movements.
[1] | Abbasi S A, Asim S, Solangi S H, Khan F. 2016. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan[J]. Geodesy and Geodynamics, 7: 132−142. doi: 10.1016/j.geog.2016.04.002 |
[2] | Allegre C J, Courtillot V, Tapponnier P. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0 |
[3] | Allen M B, Macdonald D I M, Zhao X, Vincent S J, Brouet–Menzies C. 1997. Early Cenozoic two–phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine & Petroleum Geology, 14: 951−972. |
[4] | Bachman S B, Lewis S D, Schweller W J. 1983. Evolution of a forearc basin, Luzon Central Valley, Philippines[J]. Geology, Environmental Science, 67: 1143–1162. |
[5] | Bercovici D, Ricard Y, Richards M. 2013. The relation between mantle dynamics and plate tectonics: A primer[J]. Geophysical Monograph, 5: 46. |
[6] | Bercovici D, Ricard Y. 2014. Plate tectonics, damage and inheritance[J]. Nature, 508: 513−516. doi: 10.1038/nature13072 |
[7] | Bibee L D, George G S J, Richard S L. 1980. Inter−arc spreading in the Mariana Trough[J]. Marine Geology, 35: 183−197. doi: 10.1016/0025-3227(80)90030-4 |
[8] | Bird P. 1979. Continental delamination and the Colorado Plateau[J]. Journal of Geophysical Research: Solid Earth, 84: 7561−7571. doi: 10.1029/JB084iB13p07561 |
[9] | Bonnardot M A, Regnier M, Christova C, Ruellan E, Tric E. 2009. Seismological evidence for a slab detachment in the Tonga subduetion zone[J]. Tectonophysics, 464: 84−99. doi: 10.1016/j.tecto.2008.10.011 |
[10] | Bourgois J, Lagabrielle Y, Calmus T, Boulegue J, Daux V, Guivel C. 2000. Glacial–interglacial trench supply variation, spreading–ridge subduction and feedback controls on the Andean margin development at the Chile triple junction area (45–48°S)[J]. Journal of Geophysical Research, 105: 8355−8386. doi: 10.1029/1999JB900400 |
[11] | Broucke O, Temple F, Rouby D, Robin C, Guillocheau F. 2004. The role of deformation processes on the geometry of mud–dominated turbiditic systems, Oligocene and Lower–Middle Miocene of the Lower Congo basin (West African Margin)[J]. Marine and Petroleum Geology, 21: 327−348. doi: 10.1016/j.marpetgeo.2003.11.013 |
[12] | Buchanan J G, Ruchanan P G. 1995. Basin inversion[J]. Geological Society of London Special Publication, 513: 85. |
[13] | Burov E, Gerya T. 2014. Asymmetric three–dimensional topography over mantle plumes[J]. Nature, 513: 85−89. doi: 10.1038/nature13703 |
[14] | Cooper M A, Williams G D. 1989. Inversion Tectonics[M]. London: Geological Society. |
[15] | Corti G. 2009. Continental rift evolution: From rift initiation to incipient break–up in the Main Ethiopian Rift[J]. Earth−Science Reviews, 96: 1−53. doi: 10.1016/j.earscirev.2009.06.005 |
[16] | Dewey J F. 1988. Extensional collapose of orogens[J]. Tectonics, 7: 1123−1139. doi: 10.1029/TC007i006p01123 |
[17] | Dickson W R, Snyder W S. 1979. Geometry of subducted slabs related to San Andrews transform[J]. Geology, 87: 609−627. |
[18] | Dietz R S. 1963. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 190: 854−857. |
[19] | Dilek Y, Fumes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. The Geological Society of America Bulletin, 123: 387−411. doi: 10.1130/B30446.1 |
[20] | Ding Weiwei, Yang Shufeng, Chen Hanlin, Cheng Xiaogan, Wu Nengyou. 2006. Arc−continent collision orogeny in offshore Taiwan during Neogene[J]. Chinese Journal of Geology, 41(2): 195−201 (in Chinese with English abstract). |
[21] | Dobretsov N L, Buslov M M, Yu U. 2004. Fragments of oceanic islands in accretion–collision areas of Gorny Altai and Salair Southern Siberia Russia: Early stages of continental crustal growth of the Siberian continent in Vendian–Early Cambrian time[J]. Journal of Asian Earth Sciences, 23: 673−690. doi: 10.1016/S1367-9120(03)00132-9 |
[22] | Fabbri O, Charvet J, Fournier M. 1996. Alternate senses of displacement along the Tsushima fault system during the Neogene based on fracture analyses near the western margin of the Japan Sea[J]. Tectonophysics, 257: 275−295. doi: 10.1016/0040-1951(95)00151-4 |
[23] | Fan J J, Cai L, Liu M Y, Xu J X. 2015. Age and nature of the late Early Cretaceous Zhaga Formation northern Tibet: Constraints on when the Bangong–Nujiang Neo–Tethys Ocean closed[J]. International Geology Review, 57: 342−353. doi: 10.1080/00206814.2015.1006695 |
[24] | Faure M, Lin W, Shu L, Sun Y, Schärer U. 2010. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high–pressure rocks[J]. Terra Nova, 11(6): 251−258. |
[25] | French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots[J]. Nature, 525: 95−99. doi: 10.1038/nature14876 |
[26] | Gao Changlin, Ye Deliao, Zhang Yuzhen, Liu Guangxiang. 2003. Extension and subduction of the Meso−Cenozoic Tarim basin and their relationship with mantle plume[J]. Petroleum Geology and Experiment, 25(6): 661−669,678 (in Chinese with English abstract). |
[27] | Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, Wu Hao, Li Wen. 2016. Relationship between the Tianshan Mountains uplift and depositional environment evolution of the basins in Mesozoic−Cenozoic[J]. Acta Sedimentologica Sinica, 34(3): 415−435 (in Chinese with English abstract). |
[28] | Genik G J. 1993. Petroleum geology of Cretaceous–Tertiary rift basins in Niger, Chad, and Central African Republic[J]. AAPG Bulletin, 77: 1405−1434. |
[29] | Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plum induced subduction initiation[J]. Nature, 527: 221−225. doi: 10.1038/nature15752 |
[30] | Groome W G, Thorkelson D J. 1951. The three–dimensional thermo–mechanical signature of ridge subduction and slab window migration[J]. Tectonophysics, 464: 70−83. |
[31] | Guiraud R, William B. 1997. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate–scale tectonics[J]. Tectonophysics, 282: 39−82. doi: 10.1016/S0040-1951(97)00212-6 |
[32] | Guo Z X, Shi Y P, Yang Y T, Jiang S Q, Lin B, Zhao Z G. 2018. Inversion of the Erlian Basin (NE China) in the Early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia[J]. Journal of Asian Earth Science, 154: 49−66. doi: 10.1016/j.jseaes.2017.12.007 |
[33] | Gurnis M. 1988. Large–scale mantle convection and the aggregation and dispersal of supercontinents[J]. Nature, 332: 695−699. doi: 10.1038/332695a0 |
[34] | Harker B R, Ratschbaer L, Webb L, Mcwilliams M O. 2000. Exhumation of ultra–high–pressure continental crust in east Central China: Late Triassic –Early lurrassic tectonic unrooting[J]. Journal of Geophysical Research: Solid Earth, 105: 13303−13338. doi: 10.1029/2000JB900040 |
[35] | Harrison L N, Weis D, Garcia M O. 2017. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics[J]. Earth and Planetary Science Letters, 463: 298−309. doi: 10.1016/j.jpgl.2017.01.027 |
[36] | Hess S L, Hall F. 1960. Introduction to theoretical meterology[J]. Physics Today, 131: 1604−1605. |
[37] | Hickey−Vargas R. 1991. Isotope characteristics of submarine lavas from the Philippine Sea: Implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 107: 290−304. doi: 10.1016/0012-821X(91)90077-U |
[38] | Hilde T W C, Lee C S. 1984. Origin and evolution of the West Philippine basin: A new interpretation[J]. Tectonophysics, 102: 85−104. doi: 10.1016/0040-1951(84)90009-X |
[39] | Homes A. 1931. Radioactivity and earth movements[J]. Nature, 128: 419. |
[40] | Honza E. 1995. Spreading mode of backarc basins in the western Pacific[J]. Tectonophysics, 251: 139−152. doi: 10.1016/0040-1951(95)00054-2 |
[41] | Horne A V, Sato H, Ishiyama T. 2017. Evolution of the Sea of Japan back–arc and some unsolved issues[J]. Tectonophysics, 710: 6−20. |
[42] | Hu W S, Cai C F, Wu Z Y, Li J M. 1998. Structural style and its relation to hydrocarbon exploration in the Songliao basin, northeast China[J]. Marine and Petroleum Geology, 15(1): 41−55. doi: 10.1016/S0264-8172(97)00054-8 |
[43] | Hu Wangshui, Lü Bingquan, Mao Zhiguo, Guan Dayong. 2004. Inversion structure characteristic of petroleum basin in Mesozoic and Cenozoic in Middle and East China[J]. Journal of Tongji University, 32(2): 182−186 (in Chinese with English abstract). |
[44] | Huang C Y, Wu W Y, Chang C, Tsao S, Peter B Y, Lin C, Yuan X K. 1997. Tectonic evolution of accretionary prism in the arc–continent collision terrane of Taiwan[J]. Tectonophysics, 281: 31−51. doi: 10.1016/S0040-1951(97)00157-1 |
[45] | Huang S Q, Dong S W, Zhang Y Q, Zhang F Q, Huang D Z, Wei S, Li Z H, Miao L C, Zhu M S. 2015. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous–Early Cenozoic[J]. Journal of Asian Earth Sciences, 114: 717−731. doi: 10.1016/j.jseaes.2015.05.013 |
[46] | Ishizuka O, Yuasa M, Taylor R N, Sakamoto I. 2009. Two contrasting magmatic types coexist after the cessation of back–arc spreading[J]. Chemical Geology, 266: 274−296. doi: 10.1016/j.chemgeo.2009.06.014 |
[47] | Ishizuka O, Taylor R N, Yuasa M, Sakamoto I. 2011. Making and breaking an island arc: A new perspective from the Oligocene Kyushu–Palau arc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 12: 1–40. |
[48] | Itoh Y, Nagasaki Y. 1996. Crustal shortening of southwest Japan in the late Miocene[J]. Island Arc, 5: 337−353. doi: 10.1111/j.1440-1738.1996.tb00035.x |
[49] | Jellinek A M, Michael M. 2002. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes[J]. Nature, 418: 760−763. doi: 10.1038/nature00979 |
[50] | Jiang L L, Wu W P, Chu D R, Liu Y C, Zhang Y. 2003. An extended–thrust nappe structure after the collision in the north of Dabie mountain[J]. Chinese Science Bulletin, 48: 1557−1653. doi: 10.1360/csb2003-48-14-1557 |
[51] | Karig D E. 1971. Origin and development of marginal basins in the Western Pacific[J]. Journal of Geophysical Research, 76: 2542−2561. doi: 10.1029/JB076i011p02542 |
[52] | Keenan T E, Encamacion J, Buchwaldt R, Fernandez D, Mattinson J, Rasozanamparany C, Luetkemeyer P B. 2016. Rapid conversion of an oceanic spreading center to a spreading to a subduction zone inferred from high–preision geochronology[J]. The Proceedings of the National Academy of Sciences, 113: 7359−7366. |
[53] | Klimke J, Franke D, Gaedicke C, Schreckenberger B, Schnabel M, Stollhofen H, Rose J, Chaheire M. 2016. How to identify oceanic crust—Evidence for a complex break–up in the Mozambique Channel, off East Africa[J]. Tectonophysics, 693: 36−452. |
[54] | Koglin D E, Ghias S R, King S D, Jarvis G T, Lowman J P. 2005. Mantle convection with reversing mobile plates: A benchmark study[J]. Geochemistry, Geophysics, Geosystems, 6: 8990–9003. |
[55] | Lee G H, Yoon Y, Nam B H, Lim H, Kim Y S, Kim H J, Lee K. 2011. Structural evolution of the southwestern margin of the Uellung Basin, East Sea (Japan Sea) and tectonic implications[J]. Tectonophysics, 502: 293−307. doi: 10.1016/j.tecto.2011.01.015 |
[56] | Li Z, Li R. Sun S, Wang Q. 2010. Jurassic depositional records and sandstone provenances in Hefei Basin, central China: Implication for Dabie orogenesis[J]. Island Arc, 13: 346−358. |
[57] | Liu Guosheng, Zhu Guang, Niu Manlan, Song Chuanzhong, Wang Daoxuan. 2006. Meso−Cenozoic evolution of the Hefei Basin (eastern part) and its response to activites of the Tan−lu fault zone[J]. Chinese Journal of Geology, 41(2): 256−269 (in Chinese with English abstract). |
[58] | Liu S F, Heller P L, Zhang G W. 2003. Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China[J]. Tectonics, 22: 1038−1058. |
[59] | Lowman J P, Jarvis G T. 2013. Mantle convection flow reversals due to continental collisions[J]. Geophysical Research Letters, 20: 2087−2090. |
[60] | Lutz R, Franke D, Berglar K, Heyde I, Schreckenberger B, Klitzke P, Geissler W H. 2018. Evidence for mantle exhumation since the early evolution of the slow–spreading Gakkel Ridge, Arctic Ocean[J]. Journal of Geodynamics, 118: 154−156. doi: 10.1016/j.jog.2018.01.014 |
[61] | Marotta A M, Fernandez M, Sabadini R. 1998. Mantle unrooting in collisional settings[J]. Tectonophysics, 296: 31−46. doi: 10.1016/S0040-1951(98)00134-6 |
[62] | Maruyama S, Santosh M, Zhao D. 2007. Superplume, supercontinent and post–perovskite: Mantle dynamics and anti–plate tectonics on the core–mantle boundary[J]. Gondwana Research, 11: 7−37. doi: 10.1016/j.gr.2006.06.003 |
[63] | McKenzie D. 1978. Active tectonics of the Alpine–Himalayan belt: The Aegean Sea and surrounding regions[J]. Geophysical Journal of the Royal Astronomical, 55: 217−254. doi: 10.1111/j.1365-246X.1978.tb04759.x |
[64] | McKenzie D. 2010. The influence of dynamically supported topography on estimates of Te[J]. Earth and Planetary Science Letters, 295: 127−138. doi: 10.1016/j.jpgl.2010.03.033 |
[65] | Miyashiro A. 1986. Hot regions and the origin of marginal basins in the western Pacific[J]. Tectonophysics, 122: 195−216. doi: 10.1016/0040-1951(86)90145-9 |
[66] | Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 230: 42−43. doi: 10.1038/230042a0 |
[67] | Müller R D, Flament N, Matthews K J, Williams S E, Gurnis M. 2016. Formation of Australian continental margin highlands driven by plate–mantle interaction[J]. Earth and Planetary Science Letters, 441: 60−70. doi: 10.1016/j.jpgl.2016.02.025 |
[68] | Nicolas C, Mélanie G, Martina U. 2017. A mantle convection perspective on global tectonics[J]. Earth–Science Reviews, 65: 120−150. |
[69] | Okino K, Kasuga S, Ohara Y. 1998. A new scenario of the Parrece Vela basin genesis[J]. Marine Geophysical Research, 20: 21−40. doi: 10.1023/A:1004377422118 |
[70] | Osmundsen P T, Andersen T B. 1994. Caledonian compressional and late–orogenic extensional deformation in the Staveneast area, SunnFord, Western Norway[J]. Journal of Structural Geology, 16: 1385−1401. doi: 10.1016/0191-8141(94)90004-3 |
[71] | Rodriguez M, Bourget J, Chamot–Rooke N, Huchon P, Fournier M, Delescluse M, Zaragosi S. 2016. The Sawqirah contourite drift system in the Arabian Sea (NW Indian Ocean): A case study of interactions between margin reactivation and contouritic processes[J]. Marine Geology, 381: 1−16. doi: 10.1016/j.margeo.2016.08.004 |
[72] | Royden L H. 1993. The tectonic expression slab pull at continent convergent boundaries[J]. Tectonics, 12: 303−325. doi: 10.1029/92TC02248 |
[73] | Santosh M, Maruyama S, Yamamoto S. 2009. The making and breaking of supers ontinents: Some speculations based on superplumes, superdownwelling and the role of tectosphere[J]. Gondwana Research, 13: 324−341. |
[74] | Santosh M. 2010. A synopsis of recent conceptual models on supers–continent tectonics in relation to mantle dynamics life evolution and surface environment[J]. Journal of Geodynamics, 50: 116−133. doi: 10.1016/j.jog.2010.04.002 |
[75] | Sato H. 1994. The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan[J]. Journal of Geophysical Research: Solid Earth, 99: 261−274. |
[76] | Seyfert C K, Sirkin L A. 1979. Earth History and Plate Tectonics: An Introduction to Historical Geology, Harper and Row[M]. Physics of the Earth & Planetary Interiors Press. |
[77] | Shang Jihong, Li Jiabiao. 2009. Inversion structure features and their dynamic significances in Early Neogene strata at continental margin of the northeast South China[J]. Acta Oceanologica Sinica, 31(3): 73−83 (in Chinese with English abstract). |
[78] | Sibuet J C, Hsu S K. 1997. Geodynamics of the Taiwan arc–arc collision[J]. Tectonophysics, 274: 221−251. doi: 10.1016/S0040-1951(96)00305-8 |
[79] | Sibuet J C, Hsu S K, Pichon X L, Formal J P L, Reed D, Greg M, Liu C S. 2002. East Asia plate tectonics since 15 Ma: Constraints from the Taiwan region[J]. Tectonophysics, 344: 103−134. doi: 10.1016/S0040-1951(01)00202-5 |
[80] | Song Shuguang, Wang Mengyu, Wang Chao, Niu Yaoling. 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective[J]. Science China: Earth Sciences, 45(7): 916−940 (in Chinese with English abstract). |
[81] | Suo Yanhui, Li Sanzhong, Cao Xianzhi, Li Xiyao, Liu Xin, Cao Huahua. 2017. Mesozoic−Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249−267 (in Chinese with English abstract). |
[82] | Suo S T, Zhong Z Q, You Z D. 2000. The extended deformation and exhumation of ultrahigh pressure metamorphic rocks after the ultrahigh pressure metamorphic stage of the Dabie block[J]. Science in China, 30: 9−17. |
[83] | Tackley P J. 1998. Self–consistent generation of tectonics plates in three–dimensional mantle convection[J]. Earth and Planetary Science Letters, 157: 9−22. doi: 10.1016/S0012-821X(98)00029-6 |
[84] | Taylor B, Kamer D. 1983. On the evolution of marginal basins[J]. Reviews of Geophysics, 21: 1727−1741. doi: 10.1029/RG021i008p01727 |
[85] | Thorkelson D J. 1996. Subduction of diverging plates and the principle of slab window formation[J]. Tectonophysics, 255: 47−63. doi: 10.1016/0040-1951(95)00106-9 |
[86] | Tosi N, Yuen D A, De Koker N, Wentzcovitch R M. 2013. Mantle dynamics with pressure− and temperature−dependent thermal expansivity and conductivity[J]. Physics of the Earth and Planetary Interiors, 217: 48−58. doi: 10.1016/j.pepi.2013.02.004 |
[87] | Uenzelmann N G, Watkeys M K, Kretzinger W, Frank M, Heuer. 2011. Palaeoceanographic Interpretation of a seismic profile from the southern Mozam–biqger ridge, southwestern Indian Ocean[J]. South African Journal of Geology, 114: 449−458. doi: 10.2113/gssajg.114.3-4.449 |
[88] | Wang Erqi, Wang Gang, Fan Chun, Shi Xuhua. 2006. Orogeny and gravitational collapse along the convergent plate boundary and their mechanical origin: A case study on the Yarlung Tsangpo−Himalaya belt[J]. Earth Science Frontiers, (4): 18−26 (in Chinese with English abstract). |
[89] | Wang Song. 2014. Late Paleozoic to Cenozoic Sedimentary Record of the South Tianshan and Its Implications for Tectonic Evolution[D]. Hefei: Hefei University of Technology, 1–147 (in Chinese with English abstract). |
[90] | Wilson J T. 1963. A possible origin of the Hawaiian islands[J]. Canadian Journal of Earth Sciences, 4: 863−870. |
[91] | Wilson M, Guiraud R. 1992. Magmatism and rifting in western and central Africa, from late Jurassic to recent times[J]. Tectonophysics, 213: 203−225. doi: 10.1016/0040-1951(92)90259-9 |
[92] | Wortel M J, Sparkman M. 2000. Subduction and slab detachment in the Mediterranean–Carpathian Region[J]. Science, 290: 1910−1917. doi: 10.1126/science.290.5498.1910 |
[93] | Xu Hong, Zhao Jinhai, Cai Qianzhong, Zheng Jianping, Sun Heqing, Cao Fei. 2010. Isotopic evidences for geodynamic environment and process of the East China Sea and its basin dynamic model[J]. Earth Science Frontiers, 17(1): 229−237 (in Chinese with English abstract). |
[94] | Yan Q, Shi X, Wang K, Bu W. 2008. Major element, trace element, Sr–Nd–Pb isotopic studies of Cenozoic alkali basalts from the South China Sea[J]. Sciences, 51: 550−566. |
[95] | Yoon S H, Sohn Y K, Chough S K. 2014. Tectonic, sedimentary, and volcanic evolution of a back–arc basin in the East Sea (Sea of Japan)[J]. Marine Geology, 352: 70−88. doi: 10.1016/j.margeo.2014.03.004 |
[96] | Yoshida M, Santosh M. 2014. Mantle convection modeling of the super–continent cycle: Introversion, extroversion or combination?[J]. Geoscience Frontier, 5: 77−81. doi: 10.1016/j.gsf.2013.06.002 |
[97] | Young J S. 2015. Geological structures and controls on half–graben inversion in the western Gunsan Basin, Yellow Sea[J]. Marine and Petroleum Geology, 68: 480−491. doi: 10.1016/j.marpetgeo.2015.09.013 |
[98] | Zang Shaoxian, Ning Jieyuan. 2002. Interaction between Philippine Sea Plate (PH) and Eurasia(EU) Plate and its influence on the movement eastern Asia[J]. Chinese Journal of Geophysics, 45(2): 188−197 (in Chinese with English abstract). |
[99] | Zhang Bin, Chen Wen, Sun Jingbo, Yu Shun, Yin Jiyuan, Li Jie, Zhang Yan, Liu Xinyu, Yang Li, Yuan Xia. 2016. The thermal history and uplift process of the Ouxidaban pluton in the South Tianshan orogen: Evidence from Ar−Ar and (U−Th)/He[J]. Science China: Earth Sciences, 46(3): 392−405 (in Chinese with English abstract). |
[100] | Zhang Guohua, Zhang Jianpei. 2015. A discussion on the tectonic inversion and its genetic mechanism in the East China Sea Shelf Basin[J]. Earth Science Frontiers, 22(1): 260−270 (in Chinese with English abstract). |
[101] | Zhang Yueqiao, Zhao Yue, Dong Shuwen, Yang Nong. 2004. Tectonic evolution stages of the Early Cretaceous rift basins in Eastern China and adjacent areas and their geodynamic background[J]. Earth Science Frontiers, 11(3): 123−133 (in Chinese with English abstract). |
[102] | Zhao Yan, Li Yuejun, Sun Long De, Zheng Duoming, Liu Yalei, Wang Daoxuan, Wei Hongxing, Guan Wensheng. 2012. Mesozoic−Cenozoic extensional structure in north uplift of Tarim basin and its genetic discussion[J]. Acta Petrologica Sinica, 28(8): 2557−2568 (in Chinese with English abstract). |
[103] | Zhong S J, Zhang N, Li Z X, Roberts J H. 2007. Supercontinent cycles, true polar wander, and very long–wavelength mantle convection[J]. Earth and Planetary Science Letters, 261: 551−564. doi: 10.1016/j.jpgl.2007.07.049 |
[104] | Zhu G, Liu G S, Niu M L, Xie C L, Wang Y S, Xiang B W. 2009. Syn–collisional transform faulting of the Tan–Lu fault zone, East China[J]. International Journal of Earth Sciences, 98: 135−155. doi: 10.1007/s00531-007-0225-8 |
[105] | Zhu G, Niu M L, Xie C L, Wang Y S. 2010. Sinistral to normal faulting along the Tan–Lu fault zone evidence for geodynamic switching of the East China continental margin[J]. Journal of Geology, 118: 277−293. doi: 10.1086/651540 |
[106] | 丁巍伟, 杨树锋, 陈汉林, 程晓敢, 吴能友. 2006. 台湾岛以南海域新近纪的弧–陆碰撞造山作用[J]. 地质科学, (2): 195−201. doi: 10.3321/j.issn:0563-5020.2006.02.002 |
[107] | 高长林, 叶德燎, 张玉箴, 刘光祥. 2003. 塔里木中新生代盆地扩张和盆地俯冲与地幔柱[J]. 石油实验地质, (6): 661−669,678. doi: 10.3969/j.issn.1001-6112.2003.06.007 |
[108] | 高志勇, 周川闽, 冯佳睿, 吴昊, 李雯. 2016. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报, 34(3): 415−435. |
[109] | 胡望水, 吕炳全, 毛治国, 官大勇. 2004. 中国东部中新生代含油气盆地的反转构造[J]. 同济大学学报(自然科学版), (2): 182−186. doi: 10.3321/j.issn:0253-374X.2004.02.009 |
[110] | 刘国生, 朱光, 牛漫兰, 宋传中, 王道轩. 2006. 合肥盆地东部中—新生代的演化及其对郯庐断裂带活动的响应[J]. 地质科学, (2): 256−269. doi: 10.3321/j.issn:0563-5020.2006.02.008 |
[111] | 尚继宏, 李家彪. 2009. 南海东北部陆缘区新近纪早期反转构造特征及其动力学意义[J]. 海洋学报(中文版), 31(3): 73−83. |
[112] | 宋述光, 王梦珏, 王潮, 牛耀龄. 2015. 大陆造山带碰撞–俯冲–折返–垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学:地球科学, 45(7): 916−940. |
[113] | 索艳慧, 李三忠, 曹现志, 李玺瑶, 刘鑫, 曹花花. 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249−267. |
[114] | 王二七, 王刚, 樊春, 石许华. 2006. 板块汇聚带的造山和重力垮塌作用及其力学成因: 以雅鲁藏布江—喜马拉雅山汇聚带为例[J]. 地学前缘, (4): 18−26. doi: 10.3321/j.issn:1005-2321.2006.04.003 |
[115] | 王松. 2014. 南天山晚古生代—新生代沉积记录及其对构造演化的制约[D]. 合肥: 合肥工业大学, 1–147. |
[116] | 许红, 赵金海, 蔡乾忠, 郑建平, 孙和清, 曹飞. 2010. 东海地球动力学环境与过程的同位素证据及盆地动力学模式[J]. 地学前缘, 17(1): 229−237. |
[117] | 臧绍先, 宁杰远. 2002. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J]. 地球物理学报, (2): 188−197. doi: 10.3321/j.issn:0001-5733.2002.02.005 |
[118] | 张斌, 陈文, 孙敬博, 喻顺, 尹继元, 李洁, 张彦, 刘新宇, 杨莉, 袁霞. 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析——来自Ar–Ar和(U–Th)/He热年代学的证据[J]. 中国科学:地球科学, 46(3): 392−405. |
[119] | 张国华, 张建培. 2015. 东海陆架盆地构造反转特征及成因机制探讨[J]. 地学前缘, 22(1): 260−270. |
[120] | 张岳桥, 赵越, 董树文, 杨农. 2004. 中国东部及邻区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 11(3): 123−133. doi: 10.3321/j.issn:1005-2321.2004.03.014 |
[121] | 赵岩, 李曰俊, 孙龙德, 郑多明, 刘亚雷, 王道轩, 魏红兴, 管文胜. 2012. 塔里木盆地塔北隆起中—新生界伸展构造及其成因探讨[J]. 岩石学报, 28(8): 2557−2568. |
Seismic interpretation profile of the Songliao Basin
Seismic interpretation profile of basin inversion of the South Baltic Sea at the end of Cretaceous (after Buchanan and Ruchanan, 1995)
Seismic interpretation profile of the inversion tectonics in the Bongor Basin, central Africa at the end of Cretaceous
Oil−gas basins in the Atlantic and associated continents undergoing tectonic inversion at the end of Early Cretaceous
Reversed tectonic seismic profile (a) and interpreted profile (b) of San Jorge Basin in Western Argentina at the end of Cretaceous (after Buchanan and Ruchanan, 1995)
Mantle convection inversion model in oceanic and subduction zones
Inversion tectonic seismic interpretation profile at the end of Miocene in the East China Sea basin (after Buchanan and Ruchanan, 1995)
Inversion structures developed at the end of Miocene of the Noto Peninsula tectonic belt in the Sea of Japan (after Horne et al., 2017)
Lithospheric shrinkage model of inversion of rifting basin caused by inversion of continental mantle convection
Tectonic inversion systems of the Dabei orogenic belt in Qinling Mountains and the Meso−Cenozoic and Cenozoic basins in the South and North China basins
Inversion model of mantle convection