2025 Vol. 52, No. 2
Article Contents

YU Yang, WANG Denghong, WANG Wei, GAO Juanqin, WANG Chenghui, YU Feng, LIU Shanbao, KAN Lei, CEN Kuang, QIN Yan. 2025. Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments[J]. Geology in China, 52(2): 727-744. doi: 10.12029/gc20230316002
Citation: YU Yang, WANG Denghong, WANG Wei, GAO Juanqin, WANG Chenghui, YU Feng, LIU Shanbao, KAN Lei, CEN Kuang, QIN Yan. 2025. Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments[J]. Geology in China, 52(2): 727-744. doi: 10.12029/gc20230316002

Distribution characteristics and ecological, environmental and biological health effects of lithium in different geological environments

    Fund Project: Supported by Key Research and Development Plan (No.2021YFC2901905, No.2021YFC2901900), the projects of China Geological Survey (No.DD20230034, No.DD20230290, No.DD20190173).
More Information
  • Author Bio: YU Yang, female, born in 1982, Ph.D., researcher, mainly engaged in the study of geochemistry; E-mail: yuyang_cags@sina.com
  • Corresponding author: WANG Denghong, male, born in 1967, professor, mainly engaged in the study of mineral deposits; E-mail: wangdenghong@vip.sina.com
  • This paper is the result of environmental geological survey engineering.

    Objective

    The new pattern of harmonious coexistence between humans and nature is influencing the research concept of geological ecological organic systems. Understanding and mastering the distribution characteristics of lithium in different geological environments can help improve the utilization efficiency of lithium resources and promote green transformation of development methods.

    Methods

    Focusing on the needs of geological work, this study analyzed the distribution characteristics, ecological, environmental, and biological health effects of lithium in different geological environments through extensive surveys, field sampling, physical and chemical property testing analysis using interdisciplinary research methods.

    Results

    The regional and multi−field coupling distribution characteristics of lithium in various spheres (hydrosphere: ocean floor, groundwater, rivers, lakes, glacier meltwater, snow water and rain; lithosphere: Continental crusts, rocks and soil; atmosphere and biosphere) were clarified. The spatial−temporal distribution characteristics and regional differences of lithium were analyzed. The influencing factors for complex biological, geological, geochemical processes as well as spatial−temporal patterns for each layer's large amount but complicated elements were preliminarily summarized. The distribution features for key layers with respect to land biosphere was enriched while a comprehensive evaluation index system was improved for large−scale lithium resource bases. A systematic quantitative evaluation model was established to assess changes in lithium concentration on surface water, groundwater, and soil caused under human activities (mining), revealing unique ecological and environmental effects associated with "key layers" along with both lack or excess health effects from lithium.

    Conclusions

    Research on the distribution characteristics and ecological and environmental effects of lithium in different geological environments shows that pegmatite−type lithium resource development has overall safety control over its impact on ecology and environment while there are still some critical issues that need to be resolved regarding clean efficient development and utilization for clay−type and brine−type Lithium resources. With further deepening research into theoretical problems related to lithogenic mechanisms coupled with interdisciplinary basic research applications and simulation technology will make breakthrough progress possible towards understanding migration and transformation mechanisms associated with Lithium elements. While physiological amounts are beneficial to health excessive levels within organisms can cause certain side−effects even toxic reactions so it is necessary to continue conducting systematic studies on eco−environmental and biological health effects across different types and sources of Lithium resources providing theoretical basis support towards safe rational development strategies concerning strategic emerging minerals along with promoting eco−civilization construction efforts within China.

  • 加载中
  • [1] Ayeshamu Shahur, Jia Hongtao, Minawal Nur Aihemaiti, Bai Dengsha Maimaiti Aili. 2010. Research on content distribution and changing characteristics of lithium and rubidium in the meadow saline soil during improvement process[J]. Xinjiang Agricultural Sciences, 47(4): 765−769 (in Chinese with English abstract).

    Google Scholar

    [2] Beddows D C S, Donovan R J, Harrison R M, Heal M R, Kinnersley R P, King M D, Nicholson D H, Thompson K C. 2004. Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time–of–flight mass spectrometry[J]. Journal of Environmental Monitoring, 6(2): 124−133. doi: 10.1039/b311209h

    CrossRef Google Scholar

    [3] Blood Group of Beijing Tongren Hospital. 1982. The effect of lithium carbonate on hematopoietic tissue[J]. Medical Research Communication, (12): 18−19, 4 (in Chinese).

    Google Scholar

    [4] Bruland K W, Middag R, Lohan M C. 2014. Controls of Trace Metals in Seawater[C]//Treatise on Geochemistry. Elsevier, 19–51.

    Google Scholar

    [5] Bryce–Smith D. 1992. Lithium in Biology and Medicine[M]. Wiley–VCH, Weinheim, 307–308.

    Google Scholar

    [6] Cai Wenjing, Chang Chunping, Song Shuai, Li Jing, Zhang Fang, Li Fadong. 2013. Spatial distribution and sources of dissolved trace metals in surface water of Dezhou irrigation district[J]. Acta Scientiae Circumstantiae, 33(3): 754−761 (in Chinese with English abstract).

    Google Scholar

    [7] Chen Qingyun, Xian Su, Huang Ruiheng, Qin Yingfen, Wei Mei'e, He Yuzhong. 1995. Zinc, selenium, lithium, vanadium and germanium concentrations change in hairs in patients with hyperthyroidism[J]. Guangdong Trace Elements Science, (6): 34−37 (in Chinese with English abstract).

    Google Scholar

    [8] Chen Xiaojing, Qi Jianhua, Liu Ning, Zhang Xiangyu, Shen Hengqing, Liu Mingxu. 2014. Concentration distribution of metal elements in atmospheric aerosol under different weather conditions in Qingdao coastal region[J]. Environmental Science, 35(10): 3651−3662 (in Chinese with English abstract).

    Google Scholar

    [9] Chen Youhe, Young W. 2008. The effects of lithium on the central nervous and blood systems (1)[J]. Chinese Prescription Drugs, (6): 57−59 (in Chinese).

    Google Scholar

    [10] Dawson E T. 1991. The relationship of tap water and physiological levels of lithium to mental hospital admission and homicide in Texas[J]. Lithium in Biology and Medicine, (1991): 171−187.

    Google Scholar

    [11] Deng Shirong. 2000. Trace element li and health of human body[J]. Guangdong Trace Elements Science, (11): 12−14 (in Chinese with English abstract).

    Google Scholar

    [12] Deocampo D M, Jones B F. 2014. Geochemistry of Saline Lakes[C]//Treatise on Geochemistry. Elsevier, 437–469.

    Google Scholar

    [13] Du Chenchang, Liu Enfeng, Yang Xiangdong, Wu Yanhong, Xue Bin. 2012. Characteristics of enrichment and evaluation of anthropogenic pollution of heavy metals in the sediments of Lake Chaohu[J]. Journal of Lake Sciences, 24(1): 59−66 (in Chinese with English abstract). doi: 10.18307/2012.0108

    CrossRef Google Scholar

    [14] Gaillardet J, Viers J, Dupré B. 2014. Trace Elements in River Waters[C]//Treatise on Geochemistry. Elsevier, 195–235.

    Google Scholar

    [15] Gao Juanqin, Yu Yang, Wang Denghong, Liu Lijun, Dai Hongzhang, Guo Weiming. 2019. Distribution characteristics and implication of rare metal elements in surface water of the Jiajika mine in western Sichuan[J]. Acta Geologica Sinica, 93(6): 1331−1341 (in Chinese with English abstract).

    Google Scholar

    [16] Groleau G, Barish R, Tso E, Whye D, Browne B. 1987. Lithium intoxication: Manifestations and management[J]. The American Journal of Emergency Medicine, 5(6): 527−532.

    Google Scholar

    [17] Han Jilong. 2018. Hydrochemical of Brines and Their Geological Significances from Southern Qinghai, China [D]. Xining: University of Chinese Academy of Sciences (Chinese Academy of Sciences Qinghai Salt Lake Research Institute), 1–135(in Chinese with English abstract).

    Google Scholar

    [18] He Jun, Zhou Liting, Li Na, Liu Te, Zheng Dongchun, Qu Xiaofeng, Huang Jian, Ye Lin. 2012. Determination of 18 trace elements in natural mineral water of Changbai Mountain by ICP–MS[J]. Journal of Jilin University (Medicine Edition), 38(6): 1223−1226 (in Chinese with English abstract).

    Google Scholar

    [19] Hu Wenliang. 2006a. The health effects of trace element lithium (a)[J]. Guangdong Trace Elements Science, (6): 36(in Chinese).

    Google Scholar

    [20] Hu Wenliang. 2006b. The health effects of trace element lithium (b)[J]. Guangdong Trace Elements Science, (6): 43(in Chinese).

    Google Scholar

    [21] Huang Runqian. 1999. The effects of tide and rotation on the mass exchange process of binary stars [J]. Research in Astronomy and Astrophysics (2): 171–177(in Chinese with English abstract).

    Google Scholar

    [22] Jean P J, Marie L C, Gérard M, Jacques E. B. 1980. Lidar measurements of atmospheric lithium[J]. Geophysical Research Letters, 7(11): 995−998.

    Google Scholar

    [23] Ji Yutong, Cao Shengkui, Cao Guangchao, Li Huafei. 2021. Hydrochemical characteristics of river water and groundwater in the Shaliu river basin of Qinghai Lake in Summer[J]. Journal of Qinghai Normal University(Natural Science), 37(2): 63−75 (in Chinese with English abstract).

    Google Scholar

    [24] Jiang Chao, Yan Wenming, He Xiangyu, Wang Xiaolin, Song Yongfeng, Wu Bin, Tian Fen, Liu Tianyang. 2023. Distribution characteristics and source analysis of trace elements in plateau rivers under variable hydrological conditions[J]. Water Resources and Power, 41(1): 55−58, 5 (in Chinese with English abstract).

    Google Scholar

    [25] Kang Mingliang, Chen Fanrong, Wu Shijun, Zhang Rong, Yang Yongqiang, Wang Li'an. 2010. Se species and concentration–controlling study in Beishan mountain granite ground water[J]. Radiation Protection, 30(6): 327−334 (in Chinese with English abstract).

    Google Scholar

    [26] Li Lei, Gao Jing, Li Haichang, Lin Ye, Zhou Yibing, Liu Liya. 2016. Determination of 22 elements in atmospheric PM2.5 by inductively coupled plasma mass spectrometry[J]. Journal of Environmental and Occupational Medicine, 33(6): 620−623 (in Chinese with English abstract).

    Google Scholar

    [27] Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013a. TCM trace element data (1)[J]. Guangdong Trace Elements Science, 20(2): 55−70 (in Chinese with English abstract).

    Google Scholar

    [28] Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013b. TCM trace element data (2)[J]. Guangdong Trace Elements Science, 20(3): 42−70 (in Chinese with English abstract).

    Google Scholar

    [29] Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013c. TCM Trace Element Data (3)[J]. Guangdong Trace Elements Science, 20(4): 55−62 (in Chinese with English abstract).

    Google Scholar

    [30] Li Zengxi, Pan Weijian, Tan Yongji, Lao Zhihua, Huang Liyi, Xiao Yongbing. 2013d. TCM trace element data (4)[J]. Guangdong Trace Elements Science, 20(5): 35−62 (in Chinese with English abstract).

    Google Scholar

    [31] Lin Bixia, Xi Su, Xia Ning, Liu Hong, Huang Ruiheng, Zhang Guifu, He Yuzhong, Lin Wenye, Luo Jianhui, Huang Lijuan. 1991. Preliminary exploration of the relationship between serum and hair copper, zinc, selenium, chromium, vanadium, lithium, strontium, germanium, and hyperthyroidism[J]. Guangxi Medical Journal, (1): 4−9 (in Chinese).

    Google Scholar

    [32] Lin Lin, Wang Yilin. 2019. Comprehensive study on Tianchi water resources in Changbai Mountain[J]. Jilin Geology, 38(1): 60−66, 101 (in Chinese with English abstract).

    Google Scholar

    [33] Liu X M, Rudnick R L, McDonough W F, Cummings M L. 2013. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts[J]. Geochimica et Cosmochimica Acta, 115: 73−91. doi: 10.1016/j.gca.2013.03.043

    CrossRef Google Scholar

    [34] Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Element Geochemistry[M]. Beijing: Science Press, 1−281 (in Chinese).

    Google Scholar

    [35] Lu Min, Zhang Weiguo, Shi Yuxin, Yu Lizhong, Zheng Xiangmin. 2003. Vertical variations of metals and nutrients in sediments from northern Taihu Lake and the Influencing factors[J]. Journal of Lake Sciences, (3): 213−220 (in Chinese with English abstract).

    Google Scholar

    [36] Manaka T, Araoka D, Yoshimura T, Hossain H M Z, Nishio Y, Suzuki A, Kawahata H. 2017. Downstream and seasonal changes of lithium isotope ratios in the Ganges–brahmaputra river system[J]. Geochemistry, Geophysics, Geosystems, 18(8): 3003–3015.

    Google Scholar

    [37] Neal C, Robson A J. 2000. A summary of river water quality data collected within the Land–Ocean Interaction Study: Core data for eastern UK rivers draining to the North Sea[J]. Science of the total environment, 251: 585−665.

    Google Scholar

    [38] Nielsen F H. 1998. Ultratrace elements in nutrition: Current knowledge and speculation[J]. The Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, 11(2−3): 251−274.

    Google Scholar

    [39] Pickett E E, O’Dell B L. 1992. Evidence for dietary essentiality of lithium in the rat[J]. Biological Trace Element Research, 34: 299−319. doi: 10.1007/BF02783685

    CrossRef Google Scholar

    [40] Qin Junfa. 2000. Biological essentiality of lithium and its health effects in humans[J]. Guangdong Trace Elements Science, (3): 1−16 (in Chinese with English abstract).

    Google Scholar

    [41] Rossetti L, Giaccari A, Klein–Robbenhaar E, Vogel L R. 1990. Insulinomimetic properties of trace elements and characterization of their in vivo mode of action[J]. Diabetes, 39(10): 1243−1250. doi: 10.2337/diab.39.10.1243

    CrossRef Google Scholar

    [42] Schlesinger W H, Klein E M, Wang Z, Vengosh A. 2021. Global biogeochemical cycle of lithium[J]. Global Biogeochemical Cycles, 35(8): e2021GB006999. doi: 10.1029/2021GB006999

    CrossRef Google Scholar

    [43] Schrauzer G N, Shrestha K P. 1990. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions[J]. Biological trace element research, 25: 105−113. doi: 10.1007/BF02990271

    CrossRef Google Scholar

    [44] Schrauzer G N, Shrestha K P, Flores–Arce M F. 1992. Lithium in scalp hair of adults, students, and violent criminals[J]. Biological Trace Element Research, 34(2): 161−176. doi: 10.1007/BF02785244

    CrossRef Google Scholar

    [45] Schrauzer G N, de Vroey E. 1994. Effects of nutritional lithium supplementation on mood: A placebo–controlled study with former drug users[J]. Biological trace element research, 40: 89−101. doi: 10.1007/BF02916824

    CrossRef Google Scholar

    [46] Seitz H M, Brey G P, Zipfel J, Ott U, Weyer S, Durali S, Weinbruch S. 2007. Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: Bulk solar system and solar reservoirs[J]. Earth and Planetary Science Letters, 260(3): 582−596.

    Google Scholar

    [47] Sharma C M, Kang S, Sillanpää M, Li Q, Zhang Q, Huang J, Tripathee L, Sharma S, Paudyal R. 2015. Mercury and selected trace elements from a remote (Gosainkunda) and anurban (Phewa) lake waters of Nepal[J]. Water, Air & Soil Pollution, 226: 1–10.

    Google Scholar

    [48] Shen Xiaowei. 2017. Characteristics of Some Hot Springs in Northern Hebei and Beijing [D]. Beijing: China University of Geosciences (Beijing), 1–72(in Chinese with English abstract).

    Google Scholar

    [49] Stoffynegli P, Mackenzie F T. 1984. Mass balance of dissolved lithium in the oceans[J]. Geochimica et Cosmochimica Acta, 48(4): 859−872. doi: 10.1016/0016-7037(84)90107-8

    CrossRef Google Scholar

    [50] Su Hui, Zhu Zhaowu, Wang Lina, Qi Tao. 2019. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports, 33(13): 2119−2126 (in Chinese with English abstract).

    Google Scholar

    [51] Teng F Z, McDonough W F, Rudnick R L, Dalpé C, Tomascak P B, Chappell B W, Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 68(20): 4167−4178. doi: 10.1016/j.gca.2004.03.031

    CrossRef Google Scholar

    [52] Wallerstein G, Sneden C. 1982. AK giant with an unusually high abundance of lithium–HD 112127[J]. The Astrophysical Journal, 255: 577−584. doi: 10.1086/159859

    CrossRef Google Scholar

    [53] Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013. The progress in the strategic research and survey of rare earth, rare metal and rare–scattered elements mineral resources[J]. Geology in China, 40(2): 361−370 (in Chinese with English abstract).

    Google Scholar

    [54] Wang Denghong, Liu Lijun, Liu Xinxing, Zhao Zhi, He Hanhan. 2016. Main types and research trends of energy metallic resources in China[J]. Journal of Guilin University of Technology, 36(1): 21−28 (in Chinese with English abstract).

    Google Scholar

    [55] Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, Yu Yang, Dai Jingjing, Tian Shihong. 2017. A preliminary review of the application of “five levels+basement”model for Jiajika style rare metal deosits.[J]. Earth Science Frontiers, 24(5): 1−7 (in Chinese with English abstract).

    Google Scholar

    [56] Wang Denghong, Liu Shanbao, Yu Yang, Wang Chenghui, Sun Yan, Dai Hongzhang, Li Jiankang, Dai Jingjing, Wang Yuxian, Zhao Ting, Ma Shengchao, Liu Lijun. 2019. Exploration progress and development suggestion for the large–scale mining base of strategic critical mineral reources in western Sichuan[J]. Acta Geologica Sinica, 93(6): 1444−1453 (in Chinese with English abstract).

    Google Scholar

    [57] Wang Denghong. 2020. Exploring the development path of China's three rare minerals in the era of global strategic emerging resources[J]. Scientific and Cultural Popularization of Natural Resources, (1): 4−11 (in Chinese).

    Google Scholar

    [58] Wang Denghong, Zhao Zhi, Yu Yang, Dai Jingjing, Deng Maochun, Zhao Ting, Liu Lijun. 2020. Research and exploration progress on lithium deposits in China[J]. China Geology, 3(1): 137−152.

    Google Scholar

    [59] Wang Lijun, Zhang Chaosheng, Zhang Shen, Chen Nengjian, Yang Liu. 1998. Geochemical characteristics of rare earth elements in the Zhujiang river in Guangzhou[J]. Acta Geographica Sinica, (5): 71−80 (in Chinese with English abstract).

    Google Scholar

    [60] Wang Lixiong, Yang Tongzai, Jiang Tao. 2006. Separation and stable isotopic measurement of lithium in atmosphere aerosol sample[J]. Chinese Journal of Analytical Chemistry, (S1): 105−108 (in Chinese with English abstract).

    Google Scholar

    [61] Wang Jinyi. 1993. Primary application of plant spectral characteristics and its trace–element analysis for remote sensing interpretation of oil and gas [J]. Remote Sensing for Natural Resources, (4): 34–37, 7–66 (in Chinese with English abstract).

    Google Scholar

    [62] Wang Qilian, Liu Congqiang, Zhao Zhiqi, Chetelat B, Ding Hu. 2008. Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China[J]. Advances in Earth Science, (9): 952−958 (in Chinese with English abstract).

    Google Scholar

    [63] Wang Q L, Chetelat B, Zhao Z Q, Ding H, Li S L, Wang B L, Li J, Liu X L. 2015. Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion[J]. Geochimica et Cosmochimica Acta, 151: 117−132. doi: 10.1016/j.gca.2014.12.015

    CrossRef Google Scholar

    [64] Wang Shifang, Li Zaijun. 2010. Ionic liquid as solvent for preconcentration of trace lithium in hair and its determination by flame atomic absorption spectrometry[J]. Journal of Clothing Research, 9(6): 695−700 (in Chinese with English abstract).

    Google Scholar

    [65] Wang Xueqiu, Liu Hanliang, Wang Wei, Zhou Jian, Zhang Bimin, Xu Shanfa. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects[J]. Acta Geoscientica Sinica, 41(6): 797−806 (in Chinese with English abstract).

    Google Scholar

    [66] Wang Zhu, Li Mingli, Shao Bei, Zhuoma Quxi, Jiang Zhenzhen, Liu Gaoling, Duoji. 2015. Determination of 11 major and minor elements in geothermal water of Riduo hotspring in Tibet by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 34(3): 302−307 (in Chinese with English abstract).

    Google Scholar

    [67] Wang Zhuo, Huang Ranxiao, Wu Datian, Xu Fengming, Sun Wei, Zhang Dehui, Zhao Yuandong. 2023. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China, 50(1): 102−117 (in Chinese with English abstract).

    Google Scholar

    [68] Wu B, Zhao D Y, Jia H Y, Zhang Y, Zhang X X, Cheng S P. 2009. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing section, China[J]. Bulletin of Environmental Contamination and Toxicology, 82(4): 405−409. doi: 10.1007/s00128-008-9497-3

    CrossRef Google Scholar

    [69] Wu Fengchang, Meng Wei, Song Yonghui, Liu Zhengtao, Jin Xiangcan, Zheng Binghui, Wang Yeyao, Wang Shengrui, Jiang Xia, Lu Shaoyong, Chu Zhaosheng, Chen Yanqing, Wang Chao, Hua Zulin, Wang Peifang, Yu Zhiqiang, Fu Jiamo. 2008. Research progress in lake water quality criteria in China[J]. Acta Scientiae Circumstantiae, (12): 2385−2393 (in Chinese with English abstract).

    Google Scholar

    [70] Wu Jiong, Wu Qixin, An Yanling, Gao Shilin, Ke Xinhui, Zhou Jinxiong, Qin Li. 2023. Influence of urbanization on trace elements in natural rivers—A case study of Chishui river basin[J]. Earth and Environment, 51(1): 56−66 (in Chinese with English abstract).

    Google Scholar

    [71] Xi Xiaohuan, Li Min. 2013. Reviews of the development of the exploration geochemistry during the Eleventh Five–Year Period[J]. Earth Science Frontiers, 20(3): 161–169 (in Chinese with English abstract).

    Google Scholar

    [72] Xiao Yao, Li Xiao. 2016. Analysis of hydro−chemical features, genetic and value of Mingxiang hotspring[J]. Pearl River, 37(3): 90−94 (in Chinese with English abstract).

    Google Scholar

    [73] Xiao Yingkai, Qi Haiping, Wang Yunhui, Jin Lin. 1994. Lithium isotope composition of brine, sediments and source water in Da Qaidam lake, Qinghai, China[J]. Geochimica, (4): 329, 338 (in Chinese with English abstract).

    Google Scholar

    [74] Xiong Darun. 1992. The cosmological and stellar lithium abundance problem[J]. Progress in Astronomy, (2): 91−102 (in Chinese with English abstract).

    Google Scholar

    [75] Xu Zhaoxi. 1987. A new method for recovering lithium from spodumene[J]. Inorganic Chemicals Industry, (3): 48(in Chinese).

    Google Scholar

    [76] Yan Hongliang, Shi Jianrong. 2018. The mystery of the birth of lithium in the extremely lithium rich giant star, which is known to have the highest abundance of lithium, has been discovered[J]. Physics, 47(12): 788−791 (in Chinese).

    Google Scholar

    [77] Yang Yunong. 1986. Lithium resources, production and application abroad[J]. Hunan Nonferrous Metals, (6): 36−39, 18 (in Chinese).

    Google Scholar

    [78] Yang Shi. 2000. Lithium and human health[J]. Hunan Nonferrous Metals, (4): 10(in Chinese).

    Google Scholar

    [79] Ye Shixian, Chen Ji, Lin Min. 2009. A Study on the medical and health effects of Jintang Bay seawater hot springs [J] Straits Science, (7): 59–63(in Chinese).

    Google Scholar

    [80] Yoon J. 2010. Lithium as a silicate weathering proxy: Problems and perspectives[J]. Aquatic geochemistry, 16: 189−206. doi: 10.1007/s10498-009-9078-z

    CrossRef Google Scholar

    [81] Yu Feng, Wang Denghong, Yu Yang, Liu Lijun, Dai Hongzhang. 2019. Ecological risk assessment of heavy metals in the soil of the Jiajika lithium deposit[J]. Environmental Science & Technology, 42(S1): 232−240 (in Chinese with English abstract).

    Google Scholar

    [82] Yu Feng, Wang Wei, Yu Yang, Wang Denghong, Liu Shanbao, Gao Juanqin, Lü Bingting, Liu Lijun. 2021. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li−Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 40(3): 408−424 (in Chinese with English abstract).

    Google Scholar

    [83] Yu Feng, Yu Yang, Wang Denghong, Gao Juanqin, Wang Chenghui, Guo Weiming. 2022. Application of Li isotope in geothermal fluid–rock interaction: A case study of modern Li–rich geothermal water in western Sichuan[J]. Acta Petrologica Sinica, 38(2): 472−482 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.02.11

    CrossRef Google Scholar

    [84] Yu Yang, Wang Denghong, Yu Feng, Wang Wei, Liu Lijun, Gao Juanqin, Hao Xuefeng. 2019. Study on the index system of green investigation and environmental evaluation for the Jiajika large lithium mineral resource base, western Sichuan, China[J]. Rock and Mineral Analysis, 38(5): 534−544 (in Chinese with English abstract).

    Google Scholar

    [85] Yu Yang, Wang Wei, Wang Denghong, Gao Juanqin, Liu Shanbao, Yuan Linping, Yu Feng, Zhang Sai. 2021. Hydrochemical prospecting method and its application in Green Investigation of large resource bases: A case study of surface hydrochemical prospecting in the Jiulong area of western Sichuan[J]. Rock and Mineral Analysis, 40(2): 227−238 (in Chinese with English abstract).

    Google Scholar

    [86] Yu Yongwei, Huang Yanyun, Wu Ming, Yao Daoguang, He Yuzhong, Lin Wenye, Luo Jianhui, Huang Lijuan, Lin Kui. 1995. The content variation of Co, Li in the hair, serum and bone marrom of aplastic anemia[J]. Guangdong Trace Elements Science, (6): 41−44 (in Chinese with English abstract).

    Google Scholar

    [87] Zeng Zhaohua, Zeng Xueping. 1995. The formation of lithium in groundwater and its relationship with human health[J]. Jiangxi Geological Science and Technology, (4): 189−190 (in Chinese).

    Google Scholar

    [88] Zhan Jingming, Ma Yuefeng, Gu Xiaona, Liu Zhanqi. 2008. Research progress on the health damage effects of lithium and its compounds[J]. Journal of Environmental Hygiene, (6): 374−377 (in Chinese).

    Google Scholar

    [89] Zhang B, Qi F Y, Gao X Z, Li X L, Shang Y T, Kong Z Y, Jia L Q, Meng J, Guo H, Fang F K, Liu Y B, Jiang X, Chai H, Liu Z, Ye X T, Wang G D. 2022. Geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 5(4): 734−767.

    Google Scholar

    [90] Zhang Fei, Jin Zhangdong. 2022. Decryption: Changes in Li Isotopes in hydrological dominant rivers and seawater[J]. Journal of Earth Environment, 13(3): 354−356 (in Chinese).

    Google Scholar

    [91] Zhang Hongfeng, Zhou Hongwei, Cheng Yanfang, Xie Jin, Pan Xinhong, Peng Rongfei. 2017. Determination of 26 elements in atmospheric fine particulate matter by ultrasound assisted extraction and inductively coupled plasma–mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 27(7): 926−930 (in Chinese with English abstract).

    Google Scholar

    [92] Zhang Xiaoyu. 2021. Complexes of Li/Na/K in Geo–fluids: A Molecular Dynamics Study[D]. Nanjing: Nanjing University, 1–90(in Chinese with English abstract).

    Google Scholar

    [93] Zhang Xue, Zhou Xun, Li Zai Guang, Wang Ying, Xu Tingwu, Guo Xiaojuan. 2010. Hydrochemical and isotopic characteristics of the Hongtangsi hot spring in fengning county of Hebei Province[J]. Hydrogeology & Engineering Geology, 37(5): 123−127 (in Chinese with English abstract).

    Google Scholar

    [94] Zheng Yaxin, Zhang Mingtao, Zhu Bingqiu, Zhu Lixin. 1988. Alkaline metal elements of the Rehai geothermal field in Yunnan Province[J]. Journal of Natural Resources, (1): 16−27 (in Chinese with English abstract).

    Google Scholar

    [95] Zhou Haiyan, Zhou Xun, Liu Chunhui, Yu Lan, Li Juan, Liang Yongguo. 2008. Hydro–chemical and isotopic characteristics of Conghua hot mineral springs in Guangdong[J]. Journal of Natural Resources, (4): 705−712 (in Chinese with English abstract).

    Google Scholar

    [96] Zhou Xiaolong. 2010. Geothermal resources of Wenquan in Wushan county and exploitation prospect[J]. Gansu Geology, 19(3): 55−59 (in Chinese with English abstract).

    Google Scholar

    [97] Zhu Li. 2021. Study on Mineralogical Characteristics and Green Leaching Technology of Clay–type Lithium Resources [D]. Guiyang: Guizhou Normal University, 1–75(in Chinese with English abstract).

    Google Scholar

    [98] Zhu Ronglin. 1988. Lithium and human health[J]. Chinese Bulletin of Life Sciences, 1(2): 26−29 (in Chinese).

    Google Scholar

    [99] Zhu Xueliang. 2007. NLTE Effects of Li in Late–type Stellar Atmosphere[D]. Jinan: Shandong Normal University, 1–50(in Chinese with English abstract).

    Google Scholar

    [100] 阿依夏木·沙吾尔, 贾宏涛, 米娜瓦尔·努尔艾合买提, 白灯莎·买买提艾力. 2010. 草甸盐土改良过程中锂和铷分布和变化特征研究[J]. 新疆农业科学, 47(4): 765−769.

    Google Scholar

    [101] 北京同仁医院血液组. 1982. 碳酸锂对造血组织的作用[J]. 医学研究通讯, (12): 18−19, 4.

    Google Scholar

    [102] 蔡文静, 常春平, 宋帅, 李静, 张芳, 李发东. 2013. 德州灌区地表水中溶解态痕量金属的空间分布及来源研究[J]. 环境科学学报, 33(3): 754−761.

    Google Scholar

    [103] 陈青云, 冼苏, 黄瑞衡, 秦映芬, 韦美娥, 何聿忠. 1995. 甲状腺机能亢进症头发锌、硒、钒、锂、锗5种微量元素的动态变化[J]. 广东微量元素科学, (6): 34−37.

    Google Scholar

    [104] 陈晓静, 祁建华, 刘宁, 等. 2014. 青岛近海不同天气状况下大气气溶胶中金属元素浓度分布特征研究[J]. 环境科学, 35(10): 3651−3662.

    Google Scholar

    [105] 陈有和, Young W. 2008. 锂对中枢神经和血液系统的作用(一)[J]. 中国处方药, (6): 57−59.

    Google Scholar

    [106] 邓世荣. 2000. 微量元素锂和人体健康[J]. 广东微量元素科学, (11): 12−14. doi: 10.3969/j.issn.1006-446X.2000.11.003

    CrossRef Google Scholar

    [107] 杜臣昌, 刘恩峰, 羊向东, 吴艳宏, 薛滨. 2012. 巢湖沉积物重金属富集特征与人为污染评价[J]. 湖泊科学, 24(1): 59−66. doi: 10.3969/j.issn.1003-5427.2012.01.008

    CrossRef Google Scholar

    [108] 高娟琴, 于扬, 王登红, 刘丽君, 代鸿章, 郭唯明. 2019. 川西甲基卡稀有金属矿田地表水中稀有金属元素分布特征及意义[J]. 地质学报, 93(6): 1331−1341. doi: 10.3969/j.issn.0001-5717.2019.06.013

    CrossRef Google Scholar

    [109] 韩继龙. 2018. 青海南部含盐盆地卤水水化学及其地质意义研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 1–135.

    Google Scholar

    [110] 贺军, 周丽婷, 李娜, 刘特, 郑东春, 曲笑锋, 黄鉴, 叶琳. 2012. ICP–MS法测定长白山天然矿泉水中18种微量元素的含量[J]. 吉林大学学报(医学版), 38(6): 1223−1226.

    Google Scholar

    [111] 呼文亮. 2006a. 微量元素锂的健康效应(a)[J]. 广东微量元素科学, (6): 36.

    Google Scholar

    [112] 呼文亮. 2006b. 微量元素锂的健康效应(b)[J]. 广东微量元素科学, (6): 43.

    Google Scholar

    [113] 黄润乾. 1999. 潮汐效应、系统自转效应对双星物质交换过程的影响[J]. 天体物理学报, (2): 171−177.

    Google Scholar

    [114] 季雨桐, 曹生奎, 曹广超, 李华非. 2021. 青海湖沙柳河流域夏季河水和地下水水化学特征[J]. 青海师范大学学报(自然科学版), 37(2): 63−75.

    Google Scholar

    [115] 蒋超, 燕文明, 何翔宇, 王小林, 宋勇锋, 吴斌, 田玢, 刘天杨. 2023. 变化水文条件下高原河流微量元素的分布及溯源[J]. 水电能源科学, 41(1): 55−58+5.

    Google Scholar

    [116] 康明亮, 陈繁荣, 吴世军, 张荣, 杨永强, 王立安. 2010. Se在北山花岗岩地下水中的化学形态及浓度控制分析[J]. 辐射防护, 30(6): 327−334.

    Google Scholar

    [117] 李磊, 高婧, 李海畅, 林野, 周贻兵, 刘利亚. 2016. 电感耦合等离子体质谱法测定大气PM2.5中22种元素的方法[J]. 环境与职业医学, 33(6): 620−623.

    Google Scholar

    [118] 李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013a. 中药微量元素数据(1)[J]. 广东微量元素科学, 20(2): 55−70.

    Google Scholar

    [119] 李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013b. 中药微量元素数据(2)[J]. 广东微量元素科学, 20(3): 42−70.

    Google Scholar

    [120] 李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013c. 中药微量元素数据(3)[J]. 广东微量元素科学, 20(4): 50−62.

    Google Scholar

    [121] 李增禧, 潘伟健, 谭永基, 劳志华, 黄丽仪, 肖永兵. 2013d. 中药微量元素数据(4)[J]. 广东微量元素科学, 20(5): 35−62.

    Google Scholar

    [122] 林碧霞, 洗苏, 夏宁, 刘红, 黄瑞衡, 张桂福, 何聿忠, 林文业, 罗建慧, 黄丽娟. 1991. 血清及头发铜、锌、硒、铬、钒、锂、锶、锗与甲状腺功能亢进症关系的初步探索[J]. 广西医学, (1): 4−9.

    Google Scholar

    [123] 林琳, 王屹林. 2019. 长白山天池水资源综合研究[J]. 吉林地质, 38(1): 60−66, 101. doi: 10.3969/j.issn.1001-2427.2019.01.013

    CrossRef Google Scholar

    [124] 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 1−548.

    Google Scholar

    [125] 陆敏, 张卫国, 师育新, 俞立中, 郑祥民. 2003. 太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J]. 湖泊科学, (3): 213−220. doi: 10.3321/j.issn:1003-5427.2003.03.004

    CrossRef Google Scholar

    [126] 秦俊法. 2000. 锂的生物必需性及人体健康效应[J]. 广东微量元素科学, (3): 1−16. doi: 10.3969/j.issn.1006-446X.2000.03.001

    CrossRef Google Scholar

    [127] 申晓伟. 2017. 河北和北京北部部分温泉特征[D]. 北京: 中国地质大学(北京), 1–72.

    Google Scholar

    [128] 苏慧, 朱兆武, 王丽娜, 齐涛. 2019. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 33(13): 2119−2126. doi: 10.11896/cldb.18050025

    CrossRef Google Scholar

    [129] 王成辉, 王登红, 孙艳等. 2022. 华南重点矿集区稀有和稀土矿产调查研究进展[M]. 北京: 科学出版社, 1–332.

    Google Scholar

    [130] 王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 40(2): 361−370. doi: 10.3969/j.issn.1000-3657.2013.02.001

    CrossRef Google Scholar

    [131] 王登红, 刘丽君, 刘新星, 赵芝, 何晗晗. 2016. 我国能源金属矿产的主要类型及发展趋势探讨[J]. 桂林理工大学学报, 36(1): 21−28. doi: 10.3969/j.issn.1674-9057.2016.01.004

    CrossRef Google Scholar

    [132] 王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−7.

    Google Scholar

    [133] 王登红, 刘善宝, 于扬, 王成辉, 孙艳, 代鸿章, 李建康, 代晶晶, 王裕先, 赵汀, 马圣钞, 刘丽君. 2019. 川西大型战略性新兴产业矿产基地勘查进展及其开发利用研究[J]. 地质学报, 93(6): 1444−1453. doi: 10.3969/j.issn.0001-5717.2019.06.020

    CrossRef Google Scholar

    [134] 王登红. 2020. 面向全球战略新兴资源时代 探寻中国三稀矿产发展之路[J]. 国土资源科普与文化, (1): 4−11.

    Google Scholar

    [135] 王登红, 代鸿章, 于扬等. 2021. 大型锂资源基地调查评价的理论、方法与实践—以川西甲基卡超大型锂矿为例[M]. 北京: 科学出版社, 1–458.

    Google Scholar

    [136] 王立军, 张朝生, 章申, 陈能坚, 杨柳. 1998. 珠江广州江段水体中稀土元素的地球化学特征[J]. 地理学报, (5): 71−80. doi: 10.3321/j.issn:0375-5444.1998.05.009

    CrossRef Google Scholar

    [137] 王丽雄, 杨通在, 姜涛, 2006. 大气气溶胶中锂的化学分离与同位素比的质谱检测[J]. 分析化学, (S1): 105–108.

    Google Scholar

    [138] 王津义. 1993. 植物波谱特性及其微量元素分析在油气遥感解译中的初步应用[J]. 国土资源遥感, (4): 34–37, 7–66.

    Google Scholar

    [139] 汪齐连, 刘丛强, 赵志琦, B. Chetelat, 丁虎. 2008. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, (9): 952−958. doi: 10.3321/j.issn:1001-8166.2008.09.006

    CrossRef Google Scholar

    [140] 王仕芳, 李在均. 2010. 离子液体预富集–火焰原子吸收法测定头发中痕量锂[J]. 江南大学学报(自然科学版), 9(6): 695−700.

    Google Scholar

    [141] 王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 41(6): 797−806. doi: 10.3975/cagsb.2020.081201

    CrossRef Google Scholar

    [142] 王祝, 李明礼, 邵蓓, 卓玛曲西, 姜贞贞, 刘高令, 多吉. 2015. 电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J]. 岩矿测试, 34(3): 302−307.

    Google Scholar

    [143] 王卓, 黄冉笑, 吴大天, 许逢明, 孙巍, 张德会, 赵院冬. 2023. 盐湖卤水型锂矿基本特征及其开发利用潜力评价[J]. 中国地质, 50(1): 102−117.

    Google Scholar

    [144] 吴丰昌, 孟伟, 宋永会, 刘征涛, 金相灿, 郑丙辉, 王业耀, 王圣瑞, 姜霞, 卢少勇, 储昭升, 陈艳卿, 王超, 华祖林, 王沛芳, 于志强, 傅家谟. 2008. 中国湖泊水环境基准的研究进展[J]. 环境科学学报, 28(12): 2385−2393.

    Google Scholar

    [145] 吴炯, 吴起鑫, 安艳玲, 高世林, 柯鑫辉, 周金雄, 秦立. 2023. 城市化对自然河流微量元素的影响研究—以赤水河流域为例[J]. 地球与环境, 51(1): 56−66.

    Google Scholar

    [146] 徐肇锡. 1987. 从锂辉石回收锂的新方法[J]. 无机盐工业, (3): 48.

    Google Scholar

    [147] 奚小环, 李敏. 2013. 现代地质工作重要发展领域: “十一五”期间勘查地球化学评述[J]. 地学前缘, 20(3): 161−169.

    Google Scholar

    [148] 肖尧, 李晓. 2016. 明香温泉水化学特征、地质成因及价值研究[J]. 人民珠江, 37(3): 90−94. doi: 10.3969/j.issn.1001-9235.2016.03.020

    CrossRef Google Scholar

    [149] 肖应凯, 祁海平, 王蕴慧, 金琳. 1994. 青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J]. 地球化学, (4): 329−338. doi: 10.3321/j.issn:0379-1726.1994.04.003

    CrossRef Google Scholar

    [150] 熊大闰. 1992. 关于宇宙锂丰度问题[J]. 天文学进展, (2): 91−102.

    Google Scholar

    [151] 闫宏亮, 施建荣. 2018. 发现人类已知锂丰度最高的巨星—极富锂巨星中锂元素的诞生之谜[J]. 物理, 47(12): 788−791. doi: 10.7693/wl20181205

    CrossRef Google Scholar

    [152] 杨师. 2000. 锂与人体健康[J]. 金属世界, (4): 10. doi: 10.3969/j.issn.1000-6826.2000.04.010

    CrossRef Google Scholar

    [153] 杨雨浓. 1986. 国外锂资源、生产及应用[J]. 湖南有色金属, (6): 36−39+18.

    Google Scholar

    [154] 叶实现, 陈础, 林敏. 2009. 金汤湾海水温泉医疗保健作用研究[J]. 海峡科学, (7): 59−63. doi: 10.3969/j.issn.1673-8683.2009.07.024

    CrossRef Google Scholar

    [155] 于沨, 王登红, 于扬, 刘丽君, 代鸿章. 2019. 四川甲基卡锂矿区土壤重金属生态风险评价[J]. 环境科学与技术, 42(S1): 232−240.

    Google Scholar

    [156] 于沨, 王伟, 于扬, 王登红, 刘善宝, 高娟琴, 吕秉廷, 刘丽君. 2021. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 40(3): 408−424.

    Google Scholar

    [157] 于沨, 于扬, 王登红, 高娟琴, 王成辉, 郭唯明. 2022. 锂同位素地球化学在地热流体水岩反应中的应用—以川西现代富锂热泉研究为例[J]. 岩石学报, 38(2): 472−482. doi: 10.18654/1000-0569/2022.02.11

    CrossRef Google Scholar

    [158] 于扬, 王登红, 于沨, 王伟, 刘丽君, 高娟琴, 郝雪峰. 2019. 川西甲基卡大型锂资源基地绿色调查及环境评价指标体系的建立[J]. 岩矿测试, 38(5): 534−544.

    Google Scholar

    [159] 于扬, 王伟, 王登红, 高娟琴, 刘善宝, 袁蔺平, 于沨, 张塞. 2021. 水化学找矿法及其在大型资源基地绿色调查中的应用—以川西九龙地区地表水化学找矿为例[J]. 岩矿测试, 40(2): 227−238.

    Google Scholar

    [160] 余永卫, 黄彦云, 吴铭, 姚道光, 何聿忠, 林文业, 罗建慧, 黄丽娟, 林葵. 1995. 再障头发、血清和骨髓组织钴、锂元素含量的变化[J]. 广东微量元素科学, (6): 41−44.

    Google Scholar

    [161] 曾昭华, 曾雪萍. 1995. 地下水中锂的形成及其与人群健康的关系[J]. 江西地质科技, (4): 189−190.

    Google Scholar

    [162] 战景明, 马跃峰, 古晓娜, 刘占旗. 2008. 锂及其化合物的健康损伤效应研究进展[J]. 国外医学(卫生学分册), (6): 374−377.

    Google Scholar

    [163] 张飞, 金章东. 2022. 解密: 水文主导河流和海水Li同位素变化[J]. 地球环境学报, 13(3): 354−356.

    Google Scholar

    [164] 张宏峰, 周洪伟, 程焰芳, 谢进, 潘心红, 彭荣飞. 2017. 超声辅助提取–电感耦合等离子体质谱法测定PM2.5中26种元素[J]. 中国卫生检验杂志, 27(7): 926−930.

    Google Scholar

    [165] 张晓宇. 2021. 地质流体中锂、钠、钾配合物的计算模拟研究[D]. 南京: 南京大学, 1–90.

    Google Scholar

    [166] 张雪, 周训, 李再光, 王莹, 许庭武, 郭小娟. 2010. 河北丰宁县洪汤寺温泉的水化学与同位素特征[J]. 水文地质工程地质, 37(5): 123−127. doi: 10.3969/j.issn.1000-3665.2010.05.023

    CrossRef Google Scholar

    [167] 郑亚新, 章铭陶, 朱炳球, 朱立新. 1988. 云南热海热田中的碱金属元素[J]. 自然资源学报, (1): 16−27. doi: 10.3321/j.issn:1000-3037.1988.01.003

    CrossRef Google Scholar

    [168] 周海燕, 周训, 柳春晖, 虞岚, 李娟, 梁永国. 2008. 广东省从化温泉热矿水水化学与同位素特征[J]. 自然资源学报, (4): 705−712. doi: 10.3321/j.issn:1000-3037.2008.04.018

    CrossRef Google Scholar

    [169] 周小龙. 2010. 武山温泉地热资源状况及开发利用前景分析[J]. 甘肃地质, 19(3): 55−59.

    Google Scholar

    [170] 朱丽. 2021. 黏土型锂资源矿物学特征及绿色浸出工艺研究[D]. 贵阳: 贵州师范大学, 1–75.

    Google Scholar

    [171] 朱荣林. 1988. 锂与人体健康[J]. 生物科学信息, 1(2): 26−29.

    Google Scholar

    [172] 朱学亮. 2007. 晚型恒星大气中锂元素非局部热动平衡效应的研究[D]. 济南: 山东师范大学, 1–50.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(2)

Article Metrics

Article views(9) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint