2025 Vol. 52, No. 2
Article Contents

ZHOU Yalong, GUO Zhijuan, WANG Qiaolin, LIU Fei, WANG Chengwen, SONG Yuntao. 2025. Discussion on the element composition characteristics and material sources of Quaternary sedimentary facies based on the land quality survey results in Xiong’an New Area[J]. Geology in China, 52(2): 714-726. doi: 10.12029/gc20210423003
Citation: ZHOU Yalong, GUO Zhijuan, WANG Qiaolin, LIU Fei, WANG Chengwen, SONG Yuntao. 2025. Discussion on the element composition characteristics and material sources of Quaternary sedimentary facies based on the land quality survey results in Xiong’an New Area[J]. Geology in China, 52(2): 714-726. doi: 10.12029/gc20210423003

Discussion on the element composition characteristics and material sources of Quaternary sedimentary facies based on the land quality survey results in Xiong’an New Area

    Fund Project: Supported by the projects of China Geological Survey (No.DD20189123, No.DD20230543).
More Information
  • Author Bio: ZHOU Yalong, male, born in 1984, professor level senior engineer, mainly engaged in research on geochemistry evaluation of land quality; E-mail: zyalong@mail.cgs.gov.cn
  • This paper is the result of environmental geological survey engineering.

    Objective

    This paper aims to investigate the distribution characteristics, the contents and distribution of soil elements in different sedimentary facies of Quaternary, the control factors and the sources of sediment materials in Xiong’an New Area, and to provide geochemical bases for the study of regional palaeogeographic evolution and epigenetic geochemical environments.

    Methods

    Based on the surface element content data obtained from the geochemical survey and monitoring of land quality in Xiong’an New Area, this study employs multivariate statistical methods (such as elemental content analysis and ratio tracing) to reveal the relationship between regional elemental geochemical distribution patterns and the epigenetic environment.

    Results

    The soil in the alluvial−lacustrine plain subregion has the characteristics of low value of SiO2 and Na2O, and high value of Al2O3, Fe2O3, MgO, CaO, K2O and Na/Rb. The soil in the alluvial−diluvial plain subregion is characterized by high SiO2 and Na2O, and low Al2O3, Fe2O3 and Ca/Ba. The distribution of soil geochemical major elements is primarily controlled by chemical weathering intensity of source sediments, while epigenetic environment also influences the depletion and enrichment of major elements. The source area is currently in the stage of moderate chemical weathering dominated by plagioclase weathering, with no evidence of potassium metasomatism in weathering products. The soil parent materials in each sedimentary facies are mainly derived from the mature continental quartz source of Taihang uplift on the west side of Xiong’an New Area. Additionally, in the subregion of alluvial plain, parent materials of a small proportion of samples are from mafic volcanic and neutral igneous rocks.

    Conclusions

    Geochemical indicators such as soil element contents, element ratios and element combinations (Rb−U−Ga, Fe−Mg−Ni−V) can effectively differentiate sedimentary facies environments in the study area and serve as reliable tracers for soil parent material properties.

  • 加载中
  • [1] Chang Zhaoshan, Feng Zhongyan, Chen Tingli. 2000. Research on the ultramafic rocks in the Laiyuan batholith, Hebei Province[J]. Geology and Prospecting, 36(3): 36−39 (in Chinese with English abstract).

    Google Scholar

    [2] Cheng Hangxin, Peng min, Zhao Chuandong, Han Wei, Wang Huiyan, Wang Qiaolin, Yang Fan, Zhang Fugui, Wang Chengwen, Liu Fei, Zhou Yalong, Tang Shiqi, Li Kuo, Yang Ke, Yang Zheng, Cheng Xiaomeng, Chen Ziwan, Zhang Hua, Mo Chunhu. 2019. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, Southwest China[J]. Earth Science Frontiers, 26(6): 159−191 (in Chinese with English abstract).

    Google Scholar

    [3] Chen Wanghe, Ni Mingyun. 1987. Quaternary Geology of Hebei Province[M]. Beijing: Geological Publishing House, 1–186 (in Chinese with English abstract).

    Google Scholar

    [4] Cullers R L, Barrett T, Carlson R, Robinson B. 1987. REE and mineralogical changes in Holocene soil and stream sediment: a case study in the wet mountains, Colorado, U.S.A.[J]. Chemical Geology, 63(3/4): 275−297.

    Google Scholar

    [5] Fang Haichao, Huang Peng, Sun Jiawen, Yu Yonghai, Li Anchun. 2019. Provenance and controlling factors of major elements in graded components of sediments from the Yalu River[J]. Marine Geology and Quaternary Geology, 39(3): 72−83 (in Chinese with English abstract).

    Google Scholar

    [6] Gao Y F, Santosh M, Hou Z Q, Wei R H, Ma G X, Chen Z K, Wu J L. 2012. High Sr/Y magmas generated through crystal fractionation: Evidence from Mesozoic volcanic rocks in the northern Taihang orogen, North China Craton[J]. Gondwana Research, 22(1): 152−168. doi: 10.1016/j.gr.2011.11.002

    CrossRef Google Scholar

    [7] Haddadchi A, Ryder D S, Evrard O, Olley J. 2013. Sediment fingerprinting in fluvial systems: Review of tracers, sediment sources and mixing models[J]. International Journal of Sediment Research, 28: 560−578. doi: 10.1016/S1001-6279(14)60013-5

    CrossRef Google Scholar

    [8] Han Bo, Xia Yubo, Ma Zhen, Wang Xiaodan, Guo Xu, Lin Liangjun, Pei Yandong. 2023. Division of engineering geological strata, building of 3D geological structure and its application in urban planning and construction in Xiong'an New Area[J]. Geology in China, 50(6): 1903−1918 (in Chinese with English abstract).

    Google Scholar

    [9] Hao Aibing, Wu Aimin, Ma Zhen, Liu Futian, Xia Yubo, Xie Hailan, Lin Liangjun, Wang Tao, Bai Yaonan, Zhang Jing, Meng Qinghua. 2018. Geo−environmental condition and feasibility assessment of the deep underground space in Shanghai city[J]. Acta Geoscientica Sinica, 39(5): 513−522 (in Chinese with English abstract).

    Google Scholar

    [10] He Dengfa, Shan Shuaiqiang, Zhang Yuying, Lu Renqi, Zhang Ruifeng, Cui Yongqian. 2018. Three−dimensional geological structure of Xiong'an New District: Constraints from reflected seismic data[J]. Science in China, Earth Science, 48(9): 1207–1222 (in Chinese with English abstract).

    Google Scholar

    [11] Han B, Ma Z, Lin L J, Liu H W, Gao Y H, Xia Y B, Li H T, Guo X, Ma F, Wang Y S, Zhou Y L, Li H Q. 2024. Planning and construction of Xiong’an New Area (city of over 5 million people): Contributions of China’s geologists and urban geology[J]. China Geology, 7(3): 382−408. doi: 10.31035/cg2024055

    CrossRef Google Scholar

    [12] Liaghati T, Preda M, Cox M. 2004. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia[J]. Environment International, 29(7): 935−948. doi: 10.1016/S0160-4120(03)00060-6

    CrossRef Google Scholar

    [13] Ma Yan, Li Hongqiang, Zhang Jie, Sun Sheng, Xia Yubo, Feng Jie, Long Hui, Zhang Jingmao. 2020. Geophysical technology for underground space exploration in Xiongan New Area[J]. Acta Geoscientica Sinica, 41(4): 535−542 (in Chinese with English abstract).

    Google Scholar

    [14] Ma Zhen, Xia Yubo, Li Haitao, Han Bo, Yu Xuezhong, Zhou Yalong, Wang Yushan, Guo Xu, Li Hongqiang, Pei Yandong. 2021. Analysis of natural resources and environment eco−geological conditions in the Xiong'an New Area[J]. Geology in China, 48(3): 677−696 (in Chinese with English abstract).

    Google Scholar

    [15] Mao Guangzhou, Liu Chiyang. 2011. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earsh Sciences and Environment, 33(4): 337−348 (in Chinese with English abstract).

    Google Scholar

    [16] McLennan S M, Hemming S, McDaniel M J, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance and tectonics[C]//Jonhanson M J. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America, 21–40.

    Google Scholar

    [17] Murray R W, Knowlton C, Leinen K W, Mix A C, Polsky C H. 2000. Export production and terrigenous matter in the central equatorial Pacific Ocean during interglacial oxygen isotopestage 11[J]. Global and Planetary Change, 24(1): 59−78. doi: 10.1016/S0921-8181(99)00066-1

    CrossRef Google Scholar

    [18] Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [19] Nesbitt H W, Young G M. 1996. Petrogenesis of sediments in the absence of chemical weathering effects of abrasion and sorting on bulk composition mineralogy[J]. Sedimentology, 43(2): 243−358.

    Google Scholar

    [20] Owens P N, Blake W H, Gaspar L, Gateuille D, Koiter A J, Lobb D A, Petticrew E L, Reiffarth D G, Smith H G, Woodward J C. 2016. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications[J]. Earth–Science Reviews, 162: 1−23.

    Google Scholar

    [21] Roser B P, Korsch R J. 1988. Provenance signatures of sandstone−mudstone suites determined using discriminant function analysis of major−element data[J]. Chemical Geology, 67(1−2): 119−139. doi: 10.1016/0009-2541(88)90010-1

    CrossRef Google Scholar

    [22] Shang Shijie, Feng Chengjun, Tan Chengxuan, Qi Bangshen, Zhang Peng, Meng Jing, Wang Miaomiao, Sun Mingqian, Wan Jiawei, Wang Huiqing, Xiang Xinxuan. 2019. The application of comprehensive geophysical−drilling exploration to detecting the buried faults in Xiongan New Area and neighboring areas[J]. Acta Geoscientica Sinica, 40(6): 836−846 (in Chinese with English abstract).

    Google Scholar

    [23] Shang Shijie. 2020. Study on Quaternary Activity of Main Buried Faults and Strata Mineral Composition in Xiong'an New Area and Neighboring Areas[D]. Beijing: China University of Geosciences (Beijing), 1–58 (in Chinese with English abstract).

    Google Scholar

    [24] Xu Jie, Jiang Zaixing. 2019. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 21(3): 379−396 (in Chinese with English abstract).

    Google Scholar

    [25] Xu Yajun, Du Yuansheng, Yang Jianghai. 2007. Prospects of sediment provenance analysis[J]. Geological Science and Technology Information, 26(3): 26−32 (in Chinese with English abstract).

    Google Scholar

    [26] Yang Shouye, Li Congxian. 1999. Research progress in REE tracer for sediment source[J]. Acta Electronica Sinica, 14(2): 164−167 (in Chinese with English abstract).

    Google Scholar

    [27] Zhang Haidong, Liu Jianchao, Wang Jinya, Zhang Sunan, Hu Bo, Wang Dequan, Han Song. 2016. Petrology, geochronology and geochemistry characteristics of Wang’anzhen complex in the northern Taihang Mountain and their geological significance[J]. Acta Petrologica Sinica, 32(3): 727−745 (in Chinese with English abstract).

    Google Scholar

    [28] Zhang Jing, Ma Zhen, Wu Aimin, Bai Yaonan, Xia Yubo. 2018. A study of paleochannels interpretation by the spectrum of lithology in Xiong’an New Area[J]. Acta Geoscientica Sinica, 39(5): 542−548 (in Chinese with English abstract).

    Google Scholar

    [29] Zhang Xiuzhi, Bao Zhengyu, Tang Junhong. 2006. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 25(1): 65−72 (in Chinese with English abstract).

    Google Scholar

    [30] Zhang Xiuzhi, Ma Zhongshe, Wei Jing, Wang Huimin. 2012. The use of geochemical characteristics of elements in the study of Quaternary sedimentary environment in the Hebei Plain[J]. Earth Science Frontiers, 19(4): 194−205 (in Chinese with English abstract).

    Google Scholar

    [31] Zhang Zhaoyi, Jin Song, Wang Jianwu, Yang Hongbin, Wang Kebing, Xiao Wenxian, Bi Li. 2016. A study of Quaternary geomorphologic geological unit based on element geochemical field[J]. Geophysical and Geochemical Exploration, 40(1): 1−9 (in Chinese with English abstract).

    Google Scholar

    [32] Zhao Hongge, Liu Chiyang. 2003. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 21(3): 409−415 (in Chinese with English abstract).

    Google Scholar

    [33] Zhou Guohua, Ma Shengming, Yu Jinsong, Zhu Lixin, Wang Hui. 2002. Vertical distribution of elements in soil profiles and their Significance for geological and environmental[J]. Geology and Exploration, 38(6): 70−75 (in Chinese with English abstract).

    Google Scholar

    [34] Zhu Lixin, Ma Shengming, Zhou Guohua, Zheng Liguo. 2002. Characters of soil elements and its tracing application in alluvial plain[J]. Geology and Exploration, 38(4): 56−59 (in Chinese with English abstract).

    Google Scholar

    [35] 常兆山, 冯钟燕, 陈廷礼. 2000. 河北涞源岩基中的超镁铁质岩研究[J]. 地质与勘探, 36(3): 36−39. doi: 10.3969/j.issn.0495-5331.2000.03.011

    CrossRef Google Scholar

    [36] 成杭新, 彭敏, 赵传冬, 韩伟, 王惠艳, 王乔林, 杨帆, 张富贵, 王成文, 刘飞, 周亚龙, 唐世琪, 李括, 杨柯, 杨峥, 成晓梦, 陈子万, 张华, 莫春虎. 2019. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 26(6): 159−191.

    Google Scholar

    [37] 陈望和, 倪明云. 1987. 河北第四纪地质[M]. 北京: 地质出版社, 1–186.

    Google Scholar

    [38] 方海超, 黄朋, 孙家文, 于永海, 李安春. 2019. 鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别[J]. 海洋地质与第四纪地质, 39(3): 72−83.

    Google Scholar

    [39] 韩博, 夏雨波, 马震, 王小丹, 郭旭, 林良俊, 裴艳东. 2023. 雄安新区工程地质层组划分、三维地质结构构建及其在城市规划建设中的应用[J]. 中国地质, 50(6): 1903–1918.

    Google Scholar

    [40] 郝爱兵, 吴爱民, 马震, 柳富田, 夏雨波, 谢海澜, 林良俊, 王涛, 白耀楠, 张竞, 孟庆华. 2018. 雄安新区地上地下工程建设适宜性一体化评价[J]. 地球学报, 39(5): 513−522. doi: 10.3975/cagsb.2018.071502

    CrossRef Google Scholar

    [41] 何登发, 单帅强, 张煜颖, 鲁人齐, 张锐锋, 崔永谦. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207−1222.

    Google Scholar

    [42] 马岩, 李洪强, 张杰, 孙晟, 夏雨波, 冯杰, 龙慧, 张京卯. 2020. 雄安新区城市地下空间探测技术研究[J]. 地球学报, 41(4): 535−542. doi: 10.3975/cagsb.2020.071001

    CrossRef Google Scholar

    [43] 马震, 夏雨波, 李海涛, 韩博, 余学中, 周亚龙, 王雨山, 郭旭, 李洪强, 裴艳东. 2021. 雄安新区自然资源与环境−生态地质条件分析[J]. 中国地质, 48(3): 677−696. doi: 10.12029/gc20210301

    CrossRef Google Scholar

    [44] 毛光周, 刘池洋. 2011. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 33(4): 337−348. doi: 10.3969/j.issn.1672-6561.2011.04.002

    CrossRef Google Scholar

    [45] 商世杰, 丰成君, 谭成轩, 戚帮申, 张鹏, 孟静, 王苗苗, 孙明乾, 万佳威, 王惠卿, 项歆璇. 2019. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 40(6): 836−846. doi: 10.3975/cagsb.2019.033101

    CrossRef Google Scholar

    [46] 商世杰. 2020. 雄安新区及邻区主要隐伏断裂第四纪活动性与地层矿物组成研究[D]. 北京: 中国地质大学(北京), 1–58.

    Google Scholar

    [47] 徐杰, 姜在兴. 2019. 碎屑岩物源研究进展与展望[J]. 古地理学报, 21(3): 379−396.

    Google Scholar

    [48] 徐亚军, 杜远生, 杨江海. 2007. 沉积物物源分析研究进展[J]. 地质科技情报, 26(3): 26−32.

    Google Scholar

    [49] 杨守业, 李从先. 1999. REE示踪沉积物物源研究进展[J]. 地球科学进展, 14(2): 164−167. doi: 10.3321/j.issn:1001-8166.1999.02.010

    CrossRef Google Scholar

    [50] 张海东, 刘建朝, 王金雅, 张苏楠, 胡波, 王得权, 韩松. 2016. 太行山北段王安镇杂岩体岩石学、年代学、地球化学特征及地质意义[J]. 岩石学报, 32(3): 727−745.

    Google Scholar

    [51] 张竞, 马震, 吴爱民, 白耀楠, 夏雨波. 2018. 基于岩性光谱特征的雄安新区地面古河道识别研究[J]. 地球学报, 39(5): 542−548. doi: 10.3975/cagsb.2018.071003

    CrossRef Google Scholar

    [52] 张秀芝, 鲍征宇, 唐俊红. 2006. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 25(1): 65−72.

    Google Scholar

    [53] 张秀芝, 马忠社, 魏静, 王会敏. 2012. 利用元素地球化学特征研究河北平原第四纪沉积环境的探讨与实践[J]. 地学前缘, 19(4): 194−205.

    Google Scholar

    [54] 张兆祎, 靳松, 王建武, 杨红宾, 王克冰, 肖文暹, 毕立. 2016. 基于元素地球化学场研究第四纪地貌地质单元[J]. 物探与化探, 40(1): 1−9.

    Google Scholar

    [55] 赵红格, 刘池洋. 2003. 物源分析方法及研究进展[J]. 沉积学报, 21(3): 409−415. doi: 10.3969/j.issn.1000-0550.2003.03.007

    CrossRef Google Scholar

    [56] 周国华, 马生明, 喻劲松, 朱立新, 王徽. 2002. 土壤剖面元素分布及其地质、环境意义[J]. 地质与勘探, 38(6): 70−75. doi: 10.3969/j.issn.0495-5331.2002.06.017

    CrossRef Google Scholar

    [57] 朱立新, 马生明, 周国华, 郑立果. 2002. 冲积平原区土壤元素组成特征及其示踪作用[J]. 地质与勘探, 38(4): 56−59. doi: 10.3969/j.issn.0495-5331.2002.04.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(9) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint